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The Grunwald-Wang Theorem

Exercise: Suppose that x ∈ Z is such that x = y 2 (mod p) has a
solution for every prime p. Show that x is a perfect square.

Theorem

Let n ∈ N be arbitrary and suppose that x ∈ Z is such that x is an
nth power modulo p for every prime p. x is either an nth power or
8|n and x = 2

n
2 yn = 16

n
8 yn.

W. Grunwald [7] in 1933 proved an incorrect version of this
theorem since he failed to find the exceptional case when 8|n. G.
Whaples [15] in 1942 gave another incorrect proof of Grunwald’s
Theorem. S. Wang [13],[14] in 1948 found the counter example of
16 and gave a proof of the corrected theorem in his doctoral thesis.
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The Exceptional case of x = 16

It is clear that 16 = 24 is not an 8th power in N. To see that 16 is
an 8th power modulo p for every prime p, we observe that

x8−16 = (x4−4)(x4+4) = (x2−2)(x2+2)(x2−2x+2)(x2+2x+2)

We note that the discriminant of the last 2 factors is -4. Since one
of 2,−2, and −4 will be a square modulo p, we see that x8 − 16
will have a root modulo p.

The Grunwald-Wang Theorem intuitively says that 16 is the only
obstruction to a certain local-global principle.
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Grunwald-Wang for 3 Variables

Theorem (F., Magner, 2023)

Let n ∈ N be arbitrary and suppose that a, b, c ∈ Z are such that
at least one of a, b, and c is an nth power modulo p for every
prime p.Then either

1 n is odd and one of a, b, and c is an nth power.

2 n is even and either one of a, b, and c is an n
2
th power, or 4|n

and each of a, b, and c is an n
4
th power.

In our paper we also address the situation for a general number
field K with ring of integers OK .
This number theory is needed because one of the most commonly
used partitions in the Ramsey Theory of diophantine equations are
the Rado cp-partitions. Given a prime p, the cp-partition is
N =

⋃r
i=1 Ci where Ci consists of those natural numbers whose

first non-zero digit in the base p expansion is i .
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Some Exceptional Cases

It is clear that we still have an exceptional case if 8|n and one of
a, b, and c is of the form 2

n
2 yn.

A new exceptional case is found with n = 4, a = 34 · 42 · 52,
b = 32 · 44 · 52, and c = a + b = 32 · 42 · 54.

There are more exceptional cases that actually show up from the 2
variable situation.
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Ramsey Theory Preliminaries

Definition

If p ∈ Z[x1, · · · , xn] is a polynomial and S is a set such as N,
Z \ {0}, or the ring of integers OK of some number field K , then
the equation

p(x1, · · · , xn) = 0 (1)

is partition regular (p.r.) over S if for any partition S = ⊔r
i=1Ci

there exists 1 ≤ i0 ≤ r and x1, · · · , xn ∈ Ci0 satisfying (1).

The equation x + y = 2z + 1 is NOT partition regular over N as
seen by considering the partition N = (2N) ⊔ (2N+ 1).
The equation x + y = z is partition regular over N, and this can
be proven using Ramsey’s theorem about complete graphs.
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Polynomial Equations and Partition Regularity

1 x + y = z is p.r. over N (Schur [12])

2 xy = z is p.r. over N (corollary of Schur)

3 ax + by = dz is p.r. over N if and only if d ∈ {a, b, a + b}
(special case of Rado’s Theorem [10])

4 ax = wzn is p.r. over N if and only if n
√
a ∈ N. (See [3])

5 x + y = wz is p.r. over N (Bergelson-Hindman [2],[8])

6 x − y = q(z) with q ∈ xZ[x ] is p.r. over N (Bergelson [1,
Page 53])

7 x + y = z2 is not non-trivially p.r. over N (Csikvári, Gyarmati
and Sárkozy [4], see also Green and Lindqvist [6])

8 It is open as to whether x2 + y 2 = z2 is p.r. over N [5].

9 It is open as to whether z = xy + x is p.r. over N [11].

10 z = xy is p.r. over N, but z = xy+1 is open. Sahasrabudhe
[11]
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When is ax + by = cwmzn p.r.?

Theorem (F., Magner 2022)

Let m, n ∈ N and a, b, c ∈ Z \ {0}.
1 If m, n ≥ 2, then the equation

ax + by = cwmzn (2)

is p.r. over Z \ {0} if and only if a + b = 0.

2 If one of a
c
, b
c
, or a+b

c
is a nth power in Q, then the equation

ax + by = cwzn (3)

is p.r. over Z \ {0}. If Q is replaced with Q+ then Z \ {0} can
be replaced with N. This holds when Z and Q are replaced by
a general integral domain R and its field of fractions K.
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When is ax + by = cwmzn p.r.? (Continued)

Theorem (F., Magner 2022)

3 Suppose that

ax + by = cwzn (4)

is p.r. over Q \ {0}.
a If n is odd then one of a

c ,
b
c , or

a+b
c is an nth power in Q.

b If n ̸= 4, 8 is even then one of a
c ,

b
c , or

a+b
c is a n

2 th power in
Q. We used Fermat’s Last Theorem here!

c If n is even, then either one of a
c ,

b
c , or

a+b
c is a square in Q,

or ( ac )(
b
c )(

a+b
c ) is a square in Q.
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Examples

−x − y = wz is p.r. over Z \ {0} but not N. (5)

−8x + 2y = wz3 is p.r. over Z \ {0}, but what about N? (6)

4x + 5y = 2wz2 is p.r. over N[
√
2] but not Z \ {0}. (7)

34 · 42 · 52x + 32 · 44 · 52y = wz4 is not p.r. over Z \ {0}. (8)

(In light of slide 7, this result required additional work.)
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More Examples

16x + 17y = wz8 remains open. (9)

(212 − 33)x + 33y = wz8 remains open. (10)

16x1 + 17y1 = w1z
8
1 (11)

(212 − 33)x2 + 33y2 = w2z
8
2 is not p.r. over Z \ {0} as a system.

16x1 + 17y1 = w1z
8
1 (12)

33x2 − 17y2 = w2z
8
2 remains open.
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Ultrafilters

Definition

Let S be a set. p ⊆ P(S) is an ultrafilter if it satisfies the
following properties:
(i) The empty set is not a member of p, i.e., ∅ /∈ p,
(ii) if A ∈ p and A ⊆ B then B ∈ p,
(iii) if A,B ∈ p then A ∩ B ∈ p,
(iv) for any A ⊆ S , either A ∈ p or Ac ∈ p.

Ultrafilters on S can also be viewed as finitely additive
{0, 1}-valued measures on the collection of subsets of S . They are
useful in the study of Ramsey Theory, because if S =

⋃r
i=1 Ci is a

finite partition and p is an ultrafilter, then there exists exactly one
1 ≤ i0 ≤ r for which Ci0 ∈ p (see also [9, Theorem 5.7]).
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The Stone-Čech Compactification of a semigroup

Let (S , ·) be a discrete semigroup and let βS denote the
Stone-Čech compactification of S . In other words, βS is a
compact Hausdorff space into which S embeds. Furthermore, if X
is a compact Hausdorff space and f : S → X is a function, then
there exists a unique continuous function f̃ : βS → X for which
f̃ |S ≡ f . The semigroup operatoration of S can be extended to a
semigroup operation on βS in a natural fashion, and we once
again denote the extended operation by ·. We let K (βS , ·) denote
the smallest ideal of (βS , ·), and we let E (K (βS , ·)) denote the
idempotent elements of K (βS , ·). It is well known that the points
of βS can be taken to be ultrafilters on S , so a minimal
idempotent ultrafilter p refers to an element of E (K (βS , ·)).
When working with structures such as N that naturally admit two
different semigroup structures, we may also speak of additively
minimal idempotent ultrafilters versus multiplicatively minimal
idempotent ultrafilters.
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Applications to Ramsey Theory

While E (K (βN,+)) ∩ E (K (βN, ·)) = ∅, there exists
p ∈ E (K (βN,+)) ∩ E (K (βN, ·)). For A ∈ p, there exists

1 x , y , z ∈ A satisfying x + y = z ,

2 x , y , z ∈ A satisfying xy = z ,

3 x , y , z ∈ A satisfying ax + by = dz provided d ∈ {a, b, a+ b},
4 x ,w , z ∈ A satisfying ax = wzn provided n

√
a ∈ N,

5 w , x , y , z ∈ A satisfying x + y = wz ,

6 x , y , z ∈ A satisfying x − y = p(z) provided p(z) ∈ zZ[z ].
In particular, all of the positive results of slide 10 can be proven
using the special ultrafilter p. Consequently, we would like to know
what other integral domains possess such a special ultrafilter p.
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Homomorphically finite integral domains

Definition

An integral domain R is Homorphically finite if for each
r ∈ R \ {0} we have [R : rR] < ∞. Equivalently, R is
Homomorphically finite if every non-injective ring
homomorphism ϕ : R → R ′ has finite image.

If R is the ring of integers of a finite extension K of Q, then R is
homomorphically finite. On the otherhand, if R is an infinite
integral domain, then R[x ] is not homomorphically finite.

Theorem (F., Magner, 2023)

1 If the integral domain R is a homomorhpically finite, then

E (K (βR ,+)) ∩ E (K (βR , ·)) ̸= ∅. (13)

2 If the integral domain R is not homomorhpically finite, then

E (K (βR ,+)) ∩ E (K (βR , ·)) = ∅. (14)
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Algebra in the Stone-Čech compactification: Theory and
applications.
De Gruyter Textbook. Walter de Gruyter & Co., Berlin,
second revised and extended edition, 2012.

Sohail Farhangi Grunwald-Wang and Ramsey Theory 24



References IV

[10] R. Rado.
Studien zur Kombinatorik.
Math. Z., 36(1):424–470, 1933.

[11] J. Sahasrabudhe.
Exponential patterns in arithmetic Ramsey theory.
Acta Arith., 182(1):13–42, 2018.

[12] I. Schur.
Uber die kongruenz xm + ym = zm (mod p).
Jahresber. Dtsch. Math, 25:114–117, 1916.

[13] S. Wang.
A counter-example to Grunwald’s theorem.
Ann. of Math. (2), 49:1008–1009, 1948.

Sohail Farhangi Grunwald-Wang and Ramsey Theory 25



References V

[14] S. Wang.
On Grunwald’s theorem.
Ann. of Math. (2), 51:471–484, 1950.

[15] G. Whaples.
Non-analytic class field theory and Grünwald’s theorem.
Duke Math. J., 9:455–473, 1942.

Sohail Farhangi Grunwald-Wang and Ramsey Theory 26


	The Grunwald-Wang Theorem
	Introduction to Ramsey Theory on Rings
	Main Result
	Examples
	Ultrafilters and Ramsey Theory

