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Base-b normality 1/2

Definition

For b ∈ N≥2, a number x ∈ [0, 1] is normal base-b if for ℓ ∈ N
and any word w ∈ {0, 1, · · · , b − 1}ℓ, the word w appears in the
base-b expansion of x with the correct frequency, and we denote
the set of such numbers by Nb. More explicitly, if
x = 0.x1x2 · · · xn · · ·b, then

lim
N→∞

1

N
#{1 ≤ n ≤ N | w = xnxn+1 · · · xn+ℓ−1} = b−ℓ. (1)

Equivalently, x is normal base-b if the sequence (bnx)∞n=1 is
uniformly distributed in [0, 1]. More explicitly, if for any
0 < a < c < 1 we have

lim
N→∞

1

N
# {1 ≤ n ≤ N | bnx (mod 1) ∈ (a, c)} = c − a. (2)
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Base-b normality 2/2

We observe that for x ∈ [0, 1] with a base-2 expansion of
x = 0.x1x2 · · · xn · · · , we have

2nx (mod 1) ∈



[0, 1
2
) iff xn+1 = 0

[1
2
, 1) iff xn+1 = 1

[0, 1
4
) iff (xn+1, xn+2) = (0, 0)

[1
4
, 2
4
) iff (xn+1, xn+2) = (0, 1)

[2
4
, 3
4
) iff (xn+1, xn+2) = (1, 0)

[3
4
, 4
4
) iff (xn+1, xn+2) = (1, 1).

More generally, if x = 0.x1x2 · · · xn · · ·b and
w = (w1, · · · ,wℓ) ∈ {0, 1, · · · , b − 1}ℓ, then

bnx (mod 1) ∈ [
ℓ∑

j=1

wj

bj
,

ℓ∑
j=1

wj

bj
+

1

bℓ
) iff (xn+1, · · · , xn+ℓ) = w .
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Cantor series

Given a basic sequence (sequence of bases) Q = (qn)
∞
n=1 ∈ NN

≥2

and some x ∈ [0, 1], the base Q expansion x = 0.x1x2 · · · xn · · ·Q
with 0 ≤ xi < qi is defined by

x =
∞∑
n=1

xi

(
n∏

j=1

qj

)−1

=
x1
q1

+
x2
q1q2

+
x3

q1q2q3
+ · · · (3)

It is unique for all but countably many points in [0, 1].
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Normality for a Cantor series

Given a basic sequence Q = (qn)
∞
n=1 and an

x = 0.x1x2 · · · xn · · ·Q ∈ [0, 1], we say that x is Q-normal if for any
block of digits D = (d1, · · · , dℓ) ∈ Zℓ

≥0 appears in the base Q
expansion of x with the correct frequency, and we denote the set
of such x by N (Q). More precisely, if D satisfies

MD(N) :=
N∑

n=1

(
ℓ∏

j=1

1

qn+j
1[0,qn+j )(dj)

)
−→
N→∞

∞, then

lim
N→∞

#{1 ≤ n ≤ N | xnxn+1 · · · xn+ℓ−1 = D}/MD(N) = 1.
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Distribution normality for a Cantor series

Given a basic sequence Q = (qn)
∞
n=1 and an x ∈ [0, 1], we say that

x is Q-distribution normal if the sequence
(x , q1x , q2q1x , · · · , qnqn−1 · · · q2q1x , · · · ) is uniformly distributed,
and the set of such x is denoted by DN (Q). For a general basic
sequence Q, the notions of Q-normality and Q-distribution
normality don’t need to be the same.

Theorem (Airey, Jackson, and Mance [1])

If Q = (qn)
∞
n=1 is such that limn→∞ qn = ∞ and

∑∞
n=1 q

−1
n = ∞,

then DN (Q) \ N (Q) and N (Q) \ DN (Q) are D2(Π
0
3)-complete.

See also [3] for results regarding the Hausdorff dimension of the
difference sets, which are usually 1.
Remark: For any Q, the set DN (Q) has Lebesgue measure 1,
and if Q is such that

∑∞
n=1 q

−1
n < ∞, then N (Q) = [0, 1].
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Dynamically generated basic sequences

Definition

A basic sequence Q = (qn)
∞
n=1 is dynamically generated if there

exists a (continuous) measure preserving system (X ,B, µ,T ) on a
(not necessarily compact) polish space X , a continuous function
f : X → N≥2, and a µ-generic point y ∈ X for which qn = f (T ny).

1 If X = {1} and T is (necessarily) the identity, then we
recover base-b, i.e., qn = b for all n.

2 If X = {0, 1}, Tx = x + 1 (mod 2), and f (i) = bi , then we
get qn = b0 if n is even and qn = b1 if n is odd. (See [2])

3 If X = [0, 1], Tx = x + α (mod 1) with α ∈ R \Q, and
f = 21[0, 1

2
) + 31[ 1

2
,1), then (qn)

∞
n=1 will be almost periodic

sequence of 2s and 3s. (There is a model in which f is
continuous)

4 We may also consider f (x) =
⌊
1
x

⌋
in the previous example.
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Uniform normality of a Cantor series

Let Q = (qn)
∞
n=1 be a dynamically generated basic sequences. For

each block B = (b1, · · · , bℓ) ∈ NN
≥2, we have that

QB := lim
N→∞

1

N
#{1 ≤ n ≤ N | (qn, qn+1, · · · , qn+ℓ−1) = B}︸ ︷︷ ︸

QB(N)

exists, and it is 0 if and only if the block B never appears in Q.
x = 0.x1x2 · · · xn · · ·Q ∈ [0, 1] is Q-uniformly normal if for any
block of digits D = (d1, · · · , dℓ), and any block of bases
B = (b1, · · · , bℓ) with QB > 0 and bj > dj for all j , we have

lim
N→∞

1

QB(N)
#{1 ≤ n ≤ N | (xn, · · · , xn+ℓ−1) = D &

(qn, · · · , qn+ℓ−1) = B} =
ℓ∏

j=1

1

bj
,

and we denote the set of such x by UN (Q). I.e., x ∈ UN (Q) iff
the pairs (D,B) of digits and bases occur with the correct
frequency.
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Uniform distribution normality of a Cantor series

Let Q = (qn)
∞
n=1 be a dynamically generated basic sequence,

generated by the (continuous) m.p.s. (X ,B, µ,T ) and the
continuous function f : X → N≥2. In particular, we have
qn = f (T ny) for some y ∈ X . Furthermore, let us assume that this
representation is minimal in the sense that X is a polish space, f is
continuous, and the topology generated by f and T is that of X .
A number x ∈ [0, 1] is Q-uniformly distribution normal if
(Sn(y , x))∞n=1 is uniformly distributed in X × [0, 1], where
S(y , x) = (Ty , f (y)x), and we denote the set of such x by
UDN (Q).
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A nice equivalence 1/2

Theorem

If Q = (qn)
∞
n=1 is a dynamically generated basic sequence, then

UN (Q) = UDN (Q).
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A nice equivalence 2/2

Theorem

If Q = (qn)
∞
n=1 is a dynamically generated basic sequence, then

UN (Q) = UDN (Q).
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Dynamics and normality
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When N (Q) = DN (Q)

Theorem

Suppose that Q = (qn)
∞
n=1 is a basic sequence (dynamically)

generated by (X ,B, µ,T , y , f ) with (X ,B, µ,T ) being ergodic
and having zero (measurable) entropy, and

∫
X
ln(f )dµ < ∞. Then

N (Q) = UN (Q) = UDN (Q) = DN (Q). Furthermore, if
f : X → {bn}∞n=1 for some b ≥ 2, then N (Q) = Nb.

Examples of zero entropy systems to consider.

1 Tx = x + α (mod 1) with α ∈ R.
2 T is any finite interval exchange transformation.

3 T is the Horocycle flow.

4 T is a rank 1 transformation.

5 (qn)
∞
n=1 “is” the Thue-Morse sequence with 2s and 4s.
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When DN (Q) ̸→ N (Q)

Theorem

There exists a dynamically generated sequences Q = (qn)
∞
n=1 and a

sequence of digits (En)
∞
n=1 for which x = x1x2 · · · xn · · ·Q is

distribution normal but not normal.

Sketch: Let x ∈ [0, 1] be normal base-4 (which is the same as
normal base-2). We will now construct a sequence
(qn)

∞
n=1 ∈ {2, 4}N in which the 2s always appear in blocks of even

size (groups of 2,4,6,...). We let q1 = q2 = 2 if x ∈ [1
2
, 1) and

q1 = 4 otherwise. We now replace x with 4x and repeat this
procedure inductively to construct the rest of the qn. The number
x is Q-distribution normal by construction, but it is not Q-normal
since the digits 2 and 3 never appear.
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When N (Q) ̸→ DN (Q)

Theorem

There exists a dynamically generated sequences Q = (qn)
∞
n=1 and a

sequence of digits (En)
∞
n=1 for which x = E1E2 · · ·En · · ·Q is normal

but not distribution normal.

Proof: Let Ω be a probability space and (qn(ω1))
∞
n=1 a sequences

of i.i.d. random variables taking values in {2, 4} (can also be done
for {2,6}) with P(Xn = 2) = P(Xn = 4) = 1

2
. Consider

En(ω1)(ω2) =



0 with probability 1
2
+ ϵ if qn(ω1) = 2

1 with probability 1
2
− ϵ if qn(ω1) = 2

0 with probability 1
4
− ϵ if qn(ω1) = 4

1 with probability 1
4
+ ϵ if qn(ω1) = 4

2 with probability 1
4

if qn(ω1) = 4

3 with probability 1
4

if qn(ω1) = 4.
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Hot Spot Theorems

Pyatetskii-Shapiro [11] introduced what is now commonly known
as the Hot Spot Theorem.

Theorem

Fix b ∈ N≥2 and x ∈ [0, 1]. If there exists C > 0 such that for all
0 ≤ a < c ≤ 1 we have

lim sup
N→∞

1

N
|{1 ≤ n ≤ N | bnx (mod 1) ∈ (a, c)}| ≤ C (c−a), (4)

then x is normal base b.

This result was generalized in [4, 9, 8, 5]. We have analogues of
the strongest version of the Hot Spot Theorem proven in [5] for a
large class of deterministic dynamically genereated basic sequences.
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Dynamics and normality?

We saw on slide 14
that x ∈ N (Q) if
and only if
(Sn(y , x))∞n=1

equidistributes in a
particular
S-invariant
collection of open
sets in X × [0, 1].

Question

What is the factor
of (X ,B, µ,T )
that is generated by
this collection of
open sets?

Sohail Farhangi Conjectures and future work Frame 20



Selection rules

Kamae and Weiss [7, 6] proved the following selection rule:

Let (nk)
∞
k=1 ⊆ N be an increasing sequence with positive lower

density.
(i) If (nk)

∞
k=1 is deterministic, then for any x = 0.x1x2 · · · xn · · ·b

that is normal base b, x ′ := 0.xn1xn2 · · · xnk · · ·b will be normal
base b.

(ii) If (nk)
∞
k=1 is not deterministic, then there exists a

x = 0.x1x2 · · · xn · · ·b that is normal base b for which
x ′ := 0.xn1xn2 · · · xnk · · ·b is not normal base b.

Question: What are the selection rules for dynamically generated
basic sequences?
We have some partial results, but not a complete classification.
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Normality preservation through addition

Rauzy [10] characterized those y ∈ [0, 1] for which y +Nb

(mod 1) = Nb. Given a dynamically generated basic sequence Q,
can we characterize those y ∈ [0, 1] for which y +N (Q)
(mod 1) = N (Q)? How about the same question for DN (Q) or
UN (Q)?
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Difference Sets

Question: Suppose that Q is a dynamically generated basic
sequence for which N (Q) ̸= DN (Q). What can be said about the
descriptive complexity and the Hausdorff dimensions of the
difference sets DN (Q) \N (Q),N (Q) \ DN (Q),N (Q) \ UN (Q),
and DN (Q) \ UN (Q), and (N (Q) ∩ DN (Q)) \ UN (Q)?
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