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The Classical van der Corput Difference Theorem

Definition

C [0, 1] is uniformly distributed if for any
C [0, 1] we have

A sequence (x,)>2,
open interval (a, b)

lim —|{1<n<N|x,, (a,b)}| = b—a. (1)

N—oo N

Theorem (van der Corput, [26])

If ()32, C [0, 1] is such that (X,tn — Xn)324 Is uniformly
distributed for every h € N, then (x,)3, is itself uniformly
distributed.

A\

If « € R is irrational, then (n*a)2; is uniformly distributed.

Sohail Farhangi Mixing, vdC difference thm, Noncommuting ergodic thms Frame 4



Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, Bergelson [3, Theorem 1.4])

If H is a Hilbert space and (x,)?; C H is a bounded sequence
satisfying

i 2l = @

for every h € N, then
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, Bergelson [3, Page 3])

If H is a Hilbert space and (x,)52; C H is a bounded sequence
satisfying

=0, then (4)

—0. (5)

.
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDTS3, Bergelson [3, Theorem 1.5])

If H is a Hilbert space and (x,)?; C H is a bounded sequence
satisfying

H N
1 : 1
Hlinooﬁhz_;lllr\llﬂj;p N;(X,,Jrh,xn) =0, then (6)
LN
V. |3 2| = g

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT37? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, %, u, T), and any
A € % with u(A) > 0, there exists n € N for which

W(ANT"A) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sarkozy)

For any m.p.s. (X, %,u, T), and any A € B with i(A) > 0, there
exists n € N for which

w(AN T~ A) > 0. (9)

Furstenberg's proof in [17, Proposition 1.3] uses a form of vdCDT
since it uses the uniform distribution of (n?a)%2;. See also [4,
Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg, [17])

For any m.p.s. (X, %,u, T), any A € % with u(A) > 0, and any
¢ € N, there exists n € N for which

H(ANT"ANT A0 0 T-A) > 0. (10)

The proof presented in [9] uses HvdCT3 as Theorem 7.11, and the
proof in [18] uses a variation.

Theorem (Bergelson and Leibman, [6])

For any m.p.s. (X, %, u,{T:}_,) with the T;s commuting, any
A € B with u(A) > 0, and any {p;(x)}:_; C xN[x], there exists
n € N for which

u (A NTMAN T,2MAN0 .0 T[”’f(")A) >0, (11)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Some of the Ergodic Hierarchy of Mixing

Let X = (X, %,, T) be am.p.s. If for every f, g € L3(X, 1)
N
.1 n : :
Q Iim N E (Urf,g) =0, then X is ergodic.

N—oo
n=1

I|m —Z! UTf,g)| =0, then X is weakly mixing,

o =0, then X' is
Q and if L3(X, 1) has an orthogonal basis of the form
{U%fm}n.mez, then X has Lebesgue spectrum.

@ which is the same as ((U}f, g))>2, being Fourier coefficients
of some h € L1([0,1], L), where £ is the Lebesgue measure.

These definitions also apply to individual elements f € L2(X, ).
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The Symmetric Ergodic Hierarchy of Mixing

Let X = (X, %’ .1, T) be a m.p.s. If for every f € L3(X, )

Q@ Iim lz Utf,f) =0, then X is ergodic,

N—oo

N
' ﬁ Z [(USf,f)| =0, then X is weakly mixing,
n=1

(3] =0, then X is

Q X has Lebesgue spectrum if ((UFf, f))2, are the Fourier
coefficients of some h € L1([0,1], E) taking nonnegative real
values.

This theorem also applies to individual elements f € L3(X, 11).
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Theorem (F. 2022)

A weak mixing van der Corput difference theorem

If (x,)0, € H is a bounded sequence satisfying

Z<Xn+haxn> =0, (12)

then (x,)°2, is a nearly weakly mixing sequence. This means that
for any other bounded sequence (y,):2, C H we morally (but not
literally) have that

1 H
Jim >

Loosely speaking, this can be interpretted as a weak mixing in any
ultrapower 7 of H with respect to a unitary operator induced by
the left shift. Note that elements of 7 are sequences in H.

H
lim — E limsup |—
H—oo H

h—1 N—oo

=0. (13)
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A Lebesgue spectrum vdCdt

Theorem (F. 2023)
If (x,)02, € H is a bounded sequence satisfying for all h € N

lemsup

h—1 N—o0

N 2

Z< Xn-+hy Xn)

< 0, (14)

then (x,), is a spectrally Lebesgue sequence. If H = L2(X, )
and (y,)2; C L>®(X, i) is bounded and spectrally singular, then

=0. (#)

v

Upgrading from weak convergence to the strong convergence in #
necessitates a new proof of the classical vdCDT. See [10, Chapter
2] for variations of MvdCT related to other levels of mixing, as well
as uniform distribution. See also [25].
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Failure of noncommutative ergodic theorems

Theorem (Frantzikinakis, Lesigne, Wierdl [15, Lemma 4.1])

Let a,b: N — Z\ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X, %, 1), measure
preserving automorphisms T,S : X — X, both of them Bernoulli,
and A € A, such that

0 ifneF,

ifné¢F. (1)

p(T2MANSTHMA) = {

=

v

See also Furstenberg [18, Page 40|, Berend [2, Example 7.1], as
well as Bergelson and Leibman [7].
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Noncommutative ergodic theorems 1/2

Theorem (Frantzikinakis [12, Corollary 1.7])

Let a: Ry — R be a Hardy field function for which there exist
some € > 0 and d € Z, satisfying

_ _ _ 415
tILngo rdte — tILngoﬁ =o00. (eg a(t)=t"") (16)

Furthermore, let (X, %, 1) be a probability space and
T,S : X — X be measure preserving transformations. Suppose
that the system (X, %, u, T) has . Then

(i) Forevery f,g € L>(X, ) we have

lim —ZT”f Slanlg — E[f|Z7] - E[g|Zs], (17)

N—oo N

where the limit is taken in L*(X, p).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)
(ii) For every A € 2 we have

lim —Z“ (ANT"ANS EMIA) > (A2 (18)

Frantzikinakis and Host [13] a similar theorem is proven for
a(n) = p(n) with p(x) € Z[x] of degree at least 2. Rohlin [23]
showed that every T with singular spectrum must also have

. Note that the Horocycle flow has [19] and
Lebesgue spectrum [22]
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Application 1/4

Theorem (F., 2023)

Let (X, A, 1) be a probability space and let T,S : X — X be
measure preserving automorphisms for which T has singular
spectrum. Let (k,)7>; C N be a sequence for which

((kntn — kn)a)o2 is uniformly distributed in the orbit closure of o
for all o € R and h € N.

@ Foranyf,g e L>(X,pn) we have

N
. 1 n kn

with convergence taking place in L*(X, p1).
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Application 1/4 continued

Theorem (Continued)
(i) If A€ A then

N
.1 i —kn 3
Nll_r)rlo m nE_l p(ANT"ANSA) > u(A)>.  (20)

(iii) If we only assume that ((knin — kn))22 is uniformly
distributed for all o € R\ Q and h € N, then (i) and (ii) hold
when S is totally ergodic.

v

Examples include k, = |a(n)| with a(n) being as in frame 19,
k, = |n*log®(n)|, and for part (iii) we may take k, = p(n) for
p(x) € xZ[x] with degree at least 2.
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Application 2/4 (A special case)

Theorem (F., 2023)

Let (X, A, 1) be a probability space and T,S : X — X be measure
preserving automorphisms. Suppose that T has singular spectrum
and S is totally ergodic. Let py,--- , px € Q[x]| be integer
polynomials for which deg(p,) > 2 and deg(p;) > 2 + deg(p;_1).
For any f, g1, - , 8k € L™(X, 1), we have

Jl“ooﬁz T”fHS”' g, —E[f|IT]H/ gidy, (21)

with convergence taking place in L>(X, ).
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Application 3/4 (A special case)

Theorem (F., 2023)

Let (X, A, 1) be a probability space and T,R,S : X — X be
measure preserving automorphisms. Suppose that T has singular
spectrum, R and S commute, and S is weakly mixing. Let { € N

and let py,--- , pe € Q[x] be pairwise essentially distinct integer
polynomials, each having degree at least 2. For any
foh.gu -8 € L>(X, ) satistying [, gidu =0 for some
1 <j </, we have
LN ¢
im = nFLRMK. i(n) . —
pn i rren [[ovs 0 @
n= J=

with convergence taking place in L>(X, ).
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An example

Consider the m.p.s. ([0,1]?, 8, L% T,S) with

S(x,y) = (x + 2a, y + x) for some o € R\ Q, and

T(x,y) = (x,y + x). We see that ([0, 1], %, L2, S) and

([0,1]3, %, £2, T) are both systems that are not
weakly mixing, and the former is totally ergodic. Furthermore, T
and S generate a 2-step nilpotent group. For

fo(x,y) = ) fi(x,y) = €™, and f(x,y) = e 2™, we see
that

lim —Z T f(x, y)S"fi(x, y) S fy(x, y)

N—oo N
1 N
= lim _§ :e27rl 1 mx—y+y+nx+(n?—n)a—x—(n?—n) )_ 1 #0
N~>oo ]
n=
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Sets of K but not K + 1 recurrence?

Theorem (Frantzikinakis, Lesigne, Wierd| [14])

Let k > 2 be an integer and o € R be irrational. Let
R« ={neN|na e [} 3]}.
(i) If (X, 9B, ) is a probability space and
51,5, ,5c1: X = X are commuting measure preserving
transformations, then for any A € 2 with pu(A) > 0, there
exists n € Ry for which

p(ANST"TANS;"AN---N S A) > 0. (23)

(ii) There exists a m.p.s. (X, B, u, T) and a set A € A satisfying
w(A) > 0 such that for all n € Ry we have

p(ANT"ANT 2"AN---NT MA)=0. (24)
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Application 4/4

Theorem (F., 2023)

Let k > 2 be an integer and a € R be irrational. Let

R« ={neN|n‘a e [} 3]} Let(X, B, ) be a probability
space and 51,5, -+ , 51 : X — X commuting measure
preserving automorphlsms. Let T : X — X be an measure
preserving automorphism with singular spectrum, and for which
{T,51,5, - ,Sk_1} generate a nilpotent group. For any A € #
with p(A) > 0, there exists n € R for which

p(ANT"ANS"ANS;"AN---N S A) > 0. (25)

v

Since the system (T2, %2, L2, T) with T(x,y) = (x + o,y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with 0 entropy. Also note
that the maximal spectral type of T is £+, _; 6na

Sohail Farhangi Mixing, vdC difference thm, Noncommuting ergodic thms Frame 25



Table of Contents

@ Examples of systems with singular spectrum

Sohail Farhangi Mixing, vdC difference thm, Noncommuting ergodic thms Frame 26



Examples of systems with singular spectrum

In [5, Proposition 2.9] it is shown that if (X, %, i) is a standard
probability space, and Aut(X, %, 11) is endowed with the strong
operator topology, then the set of transformations that are weakly
mixing and rigid is a generic set. Since any rigid automorphism has
singular spectrum, we see that the set of singular automorphisms is
generic. Now let S C Aut(X, A, 1) denote the collection of
transformation, and note that S is a meager set

since an automorphism cannot simultaneously be rigid and

. Since S is not a complete metric space with respect to the
topology induced by the strong operator topology, a new topology
was introduced in [24], with respect to which S is a complete
metric space. It is shown in the Corollary to Theorem 7 of [24]
that a generic T € S has singular spectrum, and such a T is
mixing of all orders due a well known result of Host [20]. See [11]
and [21] for concrete examples of T € S that have singular
spectrum. See also [1], [8], and [16].
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