

Decidability in Ramsey theory

Seminar on topological semigroups and Ramsey Theory
Howard University

Based on joint work with Steve Jackson and William Mance

<https://arxiv.org/abs/2412.14917>

Sohail Farhangi
Slides available on sohailfarhangi.com

November 12, 2024

Overview

- 1 Decidability and the lightface Borel hierarchy
- 2 Hilbert's 10th problem
- 3 Computability in partition Ramsey theory
- 4 Computability in density Ramsey theory
- 5 References

Computable sets

Definition

A set $A \subseteq \mathbb{N}$ is **computable** if there exists an algorithm (Turing machine) that halts on every input, and outputs 1 if and only if the input is an element of A . If S is a countably infinite set, then $A \subseteq S$ is **computable** if there exists a computable bijection $\phi : S \rightarrow \mathbb{N}$ for which the set $\phi(A)$ is computable.

Examples of computable subsets of \mathbb{N} include the set of squares, the set of primes, the set of powers of 2, and the set of square free numbers. If $S \subseteq \mathbb{Z}[x]$ denotes the collection of polynomials of degree at most 2, and $A \subseteq S$ is those polynomials that have an integer root, then A is a computable set. Rado's Theorem [5] shows us that if S is the set of finite systems of linear equations with coefficients in \mathbb{Z} , and $A \subseteq S$ consists of those systems that are partition regular over \mathbb{N} , then A is computable.

Computably enumerable sets

Definition

A set $A \subseteq \mathbb{N}$ is **computably enumerable** if there exists an algorithm (Turing machine) such that the set of inputs for which the algorithm halts is exactly A . Equivalently, A is computably enumerable if there exists an algorithm that enumerates the members of A .

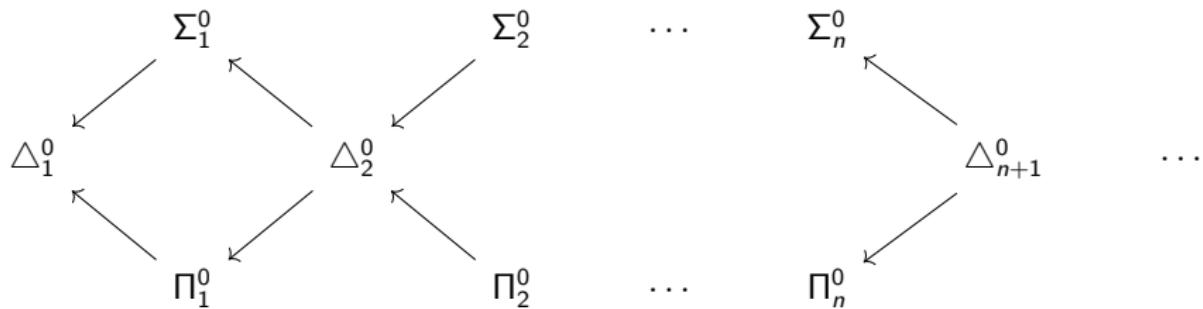
Given a polynomial $p \in \mathbb{Z}[x_1, \dots, x_n]$, the set Z_p of integer roots of p is seen to be computably enumerable from the second of the given definitions. If $S = \bigcup_{n=1}^{\infty} \mathbb{Z}[x_1, \dots, x_n]$, and $A \subseteq S$ is those polynomials that possess an integer root, then A is seen to be computably enumerable from the first of the given definitions.

Lemma

A set $A \subseteq \mathbb{N}$ is computable if and only if A and A^c are both computably enumerable.

The lightface hierarchy

We denote the collection of computable subsets of \mathbb{N} by Δ_1^0 , the collection of computably enumerable subsets of \mathbb{N} by Σ_1^0 , and we let Π_1^0 denote the collection of sets whose complement is in Σ_1^0 . We inductively define Σ_{n+1}^0 to be the collection of sets that are reducible to a set in Π_n^0 in a “computably enumerable fashion”, Π_{n+1}^0 is the complement of Σ_{n+1}^0 , and $\Delta_{n+1}^0 = \Sigma_{n+1}^0 \cap \Pi_{n+1}^0$.



Hilbert's 10th problem (HTP)

At the International Congress of Math in 1900, David Hilbert presented 10 important problems in mathematics, and 2 years later published a completed list of 23 problems now known as Hilbert's problems. The 10th of the 23 problems (published but not presented) asked if the set $A \subseteq S := \bigcup_{n=1}^{\infty} \mathbb{Z}[x_1, \dots, x_n]$ of polynomials that have an integer root is computable.

Theorem (Matiyasevič, 1971)

The set A is not computable.

See [2] for an exposition of the proof of this result and the history.

Open Problem: Is the set $A_{\mathbb{Q}} \subseteq S$ of polynomials that have a root in \mathbb{Q} computable?

The latter problem is referred to as Hilbert's 10th problem over \mathbb{Q} . It is generally believed that $A_{\mathbb{Q}}$ is not computable.

Variations of Hilbert's 10th problem

Given a **computable** integral domain R , we let $HTP(R)$ refer to the following statement:

HTP(R): The set $A \subseteq S := \bigcup_{n=1}^{\infty} R[x_1, \dots, x_n]$ of those polynomials that have a root in R is not computable.

The statement $HTP(R)$ can be true, or false depending on the integral domain R .

Theorem ([6, 4, 3])

Suppose that $R = \overline{\mathbb{F}_p}$ for some prime p , $R = \mathbb{Z}$, or that $R = R'[t]$ for some integral domain R' .

- ① $HTP(R)$ is true.
- ② The set $A' \subseteq S$ of polynomials possessing a root $(z_1, \dots, z_n) \in R^n$ with $z_i \neq z_j$ when $i \neq j$ is not computable.

Reducing partition regularity to HTP

Lemma (cf. Krawczyk, Byszewski, 2021 [1])

Let R be an integral domain with field of fractions K . For any $m \in \mathbb{N}$ and any $k_1, \dots, k_m \in K$, the system of equations

$$\frac{z_{3i-2} - z_{3i-1}}{z_{3i}} = k_i \text{ for all } 1 \leq i \leq m, \quad (1)$$

is partition regular over $R \setminus \{0\}$.

Corollary

Given an integral domain R , and a polynomial $p \in R[x_1, \dots, x_n]$, p has a root in K if and only if the equation $p'(x_1, \dots, x_{3n}) = 0$ with

$$p'(x_1, \dots, x_{3n}) := p \left(\frac{x_1 - x_2}{x_3}, \dots, \frac{x_{3n-2} - x_{3n-1}}{x_{3n}} \right) \left(\prod_{i=1}^n x_{3i} \right)^{\deg(p)}$$

is partition regular over $R \setminus \{0\}$.

First main result

Theorem (F., Jackson, Mance, 2024+)

- ① Let us assume that $HTP(\mathbb{Q})$ is true. For $\ell \in \mathbb{N}$, the set $A_\ell \subseteq \bigcup_{n=1}^{\infty} \mathbb{Z}[x_1, \dots, x_n]$ of (homogeneous) polynomials p for which the equation $p(x_1, \dots, x_n) = 0$ is ℓ -partition regular over $\mathbb{Z} \setminus \{0\}$ is computably enumerable but not computable, so it is Σ_1^0 -complete. The set $A := \bigcap_{\ell=1}^{\infty} A_\ell$ is Π_2^0 -complete.
- ② Suppose that R is the ring of integers of an algebraic function field over a finite field of constants. For $\ell \in \mathbb{N}$, the set $A_\ell \subseteq \bigcup_{n=1}^{\infty} R[x_1, \dots, x_n]$ of (homogeneous) polynomials p for which the equation $p(x_1, \dots, x_n) = 0$ is ℓ -partition regular over $R \setminus \{0\}$ is Σ_1^0 -complete. The set $A := \bigcap_{\ell=1}^{\infty} A_\ell$ is Π_2^0 -complete.

Lemma

Let R be a countably infinite integral domain with field of fractions K . For any $m \in \mathbb{N}$ and any $k_1, \dots, k_m \in K^\times$ we have the following:

- (i) If $A \subseteq R$ is such that $d^*(A) > 0$, then A contains a solution to the system of equations

$$\frac{z_{4i-3} - z_{4i-2}}{z_{4i-1} - z_{4i}} = k_i \text{ for all } 1 \leq i \leq m. \quad (2)$$

Furthermore, the solution can be taken such that $z_i \neq z_j$ when $i \neq j$.

- (ii) If $A \subseteq R \setminus \{0\}$ is such that $d_{\times}^*(A) > 0$, then A contains a solution (z_1, \dots, z_{4m}) to the system (2), such that $z_i \neq z_j$ for $i \neq j$.

Corollary

Let R be a countably infinite integral domain with field of fractions K , and let $p \in R[x_1, \dots, x_n]$.

- ① p has a root in K if and only if for any $A \subseteq R$ with $d^*(A) > 0$, there exist distinct $z_1, \dots, z_{4n} \in A$ for which $p'(z_1, \dots, z_{4n}) = 0$, where

$$p'(z_1, \dots, z_{4n}) = p \left(\frac{z_1 - z_2}{z_3 - z_4}, \dots, \frac{z_{4n-3} - z_{4n-2}}{z_{4n-1} - z_{4n}} \right) \left(\prod_{i=1}^n (z_{4n-1} - z_{4n}) \right)^{\deg(p)}.$$

- ② p has a root in K if and only if for any $A \subseteq R \setminus \{0\}$ with $d_x^*(A) > 0$, there exist distinct $z_1, \dots, z_{4n} \in A$ for which $p'(z_1, \dots, z_{4n}) = 0$.

Second main result

Theorem (F., Jackson, Mance, 2024+)

- ① Let us assume that $HTP(\mathbb{Q})$ is true. For $\delta \in (0, 1)$, the set $A_\delta \subseteq \bigcup_{n=1}^{\infty} \mathbb{Z}[x_1, \dots, x_n]$ of (homogeneous) polynomials p for which the equation $p(x_1, \dots, x_n) = 0$ has an injective solution in any set $B \subseteq \mathbb{Z}$ with $\bar{d}(B) \geq \delta$ is Σ_1^0 -complete. The set $A := \bigcap_{\delta > 0} A_\delta$ is Π_2^0 -complete. Analogous results hold when \bar{d} is replaced with d^* or d_{\times}^* .
- ② Suppose that R is the ring of integers of an algebraic function field over a finite field of constants. For $\delta > 0$, the set $A_\delta \subseteq \bigcup_{n=1}^{\infty} R[x_1, \dots, x_n]$ of (homogeneous) polynomials p for which the equation $p(x_1, \dots, x_n) = 0$ has an injective solution in any set $B \subseteq R$ with $d^*(B) \geq \delta$ is Σ_1^0 -complete. The set $A := \bigcap_{\delta > 0} A_\delta$ is Π_2^0 -complete. Analogous results hold when d^* is replaced with $\bar{d}_{\mathcal{F}}$ or d_{\times}^* .

Implications 1/2

Observe that if R is a countably infinite integral domain, then there are only countably many polynomials p with coefficients in R . Consequently, the set B of such polynomials that are not partition regular over $R \setminus \{0\}$ is countable, so for each $p \in B$ there exists a partition P_p of $R \setminus \{0\}$ that does not contain a root of p . Consequently, to determine whether or not a polynomial p is partition regular over $R \setminus \{0\}$, it suffices check whether or not p has a root in some cell of each partition in the family $\{P_b\}_{b \in B}$. The fact that the set of "partition regular polynomials" is Π_2^0 -complete, means that there does not exist a simpler method of determining whether or not the equation $p(x_1, \dots, x_n) = 0$ is partition regular over $R \setminus \{0\}$.

Implications 2/2

The following statement is false since it is describing a Σ_1^0 but the set of "partition regular polynomials" is (conditionally) a Π_2^0 -complete set.

False Statement: Let R be a countably infinite integral domain. For each $p \in R[x_1, \dots, x_n]$, there exists $q \in R[x_1, \dots, x_m]$ that is a computable function of p such that $p(x_1, \dots, x_n) = 0$ is partition regular over $R \setminus \{0\}$ if and only if q has a root in K .

However, the following conjecture has a chance of being true.

Conjecture

For each $p \in R[x_1, \dots, x_n]$ and each $r \in \mathbb{N}$, there exists $q_r \in R[x_1, \dots, x_m]$ that is a computable function of p and r such that $p(x_1, \dots, x_n) = 0$ is r -partition regular over $R \setminus \{0\}$ if and only if q_r has a root in K .

Future work

Question

Can we prove a version of the results on the previous slide without the assumption that the solutions are injective?

Question

Given a $\ell \in \mathbb{N}$ and a finite system of linear equations, is there a computable condition to determine whether or not the system is ℓ -partition regular over \mathbb{Z} (or over some integral domain R)?

Question

Given a $\delta \in (0, 1)$ and a finite system of linear equations, is there a computable condition to determine whether or not the system has a solution in every set $A \subseteq \mathbb{Z}$ with $d^(A) > \delta$? How about $d_{\times}^*(A) > \delta$? What if we replace \mathbb{Z} with an integral domain R ?*

References I

- [1] J. Byszewski and E. Krawczyk.
Rado's theorem for rings and modules.
J. Combin. Theory Ser. A, 180:105402, 28, 2021.
- [2] M. Davis.
Hilbert's tenth problem is unsolvable.
Amer. Math. Monthly, 80:233–269, 1973.
- [3] J. Denef.
The Diophantine problem for polynomial rings and fields of rational functions.
Trans. Amer. Math. Soc., 242:391–399, 1978.

References II

[4] T. Pheidas.

Hilbert's tenth problem for fields of rational functions over finite fields.

Invent. Math., 103(1):1–8, 1991.

[5] R. Rado.

Studien zur Kombinatorik.

Math. Z., 36(1):424–470, 1933.

[6] C. R. Videla.

Hilbert's tenth problem for rational function fields in characteristic 2.

Proc. Amer. Math. Soc., 120(1):249–253, 1994.