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The Classical van der Corput Difference Theorem

Definition

A sequence (x,)5°

°; € [0,1] is uniformly distributed if for any
open interval (a, b)

co,1
C [0,1] we have

I|m—|{1<n<N|x,, (a,b)}| =b— a. (1)

N—oo N

v

Theorem (van der Corput, 1931 [34])

If (x,)22 4 C [0, 1] is such that (X,1n — Xn)324 Is uniformly
distributed for every h € N, then (x,)%, is itself uniformly
distributed.

If « € R is irrational, then (n*a)%2; is uniformly distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, Bergelson, 1987 [2, Theorem 1.4])

If H is a Hilbert space and (x,)5%; C H is a bounded sequence

satisfying

for every h € N, then

Sohail Farhangi Mixing, vdC difference thm, Furstenberg's correspondence principle

Frame 5



Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, Bergelson, 1987 [2, Page 3])

If H is a Hilbert space and (x,)%,; C H is a bounded sequence
satisfying
T
hleroliAT:;p N;(xn+h,xn> =0, then (4)
T
ym, |1y 2% =0 ®)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, Bergelson, 1987 [2, Theorem 1.5])
If H is a Hilbert space and (x,)52; C H is a bded seq. satisfying

lim — Z limsup |—

H—oo H h—1 N—oo

Why would we ever use HvdCDT1 or HvdCD T2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?

See [12, Chapter 2] for variations of vdCT related to the levels of
mixing in the ergodic hierarchy of mixing properties, as well as
similar variations in the context of uniform distribution. See also

[33] and [9].
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, A, u, T), and any
A € B with u(A) > 0, there exists n € N for which

W(AN T"A) > 0. (6)

Does not need vdCDT.

Theorem (Furstenberg-Sarkdzy [19],[28])

For any m.p.s. (X,%,u, T), and any A € B with (A) > 0, there
exists n € N for which

(AN T "A) > 0. (7)

Furstenberg's proof in [19, Proposition 1.3] uses a form of vdCDT
since it uses the uniform distribution of (n?a) ;. See also [3,
Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg multiple recurrence, [19])

For any m.p.s. (X, %,u, T), any A € & with u(A) > 0, and any
¢ € N, there exists n € N for which

p(ANT"ANT 2"AN---N T "A) > 0. (8)

The proof presented in [10] uses HvdCT3 as Theorem 7.11, and
the proof in [20] uses a variation.

Theorem (Bergelson and Leibman, [5, Theorem Ag])

For any m.p.s. (X, %, u,{T;}._,) with the T;s commuting, any
A € B with u(A) > 0, and any {p;(x)}:_; C xN[x], there exists
n € N for which

0 (A NTP0AN T;2MAN .. 0 T;”@("’A) >0, (9)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Furstenberg's correspondence principle

Definition

For a set E C N, the natural upper density of £ is denoted by
d(E) and is given by

d(E) = lim sup% |[EN[L,N]|. (10)

N—oc0

We see that d(2N) = d(2N + 1) = 1, d(aN + b) = 1 for any
a,b €N, and d({n?},en) = 0.

Theorem (The correspondence principle, [19],[3, Theorem 1.8])

Given a set E C N for which d(E) > 0, there exists a measure
preserving system (X, %, p, T) and a set A € % with
u(A) = d(E), such that for any ¢, ny,n,,--- ,n, € N we have

d(EN(E—m)N---N(E—n)) > p(ANT AN N T "A)

v
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Szemerédi's theorem

Theorem (Szemerédi [31], 1975)

If E C N satisfies d(E) > 0, then for any { € N, E contains an
arithmetic progression of length /.

This was conjectured by Erdés and Turan [11] in 1936. The case
of length 3 arithmetic progressions was resolved by Roth [27] in
1952. The case of length 4 arithmetic progressions was resolved by
Szemerédi [30] in 1969. Furstenberg [19] gave the second proof in
1977, and Gowers [21] the third proof in 2001.
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Using the correspondence principle

We will now deduce Szemerédi's Theorem from the Furstenberg
Multiple Recurrence Theorem by using the correspondence
principle. Let £ C N be such that d(E) > 0, let (X, %, u, T) and
A € % be given by the correspondence principle, and let / € N be
arbitrary. Furstenberg's Multiple Recurrence Theorem tells us that
there exists n € N for which

v(n) :=p(ANT "AN---N T ™A) > 0.
The correspondence principle tells us that for
E(n) := EN(E—n)N---N(E — nf) we have d(E(n)) > ~(n) > 0.

Since E(n) # 0, we see that for a € E(n) we have
a,a+n,---,a+nl €E.
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More results in density Ramsey theory

Theorem (Furstenberg-Sarkozy [19],[28])

Let E C N be such that d(E) > 0. Then there exists n € N for

which d(E N (E — n?)) > 0. In particular, there exists x,y € E

with x — y = n.

Theorem (Polynomial Szemerédi, due to Bergelson and Leibman)

Let E C N be such that d(E) > 0 and let py,--- , p; € xZ|x] be
arbitrary. Then there exists n € N for which
d(EN(E = pi(n))N---N(E — pe(n))) > 0. (11)

In particular, there exists a,n € N for which
a,a+ pi(n), - ,a+ pe(n) € E.

Note that this is only a special case of Theorems B and B’ of [5].
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Lebesgue spectrum and singular spectrum

Definition

Let X = (X, %, u, T) be an invertible m.p.s. and let

Ur : L2(X, ) — L?(X, ) be the Koopman operator induced by
T. If L3(X, i) has an orthogonal basis of the form {U%fy,}n mez.,
then X' has Lebesgue spectrum. This implies that for all

f € L3(X, i), the sequence ((URf,f))>2, is the Fourier
coefficients of some measure v << L, where L is the Lebesgue
measure. On the other hand, if for every f € L?(X, i), the
sequence ((ULf, f))52; is the Fourier coeficients of some positive

n=

measure v 1 L, then the system X" has singular spectrum.
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Examples of systems with Lebesgue spectrum

Any K-mixing system has Lebesgue spectrum, hence all Bernoulli
systems have Lebesgue spectrum. The Sinai factor theorem [29]
tells us that a non-atomic ergodic m.p.s. with positive entropy has
a Bernoulli shift as a factor, and consequently has a factor with
Lebesgue spectrum. It follows that the original system does NOT
have singular spectrum. The horocycle flow is an example of a
system with Lebesgue spectrum [26] that also has 0-entropy [22].
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Examples of systems with singular spectrum

In [23] and [4] it is shown that if (X, %, 1) is a standard
probability space, and Aut(X, %, 11) is endowed with the strong
operator topology, then the set of transformations that are weakly
mixing and rigid is a generic set. Since any rigid automorphism
(such as a group rotation) has singular spectrum, we see that the
set of singular automorphisms is generic. Now let

S C Aut(X, A, i) denote the collection of strongly mixing
transformation, and note that S is a meager set since an
automorphism cannot simultaneously be rigid and strongly mixing.
Since S is not a complete metric space with respect to the strong
operator topology, a new topology was introduced in [32], with
respect to which § is a complete metric space. It is shown in the
Corollary to Theorem 7 of [32] that a generic T € S has singular
spectrum, and such a T is mixing of all orders due a well known
result of Host [24]. See [13],[25][1], [6], and [18] for more
examples of T that have singular spectrum.
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The left regular representation

Let G is a locally compact Hausdorff group with left Haar measure
\. There is a unitary representation L of G on L?(G,v) given by
(Lgf)(h) = f(g~*h), which is known as the left regular
representation. If f € [2(G,v) is a positive definite function,
then there exists a function h € L?(G, \) for which

f(g) = (Lgh, h). In particular, consider a representation U of G on
‘H, and a cyclic vector f € H such that

/G|(Ugf, f)2d\(g) < oo. (12)

Then U is isomorphic to a subrepresentation of the left regular
representation.
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Spectrum and the left regular representation

Let G be an amenable group and X := (X, %, i1, { Tz }geg) a
measure preserving G-system, which we abbreciate to G-system.
We let U : L2(X, 1) — L?(X, i) denote the unitary representation
of G induced by T, i.e., Usf = f o T,-1. The system & has
Lebesgue spectrum if U decomposes into a direct sum of
countably many copies of the left regular representation. The
system X" has singular spectrum if the representation U is
disjoint from the left regular representation. Dooley and Golodets
[8] showed that if G is countable and X has completely positive
entropy (analogue of K-mixing) then it also has Lebesgue
spectrum. Danilenko and Park [7] proved an analogue of Sinai's
factor theorem when G is countable, from which we deduce that
X does not have singular spectrum when it is free, ergodic, and
has positive entropy.
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A Lebesgue spectrum vdCDT

Theorem (F. 2023)
If (x,)0, C H is a bounded sequence satisfying

2
lem sup | —

N— o0

N

Z(Xn-i-ha Xn>

n=1

< 00, (13)

then (x,)°, is a spectrally Lebesgue sequence. If H = L2(X, )
and (y,)52, C L°°(X, p) is bounded and spectrally singular, then

=) (14)
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A Lebesgue spectrum vdCDT for amenable groups

Theorem (F. 2023)

Let G be a countable amenable group and (F,)°; a left Fglner
sequence. If (xg)gec C H is a bounded sequence satisfying

2
: 1
Z lim sup TEal Z (Xgh, Xg)

@ Ve gE€FN

< 0, (15)

then (xg)gec Is a spectrally Lebesgue sequence. If H = L2(X, u)
and (y,)52; C L>=(X, i) is bounded and spectrally singular, then

—0. (16)
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Noncommutative ergodic theorems 1/2

Theorem (Frantzikinakis [14, Corollary 1.7])

Let a: R, — R be a Hardy field function for which there exist
some € > 0 and d € Z, satisfying

a(t) .ttt

= _— = — 1.5
Jlim e = lim 20 co. (eg. a(t)=1t") (17)

Furthermore, let (X, %, 1) be a probability space and
T,S : X — X be measure preserving transformations. Suppose
that the system (X, %, u, T) has zero entropy. Then

(i) For every f,g € L>(X, ) we have

lim —ZT”f Slelg — EB[f|Z7] - E[g|Zs],  (18)

N—oo N

where the limit is taken in L>(X, p).

Sohail Farhangi Mixing, vdC difference thm, Furstenberg’s correspondence principle Frame 25



Noncommutative ergodic theorems 2/2

Theorem (Continued)
(ii) For every A € 2 we have

N—oo

N
. 1 —n —laln
lim N nE:1 p(ANT"ANSTEMIA) > 1(A)3. (19)

Frantzikinakis and Host [15] proved a similar theorem for
a(n) = p(n) with p(x) € Z[x] of degree at least 2.
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An Example

Theorem (Frantzikinakis, Lesigne, Wierdl [17, Lemma 4.1])

Let a,b: N — Z\ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X, 2, i1), measure
preserving automorphisms T,S : X — X, both of them Bernoulli,
and A € A, such that

0 ifneF,
1 ifn¢F.

4

(20)

p(T2MANSHNA) = {

v

In light of Sinai's Factor Theorem, we see that the assumption of
0-entropy in the last 2 slides cannot be weakened.
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Application 1/3

Theorem (F., 2023)

Let (X, A, 1) be a probability space and let T,S : X — X be
measure preserving automorphisms for which T has singular
spectrum. Let (k,)>>; C N be a sequence for which

((knsn — kn)a)o2 is uniformly distributed in the orbit closure of o
for all « € R and h € N.

@ Foranyf,g e L>(X,pn) we have

N
. 1 n kn
Jim n§1 T°f-S*g =RE[f|I7]E[g|Zs],  (21)

with convergence taking place in L>(X, ).
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Application 1/3 continued

Theorem (Continued)
(i) If A€ 2 then

n kn
,\Ilinooﬁz,u (ANT"ANS™™A) > (AP (22)

(iii) If we only assume that ((Kn+n — kn))32 is uniformly
distributed for all € R\ Q and h € N, then (i) and (ii) hold
when S is totally ergodic.

Examples include k, = |a(n)]| with a(n) being as in frame 19,
k, = | n*log®(n)|, and for part (iii) we may take k, = p(n) for
p(x) € xZ[x] with degree at least 2. An analogous result is now
known for countable abelian groups.
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Sets of K but not K + 1 recurrence?

Theorem (Frantzikinakis, Lesigne, Wierdl [16])

Let k > 2 be an integer and a € R be irrational. Let
R« ={neN|nfa e [3,3]}.

44
(i) If (X, 9B, ) is a probability space and
51,5, -+, 51 : X = X are commuting measure preserving

transformations, then for any A € 2 with u(A) > 0, there
exists n € Ry for which

p(ANST"TANS;"AN---N S A) > 0. (23)

(ii) There exists a m.p.s. (X, %, u, T) and a set A € A satisfying
w(A) > 0 such that for all n € Ry we have

p(ANT"ANT 2"AN---NT MA)=0. (24)
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Application 2/3

Theorem (F., 2023)

Let k > 2 be an integer and o € R be irrational. Let

={neN|nfa € I 2]}. Let (X, 2B, ) be a probability
space and 51,5, ,Sk_1: X — X commuting measure
preserving automorphlsms. Let T : X — X be an measure
preserving automorphism with singular spectrum, and for which
{T,51,5,---,Sk_1} generate a nilpotent group. For any A € #
with p(A) > 0, there exists n € R for which

p(ANT"ANS"ANS;"AN---N S A) > 0. (25)

v

Since the system (T2, %%, £?, T) with T(x,y) = (x + a,y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with O entropy. Also note
that the maximal spectral type of T is L+, _; 6na
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Application 3/3

Theorem (F., 2023)

Let K be a countable field with characteristic 0. Let (X, %, v) be
a probability space and T,,S; : X — X measure preserving actions
of (K, +) for which the action (T;)zex has singular spectrum and
the action (Sg)gek is ergodic. Let (F,)7>, be a Falner sequence in
(K,+) and ¢ € N. Let py,--- ,ps € K[x] be polynomials for which
deg(pis1) > 2 + deg(p;) for 1 < i < (. Then for any

fo, fi, -, fr € L(X, n) we have

l V4

i 1

om 3 T [ Soiofs = BGIZATL [ v (29)
Jj=1 j=1

neFy

with convergence taking place in L*(X,v).

This is a corollary of a more general result involving joint
ergodicity.
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An example

Consider the m.p.s. ([0,1]?, 8, L2 T,S) with

S(x,y) = (x + 2a, y + x) for some o € R\ Q, and

T(x,y) = (x,y + x). We see that ([0, 1]?, %, L2, S) and

([0,1]3, %, L2, T) are both zero entropy systems that are not
weakly mixing, and the former is totally ergodic. Furthermore, T
and S generate a 2-step nilpotent group. For

fo(x,y) = e fi(x,y) = €™, and f(x,y) = e 2™, we see
that

lim —Z T"f(x,y)S"fi(x, y)S2 " " h(x, y)

N—oo N

T 1 27i( (1—n)x—y+y+nx+(n?—n)a—x—(n’—n)a) _
= lim NZe ( )—17&0.

N—oo
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