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Our goal is to classify the computability of the sets of polynomials with cer-
tain Ramsey theoretic properties. For that, we will first introduce the notion
of density regularity, the Lightface Hierarchy and Hilbert’s 10th problem.
After the statement and proof of the main result, we will also give an appli-
cation of this classification, which is a bridge between sets of polynomials of
Ramsey theoretic interest and sets of polynomials with roots in some fixed
set.

These notes were produced as a part of the ISEM 281 project in “Undecid-
ability in the Ramsey Theory of polynomial equations” under the supervision
of Sohail Farhangi.
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1. Basic notions

For A ⊆ N, the upper density is given by:

d̄(A) = lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

.

Roughly speaking, Density Ramsey Theory is the study of what structures
can be found in sets A ⊆ N satisfying d(A) > 0.

Definition. Let (S,+) be a commutative semigroup.

• S is called cancellative if for all a, b, c ∈ S, we have

a+ b = a+ c ⇒ b = c .

• The set of finite subsets is denoted as

Pf (S) := {A ⊆ S | |A| < ∞} .
• A Følner sequence F = (Fn)n≥1 ⊆ Pf (S) satisfies:

lim
n→∞

|(s+ Fn)∆Fn|
|Fn|

= 0 ∀s ∈ S ,

where ∆ denotes the symmetric difference.

Now, let F be a Følner sequence and A ⊆ S.

• The F-upper density of A is defined as

dF (A) := lim sup
n→∞

|A ∩ Fn|
|Fn|

.

• If the limit exists, we define the F-density of A as

dF (A) := lim
n→∞

|A ∩ Fn|
|Fn|

.

We also define the upper Banach density of A as

d∗(A) := sup{dF (A) | F is a Følner sequence} .

Remark. In commutative semigroups, there exists a Følner sequence, so the
upper Banach density is well-defined.

When we work with an integral domain (R,+, ·), we define

d∗ := upper Banach density for (R,+) ,

and

d∗× := the upper Banach density in the semigroup (R \ {0}, ·) .

Definition (Measure-preserving S-systems). Let (S,+) be a commutative,
cancellative and countable semigroup. An S-system is a tuple (X,B, µ, (Ts)s∈S),
where:

• (X,B, µ) is a probability space.
• For all s ∈ S the map Ts is measurable.
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• For all A ∈ B one has and µ(A) = µ(T−1
s (A)).

• For all s, t ∈ S, we have TsTt = Ts+t.
• If S has an identity element e, then Te = id.

An S-system (X,B, µ, (Ts)s∈S) is ergodic if for A ∈ B, we have:

µ(T−1
s A∆A) = 0 ∀s ∈ S ⇒ µ(A) ∈ {0, 1} .

2. Density Regularity

Definition. Let (S,+) be a commutative, cancellative and countable semi-
group. A collection A ⊆ Pf (S) is translation invariant if for all A ∈ A and
s ∈ S, we have

s+A ∈ A.

Definition ((weakly) δ-density regular). Let S be a commutative, cancella-
tive and countable semigroup. Given δ ∈ [0, 1), the collection A is weakly
δ-density regular if:

∀B ⊆ S with d∗(B) > δ, ∃A ∈ A such that A ⊆ B.

The collection A is δ-density regular if:

∀B ⊆ S with d∗(B) ≥ δ, ∃A ∈ A such that A ⊆ B.

If A is weakly 0-density regular, then we say A is density regular.

Example. The collection A = {{x, y, z} | x + y = z} ⊆ P(Z) is weakly
1
2 -density regular but not 1

2 -density regular.

Proof. Let B ⊆ Z satisfy

d∗(B) >
1

2
,

then there is a Følner sequence F such that we can take an arbitrary x ∈ B
and will have

dF (B − x) = dF (B) >
1

2
.

This implies dF (B ∩ (B− x)) > 0, because otherwise dF (B∪(B− x)) would
be greater than 1. Let y ∈ B ∩ (B − x) be arbitrary and observe that
z := x+ y ∈ B. So we have x, y, z ∈ B and thus {x, y, z} ∈ A. Hence, B is
weakly 1

2 -density regular.

However, we see that d∗(2Z + 1) = 1
2 and 2Z + 1 does not contain any

member of A, so B is not 1
2 -density regular. □

We give another example with translation invariance.

Example. Let A = {{x, y} | x−y ≡ 1 (mod 2)}. We see that A is translation
invariant in (Z,+). Similar to the first example, let B ⊆ Z such that

d∗(B) >
1

2

holds, then there is a Følner sequence F for which we have dF (B + 1) =
dF (B) > 1

2 , which implies dF (B ∩ (B + 1)) > 0. Let x ∈ B ∩ (B + 1)
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be arbitrary, then {x, x − 1} ∈ A. However, 2Z + 1 does not contain any
member of A.

2.1. The Conversion Lemma.

Later in the talk, we will discuss the complexity of sets of polynomials with
a root in every set with positive density. The following lemma will allow us
to establish a correspondence between the polynomials over R that have a
root in the field of fractions K with the polynomials that are density regular
over R.

Lemma 1. Let R be a countably infinite integral domain with the field of
fractions K. For any m and any k1, . . . , km ∈ K, we have the following:

(i) If A ⊆ R is such that d∗(A) > 0, then A contains a solution to the
system of equations:

z4i−3 − z4i−2

z4i−1 − z4i
= ki, ∀i ∈ {1, . . . ,m} .

Furthermore, the solution can be taken such that zi ̸= zj for i ̸= j.
(ii) If A ⊆ R \ {0} is such that d∗×(A) > 0, then A contains a solution

to system in (i) such that zi ̸= zj for i ̸= j.

[1, Lemma 2.15]

2.2. Characterization of density regularity.

Theorem (Characterization of density regularity). Let (S,+) be a countably
infinite cancellative commutative semigroup, G be the group of differences of
S, F = (Fn)n≥1 be a Følner sequence in S, δ ∈ (0, 1) and A ⊆ Pf (S) be
translation invariant. Then the following statements are equivalent:

(i) A is δ-density regular.
(ii) For all B ⊆ S with dF (B) ≥ δ, there exists A ∈ A such that A ⊆ B.
(iii) For any ergodic G-system (X,B, µ, (Ts)s∈G) and any B ∈ B with

µ(B) ≥ δ, there exists an A ∈ A with

µ

(⋂
a∈A

T−1
a B

)
> 0 .

[1, Theorem 3.5]

3. Hilbert’s 10th Problem

In 1902, David Hilbert stated the following problem.

Question (Hilbert’s 10th Problem). Is the set of polynomials p ∈ Z[x1, . . . , xn]
with an integer root computable?

Here, computable means that there is an algorithm that can determine in
finite time whether an object is an element of the set or not.
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Answer. No: In 1971 Matiyasevich, drawing on earlier work of Davis, Put-
nam and Robinson showed that such an algorithm does not exist by relating
this problem to the halting problem.

However, it’s easy to find an algorithm which stops after finite time if p has
an integer root: We just have to check for each z ∈ Z whether p(z) = 0.
However, if p does not have an integer root, then this algorithm will not
stop.

We will now introduce the so-called Lightface Hierarchy which shall put the
ending-after-finite-time-ness in precise terms.

4. The Lightface Hierarchy

4.1. First Layer.

Definition (∆0
1(Z)). The lowest position in the Lightface Hierarchy is de-

noted by ∆0
1(Z) and consists of computable sets.

There are a few examples.

• ∅ and Z are trivially in ∆0
1(Z).

• All finite sets are in ∆0
1(Z).

• The set of square numbers is in ∆0
1(Z) because for a given n ∈ Z,

one has only have to check for m ∈ {0, . . . , n} whether m2 = n.
• The set of prime numbers is in ∆0

1(Z).

4.2. Generalization of computable sets.

We now gerneralize this definition for other domains than Z: Given a set S
and a computable bijection ϕ : Z → S, one can define ∆0

1(S) as those A ⊆ S
satisfying ϕ−1(A) ∈ ∆0

1(Z). Because of this identification, we will denote
∆0

1(S) by ∆0
1 from now on.

Remark. Usually, the Lightface Hierarchy is first defined on N and then
generalized to Z in this way.

4.3. Second Layer.

As discussed earlier, one can say that an algorithm is ∆0
1 if it stops after

finite time. Now, given a set, what is the next lowest level of complexity
after computability that it can have?

Answer. Given an element, it could at least stop in finite time if the object
is in the set. Conversely, it could stop in finite time if the object is not in
the set.

We will call the first set Σ0
1 and the second set Π0

1. Using the same procedure
as for ∆0

1, one can similary generalize those sets to arbitrary (computable)
domains.

Remark. The three sets are closely connected: One has ∆0
1 = Σ0

1 ∩ Π0
1, and

if A is in Σ0
1, if and only if Ac is in Π0

1.
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We already mentioned some examples for Σ0
1:

• The set of polynomials with an integer root is Σ0
1.

• The set of algorithm-input-pairs whose algorithm halts on its input
is Σ0

1 \∆0
1: Just plugging the input into the algorithm indeed ends

in finite time if the algorithm halts on the input. This is called the
Halting Problem.

4.4. Further Layers.

For an intuition of the definition of further layers of the Lightface Hierarchy,
we first might ask what kinds of sets are Σ0

1 or Π0
1: If A is Σ0

1, then it has
the form of

A = {a ∈ ∗ | ∃x ∈ ∗ such that a computable condition holds for x and a},

where ∗ is a placeholder for arbitrary computable sets, which do not have to
be the same. Here, a computable condition is a formula whose output can
be calculated in finite time. Conversely, a set B of Π0

1 has the form of

B = {b ∈ ∗ | ¬∃x ∈ ∗ such that a computable condition holds for x and b}
= {b ∈ ∗ | ∀x ∈ ∗ such that a computable condition does not hold for x and b}
= {b ∈ ∗ | ∀x ∈ ∗ such that another computable condition holds for x and b}.

The intuition for Σ0
2 is now that a set C is Σ0

2 if

C = {c ∈ ∗ | ∃x ∈ ∗∀y ∈ ∗ such that a computable condition holds for x, y and c}

and a set D is Σ0
3 if

D = {d ∈ ∗ | ∃x ∈ ∗∀y ∈ ∗∃z ∈ ∗ such that a computable condition holds for x, y, z and d}.

Conversely, a set E is Π0
2 if

E = {e ∈ ∗ | ∀x ∈ ∗∃y ∈ ∗ such that a computable condition holds for x, y and e}.

This extends by induction.

Definition. We set ∆0
n := Σ0

n ∩Π0
n.

Figure 1. Structure of the Lightface Hierarchy.
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4.5. Completeness and Universality.

∗-Completeness means that ∗ is the narrowest category it fits in:

Definition (∗-complete). A set A is called Σ0
n-complete if it is an element

of Σ0
n \∆0

n. Similary, A is called Π0
n-complete if it is an element of Π0

n \∆0
n.

∗-Universality means that the set is as complex as ∗-sets can be.

Definition (∗-universal). A set A is ∗-universal if all B ∈ ∗ are computably
reducible to A, i. e. there is a computable ϕ : Z → Z with n ∈ B ⇔ ϕ(n) ∈ A.

5. Main Result

The main result is about the hierarchy position of the following sets.

Definition (IADRR and IMDRR). Let p = (p1, . . . , pn) ∈ R[x1, . . . , xn] be
a polynomial. It is in IADRR(δ) if every B ⊆ R with d∗(B) > δ contains an
injective root of p, i. e. there are x1, . . . , xn ∈ B such that all xi are different
from one another, with p(x1, . . . , xn) = 0. We set

IADRR :=
⋂
δ>0

IADRR(δ) .

Similary, p is IMDRR(δ) if every B ⊆ R with d∗×(B) > δ contains an injective
root of p, and IMDRR is defined as

IMDRR :=
⋂
δ>0

IMDRR(δ) .

Before we can state the main result, we shortly need to generalize Hilbert’s
10th Problem on integral domains.

Definition (Hilbert’s 10th Problem – on R). Let R be a computable integral
domain. Given a polynomial p ∈ R[x1, . . . , xn], is there an algorithm that
can determine in finite time whether p has a root in R? If so, Hilbert’s 10th
Problem is called decidable for R, if not, is called undecidable for R.

One can generalize this definition to any subset A ⊆ R by requiring the root
to be in A instead of R.

We are now able to state one of the main results: To precisely position the
density sets introduced in the beginning of this section into the Lightface
Hierarchy.

Theorem 2 (Density Results). Let R be a computable integral domain, K
its field of fractions and let Hilbert’s 10th Problem for K be undecidable.
Then we have:

(i) For each δ > 0, IMDRR(δ)∩HR and IADRR(δ)∩TR are Σ0
1-complete

and even Σ0
1-universal.

(ii) The set IMDRR ∩HR is Π0
2-complete and even Π0

2-universal.
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If Hilbert’s 10th Problem on Q is undecidable, then IADRZ ∩ TZ is Π0
2-

complete. [1, Theorems 4.1, 4.2 and 4.3]

The last two points should be clear intuitively, as

IMDRR ∩HR = {p | ∀δ > 0 : p ∈ IMDRR(δ) ∩HR}

and instead of counting for all δ > 0, one can switch to { 1
n | n ∈ N},

which is countable, so it fits the formula we presented in section 4.4 because
IMDRR(δ) ∩HR is Σ0

1.

6. Partition Regularity

We will now turn to another field of Ramsey Theory: Partition Ramsey
Theory. This field is concerned with colorings. The following definition is
central.

Definition ((r-)Partition Regular). Let r ∈ N. A finite collection of poly-
nomials p1, . . . , pn ∈ R[x1, . . . , xd] is called r-partition regular on the domain
R if for all partitions C1, . . . , Cr of R \ {0} there is a monochrome solution
of p1, . . . , pn, i. e. there is an i and x1, . . . , xd such that

p1(x1, . . . , xd) = · · · = pn(x1, . . . , xd) = 0 and x1, . . . , xd ∈ Ci .

In this case, we write (p1, . . . , pn) ∈ PRR(r).

A finite collection of polynomials p1, . . . , pn ∈ R[x1, . . . , xd] partition regular
on the domain R, if it is r-partition regular for all r ∈ N. In this case, we
write (p1, . . . , pn) ∈ PRR.

We have PRR =
⋂

r∈N PRR(r).

A common question in partition Ramsey theory is whether a given finite
collection of polynomials is partition regular. Here are a few examples.

• If d = 1, i. e. if the polynomials only take one argument, then parti-
tion regularity is equivalent to the question whether the polynomials
have a solution other than 0.

• The equation x + y = z is partition regular, which corresponds to
the polynomial p(x, y, z) = x+ y − z. However:

• The equation x+ 2y = z is not partition regular.
• A characterization of partition regularity of a system of linear equa-
tions is given by Rado’s Theorem, which we will not cover in our
presentation.

Theorem (Partition Compactness Principle). Let R be an integral domain,
let S ⊆ R, and let p ∈ R[x1, . . . , xn].

(i) Given r ∈ N, the equation p(x1, . . . , xn) = 0 is r-partition regular
over S if and only if it is also r-partition regular over some finite
set Fr ⊆ S.
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(ii) The equation p(x1, . . . , xn) = 0 is partition regular over S if and
only if for every r ∈ N it is r-partition regular over some finite set
Fr ⊆ S.

[1, Theorem 2.24]

Recall that, for a finite K ⊆ S and ϵ > 0, a finite set F ⊆ S is called
(K, ϵ)-invariant if for any k ∈ K we have |kF∆F | < ϵ|F |.
Theorem 3 (Density Compactness Principle). Let S be a commutative,
cancellative and countable semigroup, let δ ∈ (0, 1], and let A ⊆ Pf (S) be
translation invariant. Then, the following statements are equivalent:

(i) If B ⊆ S satisfies d∗(B) ≥ δ, then there exists some A ∈ A with
A ⊆ B.

(ii) There exists a finite set K ⊆ S and ε > 0 such that for every (K, ε)-
invariant finite subset F ⊆ S, and every subset B ⊆ F with

|B| ≥ δ|F | ,
there exists A ∈ A with A ⊆ B.

(iii) There exists a finite set H ⊆ S such that for every B ⊆ H with

|B| ≥ δ|H| ,
there exists A ∈ A with A ⊆ B.

[1, Theorem 3.1]

Remark. The first statement of Theorem 3 pertains to the structures studied
in Ramsey theory. Unfortunately, it is too complex to be used in classifying
into the Lightface Hierarchy levels introduced in these notes. However, the
condition in (iii) is Σ0

1 and thus can be used to reduce the complexity of H.
The condition in (ii) is more complex, thus the second statement may not
be of set theoretic use, but is still of independent interest.

7. Proof of the Main Result

Here, we will only prove that IADRR ∩ TR is Σ1
0-complete. For that, we

will give a computable reduction to HTP(K×). Let P ∈ R[x1, . . . , xk] be
arbitrary.

We construct a new polynomial P1 ∈ R[z1, . . . , z4k] as follows:

P1(z1, . . . , z4k) := P

(
z1 − z2
z3 − z4

, . . . ,
z4k−3 − z4k−2

z4k−1 − z4k

)
·

k∏
i=1

(z4i−1 − z4i)
deg(P ).

Step 1: If P ∈ HTP(K×), then P1 ∈ IADRR(δ) ∩ TR.

Suppose there exists a solution s1, . . . , sk ∈ K× such that P (s1, . . . , sk) = 0.
By Lemma 1 (i), for any set B ⊂ R\{0} with additive upper Banach density
d∗(B) > 0, there exist distinct elements z1, . . . , z4k ∈ B such that

z4i−3 − z4i−2

z4i−1 − z4i
= si for i = 1, . . . , k .
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Then,

P1(z1, . . . , z4k) = P (s1, . . . , sk) ·
k∏

i=1

(z4i−1 − z4i)
deg(P ) = 0 .

Thus, P1 has a root on a set B of positive additive density, and z1, . . . , z4k
are injective. This implies P1 ∈ IADRR(δ). Furthermore, P1 is translation
invariant. Hence, P1 ∈ IADRR(δ) ∩ TR.

Step 2: If P1 ∈ IADRR(δ) ∩ TR, then P ∈ HTP(K×). Suppose P1 ∈
IADRR(δ) ∩ TR. Because we have d∗(R) = 1 ≥ δ, there exist distinct
elements z1, . . . , z4k ∈ R such that

P1(z1, . . . , z4k) = 0 .

But then the rational numbers

si :=
z4i−3 − z4i−2

z4i−1 − z4i
∈ K×

satisfy P (s1, . . . , sk) = 0 . Therefore, P ∈ HTP(K×).

Having shown that the map P 7→ P1 is computable, we have reduced the
problem of deciding membership in HTP(K×) to deciding membership in
IADRR(δ) ∩ TR. Moreover, since the set IADRR(δ) ∩ TR is recursively
enumerable, it is Σ0

1-complete. □

The proof for IMDRR(δ) ∩HR is similar. One just has to use Lemma 1 (ii)
instead and see that P1 is also homogeneous.

8. Bridge between IADRR(δ) ∩ TR and roots in K

We will now look at some applications of Theorem 2, namely a reduction of
the polynomials discussed in the previous sections.

False Statement. Suppose that R is a computable integral domain such
that the set IADRR ∩ TR (or IMDRR ∩HR) is Π0

2-complete. Then for each
polynomial p ∈ R[x1, . . . , xn], there exists a polynomial q ∈ R[x1, . . . , xm],
computable as a function of p, such that:

p ∈ IADRR ∩ TR ⇐⇒ q has a root in K

(respectively, p ∈ IMDRR ∩HR) for some fixed computable set K.

The statement is false because it attempts to give a computable reduction
of a Π0

2-set (namely, IADRR ∩ TR) to a Σ0
1-set (the set of polynomials with

root in K), which is impossible.

However, IADRR(δ)∩TR and the set of polynomials with root in K are both
Σ0

1, and we are able to prove the following positive result.
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Theorem 4. For every polynomial p ∈ R[x1, . . . , xn] and every δ ∈ (0, 1],
there exists a polynomial q ∈ R[x1, . . . , xm], computable from p and δ, such
that:

p ∈ IADRR(δ) ∩ TR ⇐⇒ q has a root in K

(respectively, p ∈ IMDRR(δ) ∩HR). [1, Theorem 5.5]

Remark. In all known cases of interest in which HTP(R) is undecidable, it
is actually Σ0

1-universal, so there exists a computable reduction from the
Σ0

1-set IADRR(δ) ∩ TR to HTP(R).
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