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Base-b normality 1/2

Definition
For b € N>,, a number x € [0, 1] is normal base-b if for { € N
and any word w € {0,1,--- , b — 1}*, the word w appears in the

base-b expansion of x with the correct frequency, and we denote
the set of such numbers by NV},. More explicitly, if
x =0.x1% - -, then

lim _#{1 <n< N | W = XpXn+1 * Xn+£_1} = b_z. (1)

N—oo N

Equivalently, x is normal base-b if the sequence (b"x)%2; is
uniformly distributed in [0, 1]. More explicitly, if for any
0 <a<c<1wehave

/vlin %#{1§n§N|b”x (mod 1) € (a,¢)} =c—a. (2)
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Base-b normality 2/2

We observe that for x € [0, 1] with a base-2 expansion of

X =0.x1x-+ X, -+, we have
( [0’ %) iff Xn+1 = 0
[2.1) iffxpp1=1
1) iff

2% (mod 1) e { [13) T Dot 2iz) = (0.0)
1) iff (o1, X042) = (0, 1)
[4217 73;) iff (Xp41, Xn12) = (1,0)
\ %7%) iff (Xp41, Xn42) = (1,1).

More generally, if x = 0.x3x2 - - - X, - - -5 and
w=(wy, - ,w) €{0,1,---,b— 1} then

l L
w; wi 1.
b"x (mod 1) c [E EJ" j—}—ﬁ) iff (Xn+1,"' 7X,1+£): w.
— =1
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Cantor series

Given a basic sequence (sequence of bases) Q = (g,)72; € NY,
and some x € [0, 1], the base Q expansion x = 0.x1X2 X, "+ @
with 0 < x; < q; is defined by

o] n -1
X1 X2 X3
X=) X q; ==+ —+ + - 3
; (E J) g1 q1G2 q1G2G3 ()

It is unique for all but countably many points in [0, 1].
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Normality for a Cantor series

Given a basic sequence Q = (¢,)>; and an

x=0x1%2 X, € [0,1], we say that x is Q-normal if for any
block of digits D = (dy, - - ,d,) € Z%, appears in the base Q
expansion of x with the correct frequency, and we denote the set
of such x by N(Q). More precisely, if D satisfies

N L
1
MD(N) = Z (H 'ﬂ[o7qn+j)(dj)> /\:30 oo, then

=1 \j=1 Inti

Nlim #{1<n<N| XpXp11° Xnpe1 = D}/Mp(N) = 1.
—o0
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Distribution normality for a Cantor series

Given a basic sequence Q = (¢,)72; and an x € [0, 1], we say that
x is Q-distribution normal if the sequence

(X, g1X, @2q1X,* ** , GnGn_1" - G2G1X, - - - ) is uniformly distributed,
and the set of such x is denoted by DN(Q). For a general basic
sequence @, the notions of Q-normality and Q-distribution
normality don't need to be the same.

Theorem (Airey, Jackson, and Mance [1])

If Q = (qn)2, is such that lim, . g, = 00 and > >~ 1 g, = oo,
then DN (Q) \ N(Q) and N (Q) \ DN (Q) are D,(N3)-complete.

See also [3] for results regarding the Hausdorff dimension of the
difference sets, which are usually 1.

Remark: For any Q, the set DN(Q) has Lebesgue measure 1,
and if Q is such that Y~ g, < oo, then N(Q) = [0, 1].
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Dynamically generated basic sequences

Definition

A basic sequence Q = (g,)%2; is dynamically generated if there
exists a (continuous) measure preserving system (X, %, u, T) on a
(not necessarily compact) polish space X, a continuous function

f : X — Ns,, and a u-generic point y € X for which g, = f(T"y).

Q If X = {1} and T is (necessarily) the identity, then we
recover base-b, i.e., g, = b for all n.

Q@ If X={0,1}, Tx =x+1 (mod 2), and f(i) = b;, then we
get g, = by if nis even and q, = by if nis odd. (See [2])

Q@ If X=10,1], Tx = x4+ « (mod 1) with « € R\ Q, and
f =2l 1)+ 311y, then (gn)o2, will be almost periodic
sequence of 2s and 3s. (There is a model in which f is
continuous)

@ We may also consider f(x) = | 1] in the previous example.
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Uniform normality of a Cantor series

Let @ = (g,)22; be a dynamically generated basic sequences. For

each block B = (by,-- -, by) € NY,, we have that
o1
Qg = lim = #{1<n<N|(gn Gns1, " Gnte-1) = B}
N—oo N g s
Qs(N)

exists, and it is 0 if and only if the block B never appears in Q.
x=0x1x2 "Xy @ € [0,1] is Q-uniformly normal if for any
block of digits D = (di,- - , d), and any block of bases

B = (b1, , b)) with Qg > 0 and b; > d; for all j, we have

#{ISHSN’(Xm"'axn-i-ﬁ—l):D& ) 1
ny """y Yntl— =B} = )
(q An+e 1) } J:H1b_]

and we denote the set of such x by UN(Q). l.e., x € UN(Q) iff
the pairs (D, B) of digits and bases occur with the correct
frequency.
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Uniform distribution normality of a Cantor series

Let @ = (g,)>2; be a dynamically generated basic sequence,
generated by the (continuous) m.p.s. (X, %, 1, T) and the
continuous function f : X — Nx,. In particular, we have

g, = f(T"y) for some y € X. Furthermore, let us assume that this
representation is minimal in the sense that X is a polish space, f is
continuous, and the topology generated by f and T is that of X.
A number x € [0,1] is Q-uniformly distribution normal if
(5"(y,x))e2, is uniformly distributed in X x [0, 1], where

S(y,x) = (Ty, f(y)x), and we denote the set of such x by
UDN(Q).
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A nice equivalence 1/2

If Q = (qn)2, is a dynamically generated basic sequence, then

UN(Q) =UDN(Q).

12 |21 22
11
21
11 | 20 -0
10
10 | 11 12
11
01 e 10
02
01 | o1
01
00
00 | 00 00
22 23 32 33
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A nice equivalence 2/2

If Q = (qn)2, is a dynamically generated basic sequence, then

UN(Q) =UDN(Q).

Sohail Farhangi
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Dynamics and normality
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When NV(Q) = DN(Q)

Suppose that Q = (q,)$24 is a basic sequence (dynamically)
generated by (X, B, u, T,y, ) with (X, %, u, T) being ergodic
and having zero (measurable) entropy, and [, In(f)du < co. Then
N(Q) =UN(Q) =UDN(Q) = DN(Q). Furthermore, if

f: X — {b"}°2, for some b > 2, then N(Q) = N,.

Examples of zero entropy systems to consider.
Q@ Tx=x+a (mod 1) with a« € R.
@ T is any finite interval exchange transformation.
© T is the Horocycle flow.

© T is a rank 1 transformation.
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When DN (Q) A N(Q)

There exists a dynamically generated sequences Q = (q,)7°, and a
sequence of digits (E,)5%; for which x = x1xa -+ X+ IS
distribution normal but not normal.

Sketch: Let x € [0, 1] be normal base-4 (which is the same as
normal base-2). We will now construct a sequence

()2, € {2,4}" in which the 2s always appear in blocks of even
size (groups of 2,4.,6,...). We let ; = go =2 if x € [3,1) and

g1 = 4 otherwise. We now replace x with 4x and repeat this
procedure inductively to construct the rest of the g,. The number
x is Q-distribution normal by construction, but it is not Q-normal
since the digits 2 and 3 never appear.
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There exists a dynamically generated sequences Q = (q,)°°; and a
sequence of digits (E,)>>, for which x = E1E,--- E,---q is normal
but not distribution normal.

Proof: Let Q be a probability space and (g,(w1))52; a sequences
of i.i.d. random variables taking values in {2,4} (can also be done
for {2,6}) with P(X, = 2) = P(X, = 4) = 1. Consider

(0 with probability 1 + € if g,(w1) =2

1 with probability 3 — € if g,(w;) =2

En)(n) = 4 O M Probabilty y — cif i) =%
with probability ; + € if g,(w;1) = 4

2 with probability % if gn(w1) =4

(3 with probability % if gn(w1) = 4.
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Hot Spot Theorems

Pyatetskii-Shapiro [11] introduced what is now commonly known
as the Hot Spot Theorem.

Fix b € N>, and x € [0,1]. If there exists C > 0 such that for all
0<a<c<1 we have

Iimsup%Hl <n<N|b'x (mod1)e (ac)}| < Clc—a), (4)

N—oo

then x is normal base b.

This result was generalized in [4, 9, 8, 5]. We have analogues of
the strongest version of the Hot Spot Theorem proven in [5] for a
large class of deterministic dynamically genereated basic sequences.
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Dynamics and normality?
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Conjectures and future work

We saw on slide 14
that x € NV(Q) if
and only if

(5"(y, %))
equidistributes in a
particular
S-invariant
collection of open
sets in X x [0, 1].

What is the factor
of (X, B,u, T)
that is generated by
this collection of
open sets?
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Selection rules

Kamae and Weiss [7, 6] proved the following selection rule:

Let (nk)22; € N be an increasing sequence with positive lower

density.

@ If (nk)52; is deterministic, then for any x = 0.x3x2+ =+ X, - - *p
that is normal base b, x" := 0.Xp, Xp, - * - Xn, - - - Will be normal
base b.

@ If (nk)52; is not deterministic, then there exists a
X = 0.x1x2 - -+ X, - - -p that is normal base b for which
X' 1= 0.Xp Xp, * = X, * - *p iS NOt normal base b.

Question: What are the selection rules for dynamically generated

basic sequences?
We have some partial results, but not a complete classification.
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Normality preservation through addition

Rauzy [10] characterized those y € [0,1] for which y + N

(mod 1) = N,. Given a dynamically generated basic sequence Q,
can we characterize those y € [0, 1] for which y + N (Q)

(mod 1) = M (Q)? How about the same question for DN (Q) or

UN(Q)?
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Difference Sets

Question: Suppose that @ is a dynamically generated basic
sequence for which N (Q) # DN (Q). What can be said about the
descriptive complexity and the Hausdorff dimensions of the
difference sets DN (Q) \ N (Q), N(Q) \ DN (Q), N (Q) \UN(Q),
and DN (Q) \UN(Q), and (N(Q) N DN(Q)) \UN(Q)?
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