

Van der Corput's difference theorem and the left regular representation.

Ergodic Theory Seminar
at the University of Memphis

Based on <https://arxiv.org/abs/2303.11832>
and <https://arxiv.org/abs/2308.05560>

Sohail Farhangi
Slides available on sohailfarhangi.com

September 6, 2023

- 1 Van der Corput's difference theorem and some applications
- 2 Lebesgue spectrum, singular spectrum, and the left regular representation
- 3 Van der Corput's difference theorem and the left regular representation
- 4 Applications
 - Background on noncommutative ergodic theory
 - New results from mixing vdCs

Table of Contents

- 1 Van der Corput's difference theorem and some applications
- 2 Lebesgue spectrum, singular spectrum, and the left regular representation
- 3 Van der Corput's difference theorem and the left regular representation
- 4 Applications
 - Background on noncommutative ergodic theory
 - New results from mixing vdCs

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ is **uniformly distributed** if for any open interval $(a, b) \subseteq [0, 1]$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} |\{1 \leq n \leq N \mid x_n \in (a, b)\}| = b - a. \quad (1)$$

Theorem (van der Corput, 1931 [29])

If $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ is such that $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

Corollary

If $\alpha \in \mathbb{R}$ is irrational, then $(n^2\alpha)_{n=1}^{\infty}$ is uniformly distributed.

Theorem (HvdCDT1, Bergelson, 1987 [2, Theorem 1.4])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle = 0, \quad (2)$$

for every $h \in \mathbb{N}$, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0. \quad (3)$$

Theorem (HvdCDT2, Bergelson, 1987 [2, Page 3])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then} \quad (4)$$

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0. \quad (5)$$

Theorem (HvdCDT3, Bergelson, 1987 [2, Theorem 1.5])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bded seq. satisfying

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0.$$

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are both corollaries of HvdCDT3? Why are there at least 3 Hilbertian vdCDTs and only 1 vdCDT in the theory of uniform distribution?

See [11, Chapter 2] for variations of vdCT related to the levels of mixing in the ergodic hierarchy of mixing properties, as well as similar variations in the context of uniform distribution. See also [28] and [9].

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A) > 0. \quad (6)$$

Does not need vdCDT.

Theorem (Furstenberg-Sárközy [18],[25])

For any m.p.s. (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n^2}A) > 0. \quad (7)$$

Furstenberg's proof in [18, Proposition 1.3] uses a form of vdCDT since it uses the uniform distribution of $(n^2\alpha)_{n=1}^{\infty}$. See also [3, Theorem 2.1] for a proof using HvdCDT1 directly.

Applications of HvdCDTs 2/2

Theorem (Furstenberg multiple recurrence, [18])

For any m.p.s. (X, \mathcal{B}, μ, T) , any $A \in \mathcal{B}$ with $\mu(A) > 0$, and any $\ell \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \cdots \cap T^{-\ell n}A) > 0. \quad (8)$$

The proof presented in [10] uses HvdCT3 as Theorem 7.11, and the proof in [19] uses a variation.

Theorem (Bergelson and Leibman, [5, Theorem A₀])

For any m.p.s. $(X, \mathcal{B}, \mu, \{T_i\}_{i=1}^\ell)$ with the T_i s commuting, any $A \in \mathcal{B}$ with $\mu(A) > 0$, and any $\{p_i(x)\}_{i=1}^\ell \subseteq x\mathbb{N}[x]$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T_1^{-p_1(n)}A \cap T_2^{-p_2(n)}A \cap \cdots \cap T_\ell^{-p_\ell(n)}A) > 0. \quad (9)$$

Uses an equivalent form of HvdCT3 as Lemma 2.4.

Table of Contents

- 1 Van der Corput's difference theorem and some applications
- 2 Lebesgue spectrum, singular spectrum, and the left regular representation
- 3 Van der Corput's difference theorem and the left regular representation
- 4 Applications
 - Background on noncommutative ergodic theory
 - New results from mixing vdCs

Lebesgue spectrum and singular spectrum

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be an invertible m.p.s. and let $U_T : L^2(X, \mu) \rightarrow L^2(X, \mu)$ be the Koopman operator induced by T . If $L_0^2(X, \mu)$ has an orthogonal basis of the form $\{U_T^n f_m\}_{n, m \in \mathbb{Z}}$, then \mathcal{X} has **Lebesgue spectrum**. This implies that for all $f \in L_0^2(X, \mu)$, the sequence $(\langle U_T^n f, f \rangle)_{n=1}^\infty$ is the Fourier coefficients of some measure $\nu \ll \mathcal{L}$, where \mathcal{L} is the Lebesgue measure. On the other hand, if for every $f \in L^2(X, \mu)$, the sequence $(\langle U_T^n f, f \rangle)_{n=1}^\infty$ is the Fourier coefficients of some positive measure $\nu \perp \mathcal{L}$, then the system \mathcal{X} has **singular spectrum**.

Examples of systems with Lebesgue spectrum

Any K-mixing system has Lebesgue spectrum, hence all Bernoulli systems have Lebesgue spectrum. The Sinai factor theorem [26] tells us that a non-atomic ergodic m.p.s. with positive entropy has a Bernoulli shift as a factor, and consequently has a factor with Lebesgue spectrum. It follows that the original system does NOT have singular spectrum. The horocycle flow is an example of a system with Lebesgue spectrum [24] that also has 0-entropy [20].

Examples of systems with singular spectrum

In [21] and [4] it is shown that if (X, \mathcal{B}, μ) is a standard probability space, and $\text{Aut}(X, \mathcal{B}, \mu)$ is endowed with the strong operator topology, then the set of transformations that are weakly mixing and rigid is a generic set. Since any rigid automorphism (such as a group rotation) has singular spectrum, we see that the set of singular automorphisms is generic. Now let

$\mathcal{S} \subseteq \text{Aut}(X, \mathcal{B}, \mu)$ denote the collection of strongly mixing transformation, and note that \mathcal{S} is a meager set since an automorphism cannot simultaneously be rigid and strongly mixing. Since \mathcal{S} is not a complete metric space with respect to the strong operator topology, a new topology was introduced in [27], with respect to which \mathcal{S} is a complete metric space. It is shown in the Corollary to Theorem 7 of [27] that a generic $T \in \mathcal{S}$ has singular spectrum, and such a T is mixing of all orders due a well known result of Host [22]. See [12], [23][1], [6], and [17] for more examples of T that have singular spectrum.

The left regular representation

Let G is a locally compact Hausdorff group with left Haar measure λ . There is a unitary representation L of G on $L^2(G, \nu)$ given by $(L_g f)(h) = f(g^{-1}h)$, which is known as the **left regular representation**. If $f \in L^2(G, \nu)$ is a positive definite function, then there exists a function $h \in L^2(G, \lambda)$ for which $f(g) = \langle L_g h, h \rangle$. In particular, consider a representation U of G on \mathcal{H} , and a cyclic vector $f \in \mathcal{H}$ such that

$$\int_G |\langle U_g f, f \rangle|^2 d\lambda(g) < \infty. \quad (10)$$

Then U is isomorphic to a subrepresentation of the left regular representation.

Spectrum and the left regular representation

Let G be an amenable group and $\mathcal{X} := (X, \mathcal{B}, \mu, \{T_g\}_{g \in G})$ a measure preserving G -system, which we abbreviate to G -system. We let $U : L^2(X, \mu) \rightarrow L^2(X, \mu)$ denote the unitary representation of G induced by T , i.e., $U_g f = f \circ T_{g^{-1}}$. The system \mathcal{X} has **Lebesgue spectrum** if U decomposes into a direct sum of countably many copies of the left regular representation. The system \mathcal{X} has **singular spectrum** if the representation U is disjoint from the left regular representation. Dooley and Golodets [8] showed that if G is countable and \mathcal{X} has completely positive entropy (analogue of K -mixing) then it also has Lebesgue spectrum. Danilenko and Park [7] proved an analogue of Sinai's factor theorem when G is countable, from which we deduce that \mathcal{X} does not have singular spectrum when it is free, ergodic, and has positive entropy.

Table of Contents

- 1 Van der Corput's difference theorem and some applications
- 2 Lebesgue spectrum, singular spectrum, and the left regular representation
- 3 Van der Corput's difference theorem and the left regular representation
- 4 Applications
 - Background on noncommutative ergodic theory
 - New results from mixing vdCs

A Lebesgue spectrum vdCDT

Theorem (F. 2023)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\sum_{h=1}^{\infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right|^2 < \infty, \quad (11)$$

then $(x_n)_{n=1}^{\infty}$ is a spectrally Lebesgue sequence. If $\mathcal{H} = L^2(X, \mu)$ and $(y_n)_{n=1}^{\infty} \subseteq L^{\infty}(X, \mu)$ is bounded and spectrally singular, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n y_n \right\| = 0. \quad (12)$$

Theorem (F. 2023)

Let G be a countable amenable group and $(F_n)_{n=1}^\infty$ a left Følner sequence. If $(x_g)_{g \in G} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\sum_{h \in G} \limsup_{N \rightarrow \infty} \left| \frac{1}{|F_N|} \sum_{g \in F_N} \langle x_{gh}, x_g \rangle \right|^2 < \infty, \quad (13)$$

then $(x_g)_{g \in G}$ is a spectrally Lebesgue sequence. If $\mathcal{H} = L^2(X, \mu)$ and $(y_n)_{n=1}^\infty \subseteq L^\infty(X, \mu)$ is bounded and spectrally singular, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{|F_N|} \sum_{g \in F_N} x_g y_g \right\| = 0. \quad (14)$$

Table of Contents

- 1 Van der Corput's difference theorem and some applications
- 2 Lebesgue spectrum, singular spectrum, and the left regular representation
- 3 Van der Corput's difference theorem and the left regular representation
- 4 Applications
 - Background on noncommutative ergodic theory
 - New results from mixing vdCs

Noncommutative ergodic theorems 1/2

Theorem (Frantzkinakis [13, Corollary 1.7])

Let $a : \mathbb{R}_+ \rightarrow \mathbb{R}$ be a Hardy field function for which there exist some $\epsilon > 0$ and $d \in \mathbb{Z}_+$ satisfying

$$\lim_{t \rightarrow \infty} \frac{a(t)}{t^{d+\epsilon}} = \lim_{t \rightarrow \infty} \frac{t^{d+1}}{a(t)} = \infty. \quad (\text{e.g. } a(t) = t^{1.5}) \quad (15)$$

Furthermore, let (X, \mathcal{B}, μ) be a probability space and $T, S : X \rightarrow X$ be measure preserving transformations. Suppose that the system (X, \mathcal{B}, μ, T) has zero entropy. Then

(i) For every $f, g \in L^\infty(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{\lfloor a(n) \rfloor} g = \mathbb{E}[f | \mathcal{I}_T] \cdot \mathbb{E}[g | \mathcal{I}_S], \quad (16)$$

where the limit is taken in $L^2(X, \mu)$.

Theorem (Continued)

(ii) For every $A \in \mathcal{B}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n}A \cap S^{-\lfloor a(n) \rfloor}A) \geq \mu(A)^3. \quad (17)$$

Frantzkinakis and Host [14] proved a similar theorem for $a(n) = p(n)$ with $p(x) \in \mathbb{Z}[x]$ of degree at least 2.

An Example

Theorem (Frantzkinakis, Lesigne, Wierdl [16, Lemma 4.1])

Let $a, b : \mathbb{N} \rightarrow \mathbb{Z} \setminus \{0\}$ be injective sequences and F be any subset of \mathbb{N} . Then there exist a probability space (X, \mathcal{B}, μ) , measure preserving automorphisms $T, S : X \rightarrow X$, both of them Bernoulli, and $A \in \mathcal{B}$, such that

$$\mu(T^{-a(n)}A \cap S^{-b(n)}A) = \begin{cases} 0 & \text{if } n \in F, \\ \frac{1}{4} & \text{if } n \notin F. \end{cases} \quad (18)$$

In light of Sinai's Factor Theorem, we see that the assumption of 0-entropy in the last 2 slides cannot be weakened.

Application 1/3

Theorem (F., 2023)

Let (X, \mathcal{B}, μ) be a probability space and let $T, S : X \rightarrow X$ be measure preserving automorphisms for which T has **singular spectrum**. Let $(k_n)_{n=1}^{\infty} \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha)_{n=1}^{\infty}$ is uniformly distributed in the orbit closure of α for all $\alpha \in \mathbb{R}$ and $h \in \mathbb{N}$.

① For any $f, g \in L^{\infty}(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{k_n} g = \mathbb{E}[f | \mathcal{I}_T] \mathbb{E}[g | \mathcal{I}_S], \quad (19)$$

with convergence taking place in $L^2(X, \mu)$.

Theorem (Continued)

(ii) *If $A \in \mathcal{B}$ then*

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n}A \cap S^{-k_n}A) \geq \mu(A)^3. \quad (20)$$

(iii) *If we only assume that $((k_{n+h} - k_n)\alpha)_{n=1}^{\infty}$ is uniformly distributed for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $h \in \mathbb{N}$, then (i) and (ii) hold when S is totally ergodic.*

Examples include $k_n = \lfloor a(n) \rfloor$ with $a(n)$ being as in frame 19, $k_n = \lfloor n^2 \log^2(n) \rfloor$, and for part (iii) we may take $k_n = p(n)$ for $p(x) \in x\mathbb{Z}[x]$ with degree at least 2. An analogous result is now known for countable abelian groups.

Sets of K but not $K + 1$ recurrence?

Theorem (Frantzkinakis, Lesigne, Wierdl [15])

Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let

$$R_k = \left\{ n \in \mathbb{N} \mid n^k \alpha \in \left[\frac{1}{4}, \frac{3}{4} \right] \right\}.$$

(i) If (X, \mathcal{B}, μ) is a probability space and

$S_1, S_2, \dots, S_{k-1} : X \rightarrow X$ are commuting measure preserving transformations, then for any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R_k$ for which

$$\mu(A \cap S_1^{-n}A \cap S_2^{-n}A \cap \dots \cap S_{k-1}^{-n}A) > 0. \quad (21)$$

(ii) There exists a m.p.s. (X, \mathcal{B}, μ, T) and a set $A \in \mathcal{B}$ satisfying $\mu(A) > 0$ such that for all $n \in R_k$ we have

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-kn}A) = 0. \quad (22)$$

Application 2/3

Theorem (F., 2023)

Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let $R_k = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}$. Let (X, \mathcal{B}, μ) be a probability space and $S_1, S_2, \dots, S_{k-1} : X \rightarrow X$ commuting measure preserving automorphisms. Let $T : X \rightarrow X$ be a measure preserving automorphism with singular spectrum, and for which $\{T, S_1, S_2, \dots, S_{k-1}\}$ generate a nilpotent group. For any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R$ for which

$$\mu(A \cap T^{-n}A \cap S_1^{-n}A \cap S_2^{-n}A \cap \dots \cap S_{k-1}^{-n}A) > 0. \quad (23)$$

Since the system $(\mathbb{T}^2, \mathcal{B}^2, \mathcal{L}^2, T)$ with $T(x, y) = (x + \alpha, y + x)$ can be used in item (ii) of the last slide when $k = 2$, the current theorem does not hold for a general T with 0 entropy. Also note that the maximal spectral type of T is $\mathcal{L} + \sum_{n \in \mathbb{Z}} \delta_{n\alpha}$.

Application 3/3

Theorem (F., 2023)

Let K be a countable field with characteristic 0. Let (X, \mathcal{B}, ν) be a probability space and $T_g, S_g : X \rightarrow X$ measure preserving actions of $(K, +)$ for which the action $(T_g)_{g \in K}$ has singular spectrum and the action $(S_g)_{g \in K}$ is ergodic. Let $(F_n)_{n=1}^{\infty}$ be a Følner sequence in $(K, +)$ and $\ell \in \mathbb{N}$. Let $p_1, \dots, p_{\ell} \in K[x]$ be polynomials for which $\deg(p_{i+1}) \geq 2 + \deg(p_i)$ for $1 \leq i < \ell$. Then for any $f_0, f_1, \dots, f_{\ell} \in L^{\infty}(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{|F_N|} \sum_{n \in F_N} T_n f_0 \prod_{j=1}^{\ell} S_{p_j(n)} f_j = \mathbb{E}[f_0 | \mathcal{I}_T] \prod_{j=1}^{\ell} \int_X f_j d\nu \quad (24)$$

with convergence taking place in $L^2(X, \nu)$.

This is a corollary of a more general result involving joint ergodicity.

An example

Consider the m.p.s. $([0, 1]^2, \mathcal{B}, \mathcal{L}^2, T, S)$ with $S(x, y) = (x + 2\alpha, y + x)$ for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, and $T(x, y) = (x, y + x)$. We see that $([0, 1]^2, \mathcal{B}, \mathcal{L}^2, S)$ and $([0, 1]^2, \mathcal{B}, \mathcal{L}^2, T)$ are both zero entropy systems that are not weakly mixing, and the former is totally ergodic. Furthermore, T and S generate a 2-step nilpotent group. For $f_0(x, y) = e^{2\pi i(x-y)}$, $f_1(x, y) = e^{2\pi iy}$, and $f_2(x, y) = e^{-2\pi ix}$, we see that

$$\begin{aligned} & \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f_0(x, y) S^n f_1(x, y) S^{\frac{1}{2}(n^2-n)} f_2(x, y) \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N e^{2\pi i \left((1-n)x - y + y + nx + (n^2-n)\alpha - x - (n^2-n)\alpha \right)} = 1 \neq 0. \end{aligned}$$

References I

- [1] C. Aistleitner and M. Hofer.
On the maximal spectral type of a class of rank one transformations.
Dyn. Syst., 27(4):515–523, 2012.
- [2] V. Bergelson.
Weakly mixing PET.
Ergodic Theory Dynam. Systems, 7(3):337–349, 1987.
- [3] V. Bergelson.
Ergodic Ramsey theory—an update.
In *Ergodic theory of \mathbb{Z}^d actions (Warwick, 1993–1994)*, volume 228 of *London Math. Soc. Lecture Note Ser.*, pages 1–61. Cambridge Univ. Press, Cambridge, 1996.

References II

- [4] V. Bergelson, A. del Junco, M. Lemańczyk, and J. Rosenblatt.
Rigidity and non-recurrence along sequences.
Ergodic Theory Dynam. Systems, 34(5):1464–1502, 2014.
- [5] V. Bergelson and A. Leibman.
Polynomial extensions of van der Waerden's and Szemerédi's theorems.
J. Amer. Math. Soc., 9(3):725–753, 1996.
- [6] A. I. Bufetov and B. Solomyak.
On substitution automorphisms with pure singular spectrum.
Math. Z., 301(2):1315–1331, 2022.

References III

- [7] A. I. Danilenko and K. K. Park.
Generators and Bernoullian factors for amenable actions and cocycles on their orbits.
Ergodic Theory Dynam. Systems, 22(6):1715–1745, 2002.
- [8] A. H. Dooley and V. Y. Golodets.
The spectrum of completely positive entropy actions of countable amenable groups.
J. Funct. Anal., 196(1):1–18, 2002.
- [9] N. Edeko, H. Kreidler, and R. Nagel.
A dynamical proof of the van der Corput inequality.
Dyn. Syst., 37(4):648–665, 2022.

References IV

- [10] M. Einsiedler and T. Ward.
Ergodic theory with a view towards number theory, volume 259 of *Graduate Texts in Mathematics*.
Springer-Verlag London, Ltd., London, 2011.
- [11] S. Farhangi.
Topics in ergodic theory and ramsey theory.
PhD dissertation, the Ohio State University, 2022.
- [12] B. Fayad.
Smooth mixing flows with purely singular spectra.
Duke Math. J., 132(2):371–391, 2006.

References V

- [13] N. Frantzikinakis.
Furstenberg systems of Hardy field sequences and applications.
J. Anal. Math., 147(1):333–372, 2022.
- [14] N. Frantzikinakis and B. Host.
Multiple recurrence and convergence without commutativity.
arXiv:2111.01518v2 [math.DS], 2021.
- [15] N. Frantzikinakis, E. Lesigne, and M. Wierdl.
Sets of k -recurrence but not $(k + 1)$ -recurrence.
Ann. Inst. Fourier (Grenoble), 56(4):839–849, 2006.

References VI

- [16] N. Frantzikinakis, E. Lesigne, and M. Wierdl.
Random sequences and pointwise convergence of multiple ergodic averages.
Indiana Univ. Math. J., 61(2):585–617, 2012.
- [17] K. Frączek and M. Lemańczyk.
On mild mixing of special flows over irrational rotations under piecewise smooth functions.
Ergodic Theory Dynam. Systems, 26(3):719–738, 2006.
- [18] H. Furstenberg.
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions.
J. Analyse Math., 31:204–256, 1977.

References VII

[19] H. Furstenberg.

Recurrence in ergodic theory and combinatorial number theory.

Princeton University Press, Princeton, N.J., 1981.

M. B. Porter Lectures.

[20] B. M. Gurevič.

The entropy of horocycle flows.

Dokl. Akad. Nauk SSSR, 136:768–770, 1961.

[21] P. R. Halmos.

In general a measure preserving transformation is mixing.

Ann. of Math. (2), 45:786–792, 1944.

References VIII

[22] B. Host.

Mixing of all orders and pairwise independent joinings of systems with singular spectrum.

Israel J. Math., 76(3):289–298, 1991.

[23] I. Klemes and K. Reinhold.

Rank one transformations with singular spectral type.

Israel J. Math., 98:1–14, 1997.

[24] O. S. Parasyuk.

Flows of horocycles on surfaces of constant negative curvature.

Uspehi Matem. Nauk (N.S.), 8(3(55)):125–126, 1953.

References IX

- [25] A. Sárközy.
On difference sets of sequences of integers. I.
Acta Math. Acad. Sci. Hungar., 31(1-2):125–149, 1978.
- [26] J. G. Sinaĭ.
A weak isomorphism of transformations with invariant measure.
Dokl. Akad. Nauk SSSR, 147:797–800, 1962.
- [27] S. V. Tikhonov.
A complete metric on the set of mixing transformations.
Mat. Sb., 198(4):135–158, 2007.

- [28] A. Tserunyan.
A Ramsey theorem on semigroups and a general van der Corput lemma.
J. Symb. Log., 81(2):718–741, 2016.
- [29] J. G. van der Corput.
Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins.
Acta Math., 56(1):373–456, 1931.