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Partition regularity

Definition

Let R be an integral domain, let S ⊆ R , let n,m ∈ N and
p1, · · · , pm ∈ R[x1, · · · , xn] be arbitrary. The system of equations

p1(x1, · · · , xn) = 0
...

pm(x1, · · · , xn) = 0

(1)

is ℓ-partition regular (p.r.) over S if for any partition
S =

⋃ℓ
i=1 Ci , there is some 1 ≤ i0 ≤ ℓ for which Ci0 contais a

solution to the system of equations in (1). The system of equations
is partition regular if it is ℓ-partition regular for all ℓ ∈ N.
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z , Schur 1916 [24]
2) van der Waerden 1927 [25] (arithmetic progressions or A.P.s)

x1 − x2 = x2 − x3
...

xn−2 − xn−1 = xn−1 − xn, or equivalently,

n−2∑
i=1

(xi+2 − 2xi+1 + xi)
2 = 0.

3) Brauer 1928 [6] (A.P.s and their common difference)

x1 − x2 = x0
...

xn−1 − xn = x0
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Positive results 2/2

4) Rado 1933 [22] classified which finite systems of linear
equations are p.r.
5) x − y = p(z) with p(z) ∈ zZ[z ], Bergelson 1996 [3, page 53]
6) Bergelson, Moreira, and Johnson 2017 [4], for pi(x) ∈ xZ[x ]

x1 − x2 = p1(x0)
...

xn−1 − xn = pn−1(x0)

7) x2 − y 2 = z , Moreira 2017 [19]
8) z = xy , Sahasrabudhe 2018 [23]
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Negative results

The following systems of equations are not partition regular over N.
1) 2x + 3y = z , Rado 1933 [22]
2) Rado 1933 [22]

x + 3y = z1
x + 2y = 2z2

3) x + y = z2 (ignoring 2 + 2 = 22), Csikvári, Gyarmati, and
Sárközy 2012 [9] (see also [17])
4) x − 2y = z2, Di Nasso and Luperi Baglini 2018 [12]
5) x2 − 2y 2 = z , Di Nasso and Luperi Baglini 2018 [12]
6) x + y = w 3z2, F. and Magner 2022 [14]
7) 2x + 3y = wz2, F. and Magner 2022 [14]
8) F. and Magner 2022 [14]

x1 + 17y1 = w1z
100
1

9x2 + 18y2 = w2z
2
2
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x2 + y 2 = z2 (VERY popular, [13, 18, 15, 16])
2) a(x2 − y 2) = bz2 + dw (important, cf. [21])
3) x3 + y 3 + z3 = w 3 (cf. [8])
4) x3 + y 3 + z3 − 3xyz = w 3

5) x4 + y 4 + z4 = w 4 (cf. [8])
6) (VERY popular, cf. [19, 1, 2, 5])

w = xy
z = x + y

7) 2x − 8y = wz3 (cf. [14])
8) (cf. [14])

16x1 + 17y1 = w1z
8
1

33x2 − 17y2 = w2z
8
2

Sohail Farhangi Partition Ramsey Theory Decidability in Ramsey theory 7



Computable sets

Definition

A set A ⊆ N is computable if there exists an algorithm (Turing
machine) that halts on every input, and outputs 1 if and only if the
input is an element of A. If S is a countably infinite set, then
A ⊆ S is computable if there exists a a computable bijection
ϕ : S → N for which the set ϕ(A) is computable.

Examples of computable subsets of N include the set of squares,
the set of primes, the set of powers of 2, and the set of square free
numbers. If S ⊆ Z[x ] denotes the collection of polynomials of
degree at most 2, and A ⊆ S is those polynomials that have an
integer root, then A is a computable set. Rado’s Theorem [22]
shows us that if S is the set of finite systems of linear equations
with coefficients in Z, and A ⊆ S consists of those systems that
are partition regular over N, then A is computable.
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Computably enumerable sets

Definition

A set A ⊆ N is computably enumerable if there exists an
algorithm (Turing machine) such that the set of inputs for which
the algorithm halts is exactly A. Equivalently, A is computably
enumerable if there exists an algorithm that enumerates the
members of A.

Given a polynomial p ∈ Z[x1, · · · , xn], the set Zp of integer roots
of p is seen to be computably enumerable from the second of the
given definitions. If S =

⋃∞
n=1 Z[x1, · · · , xn], and A ⊆ S is those

polynomials that possess an integer root, then A is seen to be
computably enumerable from the first of the given definitions.

Lemma

A set A ⊆ N is computable if and only if A and Ac are both
computably enumerable.
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The lightface hierarchy

We denote the collection of computable subsets of N by △0
1, the

collection of computably enumerable subsets of N by Σ0
1, and we

let Π0
1 denote the collection of sets whose complement is in Σ0

1.
We inductively define Σ0

n+1 to be the collection of sets that are
reducible to a set in Π0

n in a “computably enumerable fashion”,
Π0

n+1 is the complement of Σ0
n+1, and △0

n+1 = Σ0
n+1 ∩ Π0

n+1.

Σ0
1 Σ0

2 · · · Σ0
n

△0
1 △0

2 △0
n+1 · · ·

Π0
1 Π0

2 · · · Π0
n
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Hilbert’s 10th problem (HTP)

At the International Congress of Math in 1900, David Hilbert
presented 10 important problems in mathematics, and 2 years later
published a completed list of 23 problems now known as Hilbert’s
problems. The 10th of the 23 problems (published but not
presented) asked if the set A ⊆ S :=

⋃∞
n=1 Z[x1, · · · , xn] of

polynomials that have an integer root is computable.

Theorem (Matiyasevič, 1971)

The set A is not computable.

See the survey of Davis [10] for an exposition of the proof of this
result and the history.
Open Problem: Is the set AQ ⊆ S of polynomials that have a
root in Q computable?
The latter problem is referred to as Hilbert’s 10th problem over Q.
It is generally believed that AQ is not computable.
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Variations of Hilbert’s 10th problem

Given a computable integral domain R , we let HTP(R) refer to
the following statement:
HTP(R): There does not exist a computable procedure to
determine if a given p ∈ R[x1, · · · , xn] has a root in R .
The statement HTP(R) can be true, or false depending on the
integral domain R .

Theorem ([26, 20, 11])

Suppose that R is a finite degree algebraic extension of
Fpk (t1, · · · , tn) for some prime p > 2 and some n, k ∈ N.
(i) HTP(R) is true.
(ii) There does not exist a computable procedure for determining

whether or not a given polynomial p ∈ R[x1, · · · , xn] has an
integer root (z1, · · · , zn) ∈ (R \ {0})n.
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First main result

Theorem (F., Jackson, Mance, 2024+)

1 Let us assume that HTP(Q) is true. For ℓ ∈ N, the set
Aℓ ⊆

⋃∞
n=1 Z[x1, · · · , xn] of (homogeneous) polynomials p for

which the equation p(x1, · · · , xn) = 0 is ℓ-partition regular
over Z \ {0} is computably enumerable but not computable,
so it is Σ0

1-complete. The set A :=
⋂∞

ℓ=1 Aℓ is Π
0
2-complete.

2 Suppose that R is as in the Theorem on the last slide (or just
R = Fp(t)). For ℓ ∈ N, the set Aℓ ⊆

⋃∞
n=1 R[x1, · · · , xn] of

(homogeneous) polynomials p for which the equation
p(x1, · · · , xn) = 0 is ℓ-partition regular over R \ {0} is
Σ0

1-complete. The set A :=
⋂∞

ℓ=1 Aℓ is Π
0
2-complete.
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Reducing partition regularity to HTP

Lemma (cf. Krawczyk,Byszewski, 2021 [7])

Let R be an integral domain with field of fractions K. For any
m ∈ N and any k1, · · · , km ∈ K, the system of equations

z3i−2 − z3i−1

z3i
= ki for all 1 ≤ i ≤ m, (2)

is partition regular over R \ {0}.

Corollary

Given an integral domain R, and a polynomial p ∈ R[x1, · · · , xn], p
has a root in K if and only if the equation p′(x1, · · · , x3n) = 0 with

p′(x1, · · · , x3n) := p

(
x1 − x2

x3
, · · · , x3n−2 − x3n−1

x3n

)( n∏
i=1

x3i

)deg(p)

is partition regular over R \ {0}.
Sohail Farhangi Main result for partition regularity Decidability in Ramsey theory 14



Implications 1/3

Observe that if R is a countably infinite integral domain, then
there are only countably many polynomials p with coefficients in
R . Consequently, the set B of such polynomials that are not
partition regular over R \ {0} is countable, so for each p ∈ B there
exists a partition Pp of R \ {0} that does not contain a root of p.
Consequently, to determine whether or not a polynomial p is
partition regular over R \ {0}, it suffices check whether or not p
has a root in some cell of each partition in the family {Pb}b∈B .
The fact that the set of ”partition regular polynomials” is
Π0

2-complete, means that there does not exist a simpler method of
determining whether or not the equation p(x1, · · · , xn) = 0 is
partition regular over R \ {0}.
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Implications 2/3

Conjecture

Let R be a computable integral domain. There exists a
computable collection of finite partitions {Cn}∞n=1 of R \ {0} such
that p is partition regular over R \ {0} if and only if for every
n ∈ N, p has a root in some cell of Cn.
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Implications 3/3

The following statement is false since it is describing a Σ0
1 set, but

the set of ”partition regular polynomials” is (conditionally) a
Π0

2-complete set.

False Statement: Let R be a countably infinite integral domain.
For each p ∈ R[x1, · · · , xn], there exists q ∈ R[x1, · · · , xm] that is
a computable function of p such that p(x1, · · · , xn) = 0 is partition
regular over R \ {0} if and only if q has a root in K .

However, the following result is true.

Theorem

For each p ∈ R[x1, · · · , xn] and each r ∈ N, there exists
qr ∈ R[x1, · · · , xm] that is a computable function of p and r such
that p(x1, · · · , xn) = 0 is r -partition regular over R \ {0} if and
only if qr has a root in K.
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Density Ramsey Theory

Everything that we have considered so far for partition regularity,
we have also considered for density Ramsey theory. See the paper
for more details.
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[13] P. Erdős and R. L. Graham.
Old and new problems and results in combinatorial number
theory, volume 28 of Monographies de L’Enseignement
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Université de Genève, L’Enseignement Mathématique,
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