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Birkhoff's pointwise ergodic theorem

Theorem ([1])

Let (X, B, i, ) be a probability measure preserving system, and
let f € LY(X, ). For a.e. x € X, we have

N
fim 33560 = o <1>
where f*(x) € LY(X, u) is such that f*(px) = f*(x) fora.e. x € X

and [, f*du = [, fdy for every A € A satisfying A= ¢ *A. In
particular, if p is ergodic, then for a.e. x € X we have

Nlinoo—Zf ©"x) /de,u. (2)
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Operatorial generalizations of Birkhoff

Doob [5] and Kakutani [8] produced a pointwise ergodic theorem
for Markoff processes. Later Hopf [7] proved a general operator
theoretic pointwise ergodic theorem, which was further refined by
Dunford and Schwartz [6], and then extended to operators on
Bochner spaces by Chacon. Yoshimoto [14] extended Chacon's
result to more general operators and to a larger class of functions.
Similar results were also found independently by Chilin and
Litvinov [4].
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Dunford-Schwartz+Chacon ergodic theorem

Theorem (Chacon, [3, Theorem 1])

Let E be a reflexive Banach space, let 1 < p < +o0, let (X, 8, 1)
be a o-finite measure space, and let T : LY(X, u; E) — LY(X, p; E)
be a linear contraction for which we also have || Tg || < ||&]|co

whenever g € L*(X, p; E) N L°°(X w; E). Forany f € LP(X, u; E),

N'i‘go—Z T ©)
converges in the norm topology of E for a.e. x € X. Furthermore,
if1 < p < 400, then there exists a f* € LP(X, u; E) such that for
a.e. x € X we have

sup H Z || < 10l (4)

nen || N
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The uniform Wiener-Wintner theorem of Bourgain

Theorem ([13, 2])

Let X := (X, A, i, ) be a probability measure preserving system
and let f € LY(X, ). There exists Xy € % with (X¢) = 1, such
that for x € X¢ and \ € S! we have existence of the following limit:

H 1 n n
lim NZ_: f(p"x)A". (5)
If X is ergodic and f € L*(X, 11) is weakly mixing, i.e.,

N
/X Tgfgdu‘ _o, (6)

1
. 2

for all g € L=(X, 1), then for x € X¢ we have
lim sup

N
1
- (o "x)\"
N—oo AeSt N ; (SD X)

e
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Lamperti operators

For 0 < p < 0o and a o-finite measure space (X, %, i), a
bounded linear operator T : LP(X, ) — LP(X, u) is a Lamperti
operator if for any f, g € LP(X, 1) with fg = 0, we have
(Tf)(Tg) = 0. Lamperti [10] showed that if T is an isometry of
LP(X, u) for p # 2, then T is a Lamperti operator. Kan [9]
observed that every Lamperti operator is of the form

(Tf)(x) = h(x)f(px) for some h: X — C and some nonsingular
@ : X — X. If E is a Banach space then an operator

T :LP(X,u; E) = LP(X,u; E) is a Lamperti operator if for any
f,g € LP(X, u; E) with ||f(x)|| - ||g(x)|| = 0 p-a.e., we have

|| TF(x)|| - || Tg(x)|| = 0 p-a.e. A typical example of such an
operator is (Tf)(x) = H(x)(f(¢x)), where L1(E) is the unit ball
of the bounded linear operators on E, and H : X — L4(E) is
sufficiently measurable. A Lamperti representation 7 of a group
G on LP(X, p; E) is representation of G in which each T is a
Lamperti operator.
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Ergodic properties of Lamperti operators

Kan [9] proved dominated ergodic estimates and pointwise ergodic
theorems for Lamperti operators on LP(X, i) with 1 < p < 0.
Tempelman [11] as well as Tempelman and Shulman [12] extended
these results to Lamperti representations of an amenable group.

Theorem (Tempelman [11])

Let G be a locally compact second countable (l.c.s.c.) amenable
group with left Haar measure \, and let (F,)°; be a tempered left
Falner sequence in G. If T is a bounded Lamperti representation
of G on LP(X, ) with (X, %, ) a o-finite measure space and

1 < p < o0, then for a.e. x € X we have

) 1
im St . TeFedre) = i, ®)

where P is the projection onto the T-invariant subspace.
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The spaCb property

Let G be a l.c.s.c. amenable group, and let F = (F,)5°; be a
left-Fg@lner sequence. A weakly relatively compact representation T
of G on LP(X, pu; E) is F-pointwise absolutely Cesaro
bounded (F-paCb) if there exists a C > 0 such that for every

f e LYX,u; E) we have

n—oo

Iimwpﬁ/ﬁ ITef(x)lledA(g) < ClIfll,, (9)

for u-a.e. x € X. The representation T is F-strongly pointwise
absolutely Cesaro bounded (F-spaCb) if it is F-paCb and for
every f € LP(X,u; E) N L=(X, u; E) we have

supgec | Taflloo < Cllfloo
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Let (X, %, 1) be a standard probability space. Let E be an
arbitrary Banach space, and let 1 < p < oo be arbitrary.
Q If o : X — X is measure preserving and ergodic, and
H : X — L4(E) is measurable, then the Lamperti operator T
given by (Tf)(x) = H(x)(f(px)) is a ([1, N])x_;-spaCb
operator on LP(X, u; E).
@ If ¢ is an ergodic measure preserving action of G on
(X, A,pn), and h: G x X — L1(E) is a bounded cocycle, i.e.,
H(g182, x) = H(g2, x)H(g1, ¢g,x), then the Lamperti
representation T of G given by (T,f)(x) = H(g, x)f(pgx) is
F-spaCb for any tempered Fglner sequence F.
© If p > 1, then there are situations in which we can allow the
cocycle h: X — C<; to be an unbounded Radon-Nikodym
derivative of pushforwards of 1 with respect to a nonsingular
action.
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Operatorial uniform Wiener-Wintner for N

Let (X, A, 1) be a o-finite measure space, let E be a Banach
space, and let T : [}(X, u; E) — LY(X, u; E) be a bounded linear
spaCb operator. Then for any weakly mixing f € L*(X, u; E), i.e.,
any f satisfying

lim —Z| T°f,g') (10)

N—oo N

for all g’ € LY(X, u; E)', we have for a.e. x € X that

N
1
lim sup NZfoA = 0. (11)
n=1

N—oo eSt
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Operatorial amenable uniform Wiener-Wintner

Let (X, A, 1) be a o-finite measure space, let E be a Banach
space, and let T : [1(X,u; E) — LY(X, pu; E) be a bounded linear
F-spaCb representation of G. Then for any weakly mixing
fel'(X,u;E), ie, any f satisfying

1
li N = 12
i sk T =0, (12)
for all ' € LY(X, u; E)', we have for a.e. x € X that

lim sup
N~>oo¢€¢,d

s L 0@ 0 a3
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A counterexample

Let e(x) = e*™™ and consider the multiplication operator

M, : L}([0,1], m) — L*([0, 1], m) given by (M.f)(x) = e(x)f(x).
The operator is weakly mixing (in fact, strongly mixing) since for
any g € L°°([0,1], m) = (L}([0, 1], m))" we have

1

lim (Mf,g) = lim / e(nx)f(x)g(x)dx = lim fg(—n) =0,
N—oo N—oo Jq N—oo

where the final equality follows from the Riemman-Lebesgue

Lemma. However, we see that for A\, := e(—x), we have
N

H 1 n n __
Jim ;(Me F)(x)A7 = 1. (14)

We also see that M, is not paCb, as C — limy_ |(Me14)(x)| =1
for x € A, regardless of the measure of A.
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