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The Classical van der Corput Difference Theorem

Definition

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed if for any

open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N
|{1 ≤ n ≤ N | xn ∈ (a, b)}| = b − a. (1)

Theorem (van der Corput, 1931 [vdC31])

If (xn)
∞
n=1 ⊆ [0, 1] is such that (xn+h − xn)

∞
n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α)∞n=1 is uniformly distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, Bergelson, 1987 [Ber87, Theorem 1.4])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, Bergelson, 1987 [Ber87, Page 3])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (4)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, Bergelson, 1987 [Ber87, Theorem 1.5])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bded seq. satisfying

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0.

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?

See [Far22, Chapter 2] for variations of vdCT related to the levels
of mixing in the ergodic hierarchy of mixing properties, as well as
similar variations in the context of uniform distribution. See also
[Tse16] and [EKN22].
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X ,B, µ,T ), and any
A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (6)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy [Fur77],[Sár78])

For any m.p.s. (X ,B, µ,T ), and any A ∈ B with µ(A) > 0, there
exists n ∈ N for which

µ(A ∩ T−n2A) > 0. (7)

Furstenberg’s proof in [Fur77, Proposition 1.3] uses a form of
vdCDT since it uses the uniform distribution of (n2α)∞n=1. See also
[Ber96, Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg multiple recurrence, [Fur77])

For any m.p.s. (X ,B, µ,T ), any A ∈ B with µ(A) > 0, and any
ℓ ∈ N, there exists n ∈ N for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA

)
> 0. (8)

The proof presented in [EW11] uses HvdCT3 as Theorem 7.11,
and the proof in [Fur81] uses a variation.

Theorem (Bergelson and Leibman, [BL96, Theorem A0])

For any m.p.s. (X ,B, µ, {Ti}ℓi=1) with the Tis commuting, any
A ∈ B with µ(A) > 0, and any {pi(x)}ℓi=1 ⊆ xN[x ], there exists
n ∈ N for which

µ
(
A ∩ T

−p1(n)
1 A ∩ T

−p2(n)
2 A ∩ · · · ∩ T

−pℓ(n)
ℓ A

)
> 0. (9)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Lebesgue spectrum and singular spectrum

Definition

Let X = (X ,B, µ,T ) be an invertible m.p.s. and let
UT : L2(X , µ) → L2(X , µ) be the Koopman operator induced by
T . If L20(X , µ) has an orthogonal basis of the form {Un

T fm}n,m∈Z,
then X has Lebesgue spectrum. This implies that for all
f ∈ L20(X , µ), the sequence (⟨Un

T f , f ⟩)∞n=1 is the Fourier
coefficients of some measure ν << L, where L is the Lebesgue
measure. On the other hand, if for every f ∈ L2(X , µ), the
sequence (⟨Un

T f , f ⟩)∞n=1 is the Fourier coeficients of some positive
measure ν ⊥ L, then the system X has singular spectrum.
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Examples of systems with Lebesgue spectrum

Any K-mixing system has Lebesgue spectrum, hence all Bernoulli
systems have Lebesgue spectrum. The Sinai factor theorem [Sin62]
tells us that a non-atomic ergodic m.p.s. with positive entropy has
a Bernoulli shift as a factor, and consequently has a factor with
Lebesgue spectrum. It follows that the original system does NOT
have singular spectrum. The horocycle flow is an example of a
system with Lebesgue spectrum [Par53] that also has 0-entropy
[Gur61]. These results generalize to measure preserving actions of
amenable groups if the notion of Lebesgue spectrum is suitably
replaced with the Left regular representation.
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Examples of systems with singular spectrum

In [Hal44] and [KS67] it is shown that if (X ,B, µ) is a standard
probability space, and Aut(X ,B, µ) is endowed with the strong
operator topology, then the set of transformations that are weakly
mixing and rigid is a generic set. Since any rigid automorphism
(such as a group rotation) has singular spectrum, we see that the
set of singular automorphisms is generic. Now let
S ⊆ Aut(X ,B, µ) denote the collection of strongly mixing
transformation, and note that S is a meager set since an
automorphism cannot simultaneously be rigid and strongly mixing.
Since S is not a complete metric space with respect to the strong
operator topology, a new topology was introduced in [Tik07], with
respect to which S is a complete metric space. It is shown in the
Corollary to Theorem 7 of [Tik07] that a generic T ∈ S has
singular spectrum, and such a T is mixing of all orders due a well
known result of Host [Hos91]. See [Fay06],[KR97][AH12], [BS22],
and [FL06] for more examples of T that have singular spectrum.
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A Lebesgue spectrum vdCDT

Theorem (F. 2023)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

∞∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣
2

< ∞, (10)

then (xn)
∞
n=1 is a spectrally Lebesgue sequence. In particular, if

(cn)
∞
n=1 ⊆ C is bounded and spectrally singular, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

cnxn

∣∣∣∣∣
∣∣∣∣∣ = 0. (11)

Furthermore, if H = L2(X , µ) and (cn)
∞
n=1 ⊆ L∞(X , µ) is bounded

and spectrally singular, then we again have Equation (11).
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Discrepancy

Definition

For a sequence (xn)
N
n=1 ⊆ [0, 1], we define the discrepancy to be

DN(xn)
N
n=1 := sup

0≤a<b≤1

∣∣∣∣ 1N# {1 ≤ n ≤ N | xn ∈ (a, b)} − (b − a)

∣∣∣∣ ,
and we define the discrepancy of (xn)

∞
n=1 ⊆ [0, 1] to be

D(xn)
∞
n=1 := lim sup

N→∞
DN(xn)

N
n=1.

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed (u.d.) if and

only if D(xn)
∞
n=1 = 0. We also see that if (xn)

∞
n=1 is u.d. in some

subinterval (0, a), then D(xn)
∞
n=1 = 1− a.

We also point out that (⌊
√
n⌋α+ nβ)∞n=1 is u.d. for any α ∈ R \Q

and β ∈ R even though D(xn+h − xn)
∞
n=1 = 1 for all h ≥ 1.
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Lebesgue spectrum vdCDT for uniform distribution

Theorem (F. 2024+)

If (xn)
∞
n=1 ⊆ [0, 1] is such that

∞∑
h=1

(
D(xn+h − xn)

∞
n=1

)2
< ∞, (12)

then (xn)
∞
n=1 is a spectrally Lebesgue sequence. In particular, if

(yn)
∞
n=1 ⊆ [0, 1] is a spectrally singular uniformly distributed

sequence, then (xn, yn)
∞
n=1 is uniformly distributed in [0, 1]2.

Furthermore, if (nk)
∞
k=1 ⊆ N is spectrally singular and has positive

lower density, then (xnk )
∞
k=1 is uniformly distributed.

Corollary

If (nk)
∞
k=1 is an enumeration of the locations of 1s in the

Thue-Morse sequence, then for any α ∈ R \Q the sequence
(n2kα)

∞
k=1 is uniformly distributed.

Sohail Farhangi vdC difference thm and LRR Frame 17



Table of Contents

1 Van der Corput’s difference theorem and some applications

2 Lebesgue spectrum, singular spectrum, and the left regular
representation

3 Van der Corput’s difference theorem and Lebesgue spectrum

4 Applications

Sohail Farhangi vdC difference thm and LRR Frame 18



An Example

Theorem (Frantzikinakis, Lesigne, Wierdl [FLW12, Lemma 4.1])

Let a, b : N → Z \ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X ,B, µ), measure
preserving automorphisms T , S : X → X, both of them Bernoulli,
and A ∈ B, such that

µ
(
T−a(n)A ∩ S−b(n)A

)
=

{
0 if n ∈ F ,
1
4

if n /∈ F .
(13)

Question: Can a similar result be found for 0-entropy systems? A
partial result is given in [HSY23].
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Sets of K but not K + 1 recurrence?

Theorem (Frantzikinakis, Lesigne, Wierdl [FLW06])

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
.

(i) If (X ,B, µ) is a probability space and
S1, S2, · · · , Sk−1 : X → X are commuting measure preserving
transformations, then for any A ∈ B with µ(A) > 0, there
exists n ∈ Rk for which

µ
(
A ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (14)

(ii) There exists a m.p.s. (X ,B, µ,T ) and a set A ∈ B satisfying
µ(A) > 0 such that for all n ∈ Rk we have

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
= 0. (15)
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A strengthening

Theorem (F., 2023)

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
. Let (X ,B, µ) be a probability

space and S1, S2, · · · , Sk−1 : X → X commuting measure
preserving automorphisms. Let T : X → X be an measure
preserving automorphism with singular spectrum, and for which
{T , S1, S2, · · · , Sk−1} generate a nilpotent group. For any A ∈ B
with µ(A) > 0, there exists n ∈ R for which

µ
(
A ∩ T−nA ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (16)

Since the system (T2,B2,L2,T ) with T (x , y) = (x + α, y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with 0 entropy. Also note
that the maximal spectral type of T is L+

∑
n∈Z δnα.
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