

Van der Corput sets and a converse to the Furstenberg Correspondence Principle

Ergodic group actions and unitary representations
at IMPAN

Sohail Farhangi

Based on joint work with Robin Tucker-Drob as well as the
work of Saúl Rodrígues Martínez

Slides available on sohailfarhangi.com

June 19, 2024

Definition

A set $V \subseteq \mathbb{N}$ is a **van der Corput (vdC) set** if for any $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ for which $(x_{n+v} - x_n \pmod 1)_{n=1}^{\infty}$ is uniformly distributed in $[0, 1]$ for all $v \in V$, we have that $(x_n)_{n=1}^{\infty}$ is also uniformly distributed in $[0, 1]$. The set V is a **set of operatorial recurrence** if for any unitary operator $U : \mathcal{H} \rightarrow \mathcal{H}$ and any $\xi \in \mathcal{H}$ satisfying $\langle U^v \xi, \xi \rangle = 0$ for all $v \in V$, we have $P\xi = 0$, where P is the orthogonal projection onto the space of U -invariant vectors.

Equivalent characterizations

Theorem (cf. [Ruz84, Per88, NRS12])

For a set $V \subseteq \mathbb{N}$, the following are equivalent:

- (i) V is a vdC set.
- (ii) V is a set of operatorial recurrence.
- (iii) For any sequence of complex numbers $(c_n)_{n=1}^{\infty}$ of modulus 1 that satisfy

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{n+v} \overline{c_n} = 0 \quad \forall v \in V \text{ we have } \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n = 0.$$

- (iv) The implication above is satisfied for any sequence of complex $(c_n)_{n=1}^{\infty}$ satisfying

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |c_n|^2 < \infty.$$

Examples and nonexamples of vdC sets in \mathbb{N}

- ① The set of squares is a vdC set. More generally, if $p : \mathbb{Z} \rightarrow \mathbb{Z}$ is a divisible polynomial, then $p(\mathbb{Z}) \cap \mathbb{N}$ is a vdC set.
- ② Letting \mathcal{P} denote the set of primes, $\mathcal{P} + 1$ and $\mathcal{P} - 1$ are both vdC sets.
- ③ For any increasing sequence $(a_n)_{n=1}^{\infty} \subseteq \mathbb{N}$, the set $\{a_n - a_m \mid n > m\}$ is a vdC set.
- ④ If $V \subseteq \mathbb{N}$ has natural density 1, then V is a vdC set.
- ⑤ For any $n \in \mathbb{N}$, the set $A_n = \mathbb{N} \setminus (n\mathbb{N})$ is NOT a vdC set.
- ⑥ More generally, if $V \subseteq \mathbb{N}$ is not a set of measurable recurrence, then V is NOT a vdC set.

\mathcal{F} -vdC sets and vdC sets

Definition ((cf. Rodríguez 2024+))

Let G be a countable amenable group and let $\mathcal{F} = (F_n)_{n=1}^{\infty}$ be a Følner sequence in G . A set $V \subseteq G$ is a **\mathcal{F} -vdC set** if for any bounded sequence of complex numbers $(c_g)_{g \in G}$ satisfying

$$\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} c_{vg} \overline{c_g} = 0 \quad \forall v \in V \text{ we have } \lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} c_g = 0.$$

A set $V \subseteq G$ is a **vdC set** if for any measure preserving system $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and any $f \in L^\infty(X, \mu)$ satisfying $\langle T_v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.

Theorem (Farhangi, Rodríguez, Tucker-Drob, 2024+)

For a countable amenable group G , $V \subseteq G$ is \mathcal{F} -vdC iff it is vdC.

This answers a question of Bergelson and Lesigne [BL08].

Modeling L^∞ on ℓ^∞

Theorem (Farhangi, Tucker-Drob, 2024+)

Let G be a countable amenable group, let $(\nu_n)_{n=1}^\infty$ be a sequence of asymptotically invariant probability measures, and let $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ be a measure preserving system. Given $f \in L^2(X, \mu)$, there exists a sequence of complex numbers $(c_g)_{g \in G}$ taking values in $\text{range}(f)$ satisfying

$$\lim_{N \rightarrow \infty} \int_G |c_g|^2 d\nu_n(g) = \|f\|_2^2, \quad \lim_{N \rightarrow \infty} \int_G c_g d\nu_n(g) = \int_X f d\mu, \text{ and}$$
$$\lim_{N \rightarrow \infty} \int_G c_{hg} \overline{c_g} d\nu_n(g) = \langle T_h f, f \rangle \text{ for all } h \in G.$$

Furthermore, if $f \in L^\infty(X, \mu)$, then the map $f \mapsto (c_g)_{g \in G}$ extends to a trace preserving $*$ -algebra isomorphism between the closed G -equivariant algebras generated by f and $(c_g)_{g \in G}$ in $L^\infty(X, \mu)$ and $\ell^\infty(G, (\nu_n)_{n=1}^\infty)$ respectively.

Modeling L^∞ on ℓ^∞ (continued)

Theorem (Rodríguez, 2024+)

Let G be a countable amenable group, $(F_n)_{n=1}^\infty$ a Følner sequence, and $D \subseteq \mathbb{C}$ compact. For any m.p.s. $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and any $f : X \rightarrow D$, there exists a sequence of complex numbers $(z_g)_{g \in G} \subseteq D$ such that for all $j \in \mathbb{N}$, all $h_1, \dots, h_j \in G$, and all continuous $\rho : D^j \rightarrow \mathbb{C}$,

$$\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} \rho(z_{h_1 g}, \dots, z_{h_j g}) = \int_X \rho(T_{h_1} f, \dots, T_{h_j} f) d\mu.$$

The converse holds provided that the limit on the left hand side exists.

Converse to Furstenberg's Correspondence Principle

Theorem (Rodríguez 2024+)

Let G be a countable amenable group, $\mathcal{F} = (F_n)_{n=1}^{\infty}$ a Følner sequence, and $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ a measure preserving system. For any $A \in \mathcal{B}$, there exists a $B \subseteq G$ such that for all $\ell \in \mathbb{N}$ and h_1, \dots, h_{ℓ} we have

$$\mu(T_{h_1}A^{*1} \cap \dots \cap T_{h_{\ell}}A^{*\ell}) = d_{\mathcal{F}}(h_1B^{*1} \cap \dots \cap h_{\ell}B^{*\ell}), \quad (1)$$

where each A^{*i} denotes A or A^c , and B^{*i} agrees with A^{*i} .

Definition

Let G be a countable group. A set $V \subseteq G$ is a set of **operatorial recurrence** if for any unitary representation U of G and any $\xi \in \mathcal{H}$ satisfying $\langle U_v \xi, \xi \rangle = 0$ for all $v \in V$, we have $P\xi = 0$, where P is the orthogonal projection onto the space of U -invariant vectors.

Theorem (Farhangi, Tucker-Drob, 2024+)

For a countable group G and a set $V \subseteq G$, TFAE:

- 1 V is a set of operatorial recurrence.
- 2 For any unitary representation U of G , and any $\xi \in \mathcal{H}$ satisfying $\sum_{v \in V} |\langle U_v \xi, \xi \rangle|^p < \infty$ for some $p \geq 1$, we have ξ is orthogonal to all finite dimensional U -invariant subspaces.
- 3 If ϕ is a positive definite sequence on G satisfying $\phi(v) = 0$ for all $v \in V$, then $M(\phi) = 0$, where M is the unique invariant mean on the space of weakly almost periodic functions on G .

Sets of operatorial recurrence in amenable groups

Theorem (Farhangi, Tucker-Drob (see also Rodríguez), 2024+)

Let G be a countably infinite amenable group, let $(F_n)_{n=1}^\infty$ be a left Følner sequence. For $V \subseteq G$ TFAE:

- ① For any sequence $(u_g)_{g \in G}$ of complex numbers satisfying

$$\limsup_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} |u_g|^2 < \infty \text{ and } \lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} u_{vg} \overline{u_g} = 0,$$

for all $v \in V$, we have $\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} u_g = 0$.

- ② Condition (i) with $(u_g)_{g \in G}$ being vectors in a Hilbert space \mathcal{H} .
- ③ For any m.p.s. $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and any $f \in L^2(X, \mu)$ satisfying $\langle T_v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.
- ④ V is a set of operatorial recurrence.

Sets of operatorial recurrence in abelian groups

Theorem (Farhangi, Tucker-Drob (see also Rodríguez), 2024+)

Let G be a countably infinite abelian group, let $(F_n)_{n=1}^{\infty}$ be a left Følner sequence. For $V \subseteq G$ TFAE:

(i) For any sequence $(u_g)_{g \in G}$ of complex numbers of modulus 1,

if $\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} u_{vg} \overline{u_g} = 0$ for all $v \in V$, then

$$\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{g \in F_N} u_g = 0.$$

(ii) Condition (i) with $(u_g)_{g \in G}$ being a bounded sequence.

(iii) For any m.p.s. $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and any $f : X \rightarrow \mathbb{S}^1$ satisfying $\langle T_v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.

(iv) Condition (ii) with $f \in L^\infty(X, \mu)$.

(v) V is a set of operatorial recurrence.

Positive definite sequence in abelian groups

Theorem (Folklore)

Let G be a countable abelian group and let ν be a probability measure on \widehat{G} . There exists a m.p.s. $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and a measurable $f : X \rightarrow \mathbb{S}^1$ for which $\langle T_g f, f \rangle = \hat{\nu}(g)$ and $\int_X f d\mu = \nu(\{0\})$.

Proof.

Let $X = \widehat{G} \times \mathbb{S}^1$, let $\mu = \nu \times m$, let $f(\chi, x) = x$ if $\chi \neq e_{\widehat{G}}$ and let $f(e_{\widehat{G}}, x) = 1$, and let $T_g(\chi, x) = (\chi, \chi(g)x)$. □

Remark

The motivation for this construction is to take the multiplication operators $U_g : L^2(\widehat{G}, \nu) \rightarrow L^2(\widehat{G}, \nu)$ that arise in the Spectral Theorem and then convert them into Koopman operators. This insight was motivated by the work of Ruzsa [Ruz84].

A conjecture

Conjecture (Farhangi, Tucker-Drob, 2024+)

Let G be a countable group and ϕ a positive definite sequence on G satisfying $\phi(e) = 1$. Then there exists a measure preserving system $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and a measurable $f : X \rightarrow \mathbb{S}^1$ for which $\langle T_g f, f \rangle = \phi(g)$, and $\int_X f d\mu = M(\phi)$, where M is the unique mean on the set of weakly almost periodic functions on G .

Corollary

A set $V \subseteq G$ is a set of operatorial recurrence if and only if for any m.p.s. $(X, \mathcal{B}, \mu, (T_g)_{g \in G})$ and any measurable $f : X \rightarrow \mathbb{S}^1$ satisfying $\langle T_v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.

Remark

The above conjecture is currently not known even under the weaker assumption that $f \in L^\infty(X, \mu)$.

References I

- [BL08] Vitaly Bergelson and Emmanuel Lesigne.
Van der Corput sets in \mathbb{Z}^d .
Colloq. Math., 110(1):1–49, 2008.
- [NRS12] Marina Ninčević, Braslav Rabar, and Siniša Slijepčević.
Ergodic characterization of van der Corput sets.
Arch. Math. (Basel), 98(4):355–360, 2012.
- [Per88] Yuval Peres.
Application of Banach limits to the study of sets of integers.
Israel J. Math., 62(1):17–31, 1988.

References II

[Ruz84] I. Z. Ruzsa.

Connections between the uniform distribution of a sequence and its differences.

In *Topics in classical number theory, Vol. I, II (Budapest, 1981)*, volume 34 of *Colloq. Math. Soc. János Bolyai*, pages 1419–1443. North-Holland, Amsterdam, 1984.