

Generalizations of the Grunwald-Wang Theorem and Applications to Ramsey Theory

Howard University Mathematics Colloquium

Based on <http://math.colgate.edu/integers/x18/x18.pdf>

Sohail Farhangi (joint work with Richard Magner)
Slides available on sohailfarhangi.com

September 1, 2023

Overview

- 1 The Grunwald-Wang Theorem
- 2 Introduction to Ramsey Theory on Rings
- 3 Main Result
- 4 Examples
- 5 Ultrafilters and Ramsey Theory

Table of Contents

1 The Grunwald-Wang Theorem

2 Introduction to Ramsey Theory on Rings

3 Main Result

4 Examples

5 Ultrafilters and Ramsey Theory

The Grunwald-Wang Theorem

Exercise: Suppose that $x \in \mathbb{Z}$ is such that $x = y^2 \pmod{p}$ has a solution for every prime p . Show that x is a perfect square.

Theorem

Let $n \in \mathbb{N}$ be arbitrary and suppose that $x \in \mathbb{Z}$ is such that x is an n th power modulo p for every prime p . x is either an n th power or $8|n$ and $x = 2^{\frac{n}{2}}y^n = 16^{\frac{n}{8}}y^n$.

W. Grunwald [7] in 1933 proved an incorrect version of this theorem since he failed to find the exceptional case when $8|n$. G. Whaples [15] in 1942 gave another incorrect proof of Grunwald's Theorem. S. Wang [13], [14] in 1948 found the counter example of 16 and gave a proof of the corrected theorem in his doctoral thesis.

The Exceptional case of $x = 16$

It is clear that $16 = 2^4$ is not an 8th power in \mathbb{N} . To see that 16 is an 8th power modulo p for every prime p , we observe that

$$x^8 - 16 = (x^4 - 4)(x^4 + 4) = (x^2 - 2)(x^2 + 2)(x^2 - 2x + 2)(x^2 + 2x + 2)$$

We note that the discriminant of the last 2 factors is -4 . Since one of 2 , -2 , and -4 will be a square modulo p , we see that $x^8 - 16$ will have a root modulo p .

The Grunwald-Wang Theorem intuitively says that 16 is the only obstruction to a certain local-global principle.

Grunwald-Wang for 3 Variables

Theorem (F., Magner, 2023)

Let $n \in \mathbb{N}$ be arbitrary and suppose that $a, b, c \in \mathbb{Z}$ are such that at least one of a, b , and c is an n th power modulo p for every prime p . Then either

- ① n is odd and one of a, b , and c is an n th power.
- ② n is even and either one of a, b , and c is an $\frac{n}{2}$ th power, or $4|n$ and each of a, b , and c is an $\frac{n}{4}$ th power.

In our paper we also address the situation for a general number field K with ring of integers \mathcal{O}_K .

This number theory is needed because one of the most commonly used partitions in the Ramsey Theory of diophantine equations are the Rado c_p -partitions. Given a prime p , the c_p -partition is $\mathbb{N} = \bigcup_{i=1}^r C_i$ where C_i consists of those natural numbers whose first non-zero digit in the base p expansion is i .

Some Exceptional Cases

It is clear that we still have an exceptional case if $8|n$ and one of a , b , and c is of the form $2^{\frac{n}{2}}y^n$.

A new exceptional case is found with $n = 4$, $a = 3^4 \cdot 4^2 \cdot 5^2$, $b = 3^2 \cdot 4^4 \cdot 5^2$, and $c = a + b = 3^2 \cdot 4^2 \cdot 5^4$.

There are more exceptional cases that actually show up from the 2 variable situation.

Table of Contents

- 1 The Grunwald-Wang Theorem
- 2 Introduction to Ramsey Theory on Rings
- 3 Main Result
- 4 Examples
- 5 Ultrafilters and Ramsey Theory

Ramsey Theory Preliminaries

Definition

If $p \in \mathbb{Z}[x_1, \dots, x_n]$ is a polynomial and S is a set such as \mathbb{N} , $\mathbb{Z} \setminus \{0\}$, or the ring of integers \mathcal{O}_K of some number field K , then the equation

$$p(x_1, \dots, x_n) = 0 \tag{1}$$

is **partition regular (p.r.) over S** if for any partition $S = \sqcup_{i=1}^r C_i$ there exists $1 \leq i_0 \leq r$ and $x_1, \dots, x_n \in C_{i_0}$ satisfying (1).

The equation $x + y = 2z + 1$ is **NOT** partition regular over \mathbb{N} as seen by considering the partition $\mathbb{N} = (2\mathbb{N}) \sqcup (2\mathbb{N} + 1)$.

The equation $x + y = z$ **is** partition regular over \mathbb{N} , and this can be proven using Ramsey's theorem about complete graphs.

Polynomial Equations and Partition Regularity

- ➊ $x + y = z$ is p.r. over \mathbb{N} (Schur [12])
- ➋ $xy = z$ is p.r. over \mathbb{N} (corollary of Schur)
- ➌ $ax + by = dz$ is p.r. over \mathbb{N} if and only if $d \in \{a, b, a + b\}$
(special case of Rado's Theorem [10])
- ➍ $ax = wz^n$ is p.r. over \mathbb{N} if and only if $\sqrt[n]{a} \in \mathbb{N}$. (See [3])
- ➎ $x + y = wz$ is p.r. over \mathbb{N} (Bergelson-Hindman [2],[8])
- ➏ $x - y = q(z)$ with $q \in x\mathbb{Z}[x]$ is p.r. over \mathbb{N} (Bergelson [1],
Page 53])
- ➐ $x + y = z^2$ is not non-trivially p.r. over \mathbb{N} (Csikvári, Gyarmati
and Sárközy [4], see also Green and Lindqvist [6])
- ➑ It is open as to whether $x^2 + y^2 = z^2$ is p.r. over \mathbb{N} [5].
- ➒ It is open as to whether $z = xy + x$ is p.r. over \mathbb{N} [11].
- ➓ $z = x^y$ is p.r. over \mathbb{N} , but $z = x^{y+1}$ is open. Sahasrabudhe
[11]

Table of Contents

- 1 The Grunwald-Wang Theorem
- 2 Introduction to Ramsey Theory on Rings
- 3 Main Result
- 4 Examples
- 5 Ultrafilters and Ramsey Theory

When is $ax + by = cw^mz^n$ p.r.?

Theorem (F., Magner 2022)

Let $m, n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z} \setminus \{0\}$.

- 1 If $m, n \geq 2$, then the equation

$$ax + by = cw^mz^n \quad (2)$$

is p.r. over $\mathbb{Z} \setminus \{0\}$ if and only if $a + b = 0$.

- 2 If one of $\frac{a}{c}$, $\frac{b}{c}$, or $\frac{a+b}{c}$ is a n th power in \mathbb{Q} , then the equation

$$ax + by = cwz^n \quad (3)$$

is p.r. over $\mathbb{Z} \setminus \{0\}$. If \mathbb{Q} is replaced with \mathbb{Q}^+ then $\mathbb{Z} \setminus \{0\}$ can be replaced with \mathbb{N} . **This holds when \mathbb{Z} and \mathbb{Q} are replaced by a general integral domain R and its field of fractions K .**

Theorem (F., Magner 2022)

3 Suppose that

$$ax + by = cwz^n \quad (4)$$

is p.r. over $\mathbb{Q} \setminus \{0\}$.

- a) If n is odd then one of $\frac{a}{c}$, $\frac{b}{c}$, or $\frac{a+b}{c}$ is an n th power in \mathbb{Q} .
- b) If $n \neq 4, 8$ is even then one of $\frac{a}{c}$, $\frac{b}{c}$, or $\frac{a+b}{c}$ is a $\frac{n}{2}$ th power in \mathbb{Q} . *We used Fermat's Last Theorem here!*
- c) If n is even, then either one of $\frac{a}{c}$, $\frac{b}{c}$, or $\frac{a+b}{c}$ is a square in \mathbb{Q} , or $(\frac{a}{c})(\frac{b}{c})(\frac{a+b}{c})$ is a square in \mathbb{Q} .

Table of Contents

- 1 The Grunwald-Wang Theorem
- 2 Introduction to Ramsey Theory on Rings
- 3 Main Result
- 4 Examples
- 5 Ultrafilters and Ramsey Theory

Examples

$$-x - y = wz \text{ is p.r. over } \mathbb{Z} \setminus \{0\} \text{ but not } \mathbb{N}. \quad (5)$$

$$-8x + 2y = wz^3 \text{ is p.r. over } \mathbb{Z} \setminus \{0\}, \text{ but what about } \mathbb{N}? \quad (6)$$

$$4x + 5y = 2wz^2 \text{ is p.r. over } \mathbb{N}[\sqrt{2}] \text{ but not } \mathbb{Z} \setminus \{0\}. \quad (7)$$

$$3^4 \cdot 4^2 \cdot 5^2 x + 3^2 \cdot 4^4 \cdot 5^2 y = wz^4 \text{ is not p.r. over } \mathbb{Z} \setminus \{0\}. \quad (8)$$

(In light of slide 7, this result required additional work.)

More Examples

$$16x + 17y = wz^8 \text{ remains open.} \quad (9)$$

$$(2^{12} - 33)x + 33y = wz^8 \text{ remains open.} \quad (10)$$

$$16x_1 + 17y_1 = w_1 z_1^8 \quad (11)$$

$(2^{12} - 33)x_2 + 33y_2 = w_2 z_2^8$ is not p.r. over $\mathbb{Z} \setminus \{0\}$ as a system.

$$16x_1 + 17y_1 = w_1 z_1^8 \quad (12)$$

$33x_2 - 17y_2 = w_2 z_2^8$ remains open.

Table of Contents

- 1 The Grunwald-Wang Theorem
- 2 Introduction to Ramsey Theory on Rings
- 3 Main Result
- 4 Examples
- 5 Ultrafilters and Ramsey Theory

Definition

Let S be a set. $p \subseteq \mathcal{P}(S)$ is an *ultrafilter* if it satisfies the following properties:

- ① The empty set is not a member of p , i.e., $\emptyset \notin p$,
- ② if $A \in p$ and $A \subseteq B$ then $B \in p$,
- ③ if $A, B \in p$ then $A \cap B \in p$,
- ④ for any $A \subseteq S$, either $A \in p$ or $A^c \in p$.

Ultrafilters on S can also be viewed as finitely additive $\{0, 1\}$ -valued measures on the collection of subsets of S . They are useful in the study of Ramsey Theory, because if $S = \bigcup_{i=1}^r C_i$ is a finite partition and p is an ultrafilter, then there exists exactly one $1 \leq i_0 \leq r$ for which $C_{i_0} \in p$ (see also [9, Theorem 5.7]).

The Stone-Čech Compactification of a semigroup

Let (S, \cdot) be a discrete semigroup and let βS denote the Stone-Čech compactification of S . In other words, βS is a compact Hausdorff space into which S embeds. Furthermore, if X is a compact Hausdorff space and $f : S \rightarrow X$ is a function, then there exists a unique continuous function $\tilde{f} : \beta S \rightarrow X$ for which $\tilde{f}|_S \equiv f$. The semigroup operation of S can be extended to a semigroup operation on βS in a natural fashion, and we once again denote the extended operation by \cdot . We let $K(\beta S, \cdot)$ denote the smallest ideal of $(\beta S, \cdot)$, and we let $E(K(\beta S, \cdot))$ denote the idempotent elements of $K(\beta S, \cdot)$. It is well known that the points of βS can be taken to be ultrafilters on S , so a minimal idempotent ultrafilter p refers to an element of $E(K(\beta S, \cdot))$. When working with structures such as \mathbb{N} that naturally admit two different semigroup structures, we may also speak of additively minimal idempotent ultrafilters versus multiplicatively minimal idempotent ultrafilters.

Applications to Ramsey Theory

While $E(K(\beta\mathbb{N}, +)) \cap E(K(\beta\mathbb{N}, \cdot)) = \emptyset$, there exists $p \in \overline{E(K(\beta\mathbb{N}, +))} \cap E(K(\beta\mathbb{N}, \cdot))$. For $A \in p$, there exists

- ① $x, y, z \in A$ satisfying $x + y = z$,
- ② $x, y, z \in A$ satisfying $xy = z$,
- ③ $x, y, z \in A$ satisfying $ax + by = dz$ provided $d \in \{a, b, a+b\}$,
- ④ $x, w, z \in A$ satisfying $ax = wz^n$ provided $\sqrt[n]{a} \in \mathbb{N}$,
- ⑤ $w, x, y, z \in A$ satisfying $x + y = wz$,
- ⑥ $x, y, z \in A$ satisfying $x - y = p(z)$ provided $p(z) \in z\mathbb{Z}[z]$.

In particular, all of the positive results of slide 10 can be proven using the special ultrafilter p . Consequently, we would like to know what other integral domains possess such a special ultrafilter p .

Homomorphically finite integral domains

Definition

An integral domain R is **Homomorphically finite** if for each $r \in R \setminus \{0\}$ we have $[R : rR] < \infty$. Equivalently, R is **Homomorphically finite** if every non-injective ring homomorphism $\phi : R \rightarrow R'$ has finite image.

If R is the ring of integers of a finite extension K of \mathbb{Q} , then R is homomorphically finite. On the otherhand, if R is an infinite integral domain, then $R[x]$ is not homomorphically finite.

Theorem (F., Magner, 2023)

- 1 *If the integral domain R is a homomorphically finite, then*

$$\overline{E(K(\beta R, +))} \cap \overline{E(K(\beta R, \cdot))} \neq \emptyset. \quad (13)$$

- 2 *If the integral domain R is not homomorphically finite, then*

$$\overline{E(K(\beta R, +))} \cap \overline{E(K(\beta R, \cdot))} = \emptyset. \quad (14)$$

References I

- [1] V. Bergelson.
Ergodic Ramsey theory—an update.
In *Ergodic theory of \mathbb{Z}^d actions (Warwick, 1993–1994)*, volume 228 of *London Math. Soc. Lecture Note Ser.*, pages 1–61. Cambridge Univ. Press, Cambridge, 1996.
- [2] V. Bergelson.
Ultrafilters, IP sets, dynamics, and combinatorial number theory.
In *Ultrafilters across mathematics*, volume 530 of *Contemp. Math.*, pages 23–47. Amer. Math. Soc., Providence, RI, 2010.
- [3] J. Byszewski and E. Krawczyk.
Rado's theorem for rings and modules.
J. Combin. Theory Ser. A, 180:105402, 28, 2021.

References II

[4] P. Csikvári, K. Gyarmati, and A. Sárközy.
Density and Ramsey type results on algebraic equations with
restricted solution sets.
Combinatorica, 32(4):425–449, 2012.

[5] P. Erdős and R. L. Graham.
*Old and new problems and results in combinatorial number
theory*, volume 28 of *Monographies de L'Enseignement
Mathématique [Monographs of L'Enseignement
Mathématique]*.
Université de Genève, L'Enseignement Mathématique,
Geneva, 1980.

[6] B. J. Green and S. Lindqvist.
Monochromatic solutions to $x + y = z^2$.
Canad. J. Math., 71(3):579–605, 2019.

References III

[7] W. Grunwald.
Ein allgemeiner existenzsatz für algebraische zahlkörper.
Journal für die reine und angewandte Mathematik,
169:103–107, 1933.

[8] N. Hindman.
Monochromatic sums equal to products in \mathbb{N} .
Integers, 11(4):431–439, 2011.

[9] N. Hindman and D. Strauss.
Algebra in the Stone-Čech compactification: Theory and applications.
De Gruyter Textbook. Walter de Gruyter & Co., Berlin,
second revised and extended edition, 2012.

References IV

- [10] R. Rado.
Studien zur Kombinatorik.
Math. Z., 36(1):424–470, 1933.
- [11] J. Sahasrabudhe.
Exponential patterns in arithmetic Ramsey theory.
Acta Arith., 182(1):13–42, 2018.
- [12] I. Schur.
Über die kongruenz $x^m + y^m = z^m \pmod{p}$.
Jahresber. Dtsch. Math., 25:114–117, 1916.
- [13] S. Wang.
A counter-example to Grunwald's theorem.
Ann. of Math. (2), 49:1008–1009, 1948.

- [14] S. Wang.
On Grunwald's theorem.
Ann. of Math. (2), 51:471–484, 1950.
- [15] G. Whaples.
Non-analytic class field theory and Grünwald's theorem.
Duke Math. J., 9:455–473, 1942.