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The Classical van der Corput Difference Theorem

Definition

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed if for any

open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N
|{1 ≤ n ≤ N | xn ∈ (a, b)}| = b − a. (1)

Theorem (van der Corput, 1931 [34])

If (xn)
∞
n=1 ⊆ [0, 1] is such that (xn+h − xn)

∞
n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α)∞n=1 is uniformly distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, Bergelson, 1987 [3, Theorem 1.4])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, Bergelson, 1987 [3, Page 3])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (4)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, Bergelson, 1987 [3, Theorem 1.5])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (6)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (7)

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X ,B, µ,T ), and any
A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy [19],[29])

For any m.p.s. (X ,B, µ,T ), and any A ∈ B with µ(A) > 0, there
exists n ∈ N for which

µ(A ∩ T−n2A) > 0. (9)

Furstenberg’s proof in [19, Proposition 1.3] uses a form of vdCDT
since it uses the uniform distribution of (n2α)∞n=1. See also [4,
Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg multiple recurrence, [19])

For any m.p.s. (X ,B, µ,T ), any A ∈ B with µ(A) > 0, and any
ℓ ∈ N, there exists n ∈ N for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA

)
> 0. (10)

The proof presented in [10] uses HvdCT3 as Theorem 7.11, and
the proof in [20] uses a variation.

Theorem (Bergelson and Leibman, [6, Theorem A0])

For any m.p.s. (X ,B, µ, {Ti}ℓi=1) with the Tis commuting, any
A ∈ B with µ(A) > 0, and any {pi(x)}ℓi=1 ⊆ xN[x ], there exists
n ∈ N for which

µ
(
A ∩ T

−p1(n)
1 A ∩ T

−p2(n)
2 A ∩ · · · ∩ T

−pℓ(n)
ℓ A

)
> 0. (11)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Furstenberg’s correspondence principle

Definition

For a set E ⊆ N, the natural upper density of E is denoted by
d(E ) and is given by

d(E ) = lim sup
N→∞

1

N
|E ∩ [1,N]| . (12)

We see that d(2N) = d(2N+ 1) = 1
2
, d(aN+ b) = 1

a
for any

a, b ∈ N, and d({n2}n∈N) = 0.

Theorem (The correspondence principle, [19],[4, Theorem 1.8])

Given a set E ⊆ N for which d(E ) > 0, there exists a measure
preserving system (X ,B, µ,T ) and a set A ∈ B with
µ(A) = d(E ), such that for any ℓ, n1, n2, · · · , nℓ ∈ N we have

d (E ∩ (E − n1) ∩ · · · ∩ (E − nℓ)) ≥ µ
(
A ∩ T−n1A ∩ · · · ∩ T−nℓA

)
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Szemerédi’s theorem

Theorem (Szemerédi [31], 1975)

If E ⊆ N satisfies d(E ) > 0, then for any ℓ ∈ N, E contains an
arithmetic progression of length ℓ.

This was conjectured by Erdős and Turán [11] in 1936. The case
of length 3 arithmetic progressions was resolved by Roth [28] in
1952. The case of length 4 arithmetic progressions was resolved by
Szemerédi [30] in 1969. Furstenberg [19] gave the second proof in
1977, and Gowers [21] the third proof in 2001.
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Using the correspondence principle

We will now deduce Szemerédi’s Theorem from the Furstenberg
Multiple Recurrence Theorem by using the correspondence
principle. Let E ⊆ N be such that d(E ) > 0, let (X ,B, µ,T ) and
A ∈ B be given by the correspondence principle, and let ℓ ∈ N be
arbitrary. Furstenberg’s Multiple Recurrence Theorem tells us that
there exists n ∈ N for which

γ(n) := µ
(
A ∩ T−nA ∩ · · · ∩ T−nℓA

)
> 0.

The correspondence principle tells us that for

E (n) := E ∩ (E −n)∩ · · ·∩ (E −nℓ) we have d(E (n)) ≥ γ(n) > 0.

Since E (n) ̸= ∅, we see that for a ∈ E (n) we have
a, a + n, · · · , a + nℓ ∈ E .
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More results in density Ramsey theory

Theorem (Furstenberg-Sárközy [19],[29])

Let E ⊆ N be such that d(E ) > 0. Then there exists n ∈ N for
which d(E ∩ (E − n2)) > 0. In particular, there exists x , y ∈ E
with x − y = n2.

Theorem (Polynomial Szemerédi, due to Bergelson and Leibman)

Let E ⊆ N be such that d(E ) > 0 and let p1, · · · , pℓ ∈ xZ[x ] be
arbitrary. Then there exists n ∈ N for which

d (E ∩ (E − p1(n)) ∩ · · · ∩ (E − pℓ(n))) > 0. (13)

In particular, there exists a, n ∈ N for which
a, a + p1(n), · · · , a + pℓ(n) ∈ E.

Note that this is only a special case of Theorems B and B’ of [6].
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Some of the Ergodic Hierarchy of Mixing

Definition

Let X = (X ,B, µ,T ) be a m.p.s. If for every f , g ∈ L20(X , µ)

1 lim
N→∞

1

N

N∑
n=1

⟨Un
T f , g⟩ = 0, then X is ergodic.

2 lim
N→∞

1

N

N∑
n=1

|⟨Un
T f , g⟩| = 0, then X is weakly mixing,

3 lim
n→∞

⟨Un
T f , g⟩ = 0, then X is strongly mixing,

4 and if L20(X , µ) has an orthogonal basis of the form
{Un

T fm}n,m∈Z, then X has Lebesgue spectrum.

5 which is the same as (⟨Un
T f , g⟩)∞n=1 being Fourier coefficients

of some h ∈ L1([0, 1],L), where L is the Lebesgue measure.

These definitions also apply to individual elements f ∈ L20(X , µ).
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The Symmetric Ergodic Hierarchy of Mixing

Theorem

Let X = (X ,B, µ,T ) be a m.p.s. If for every f ∈ L20(X , µ)

1 lim
N→∞

1

N

N∑
n=1

⟨Un
T f , f ⟩ = 0, then X is ergodic,

2 lim
N→∞

1

N

N∑
n=1

|⟨Un
T f , f ⟩| = 0, then X is weakly mixing,

3 lim
n→∞

⟨Un
T f , f ⟩ = 0, then X is strongly mixing,

4 X has Lebesgue spectrum if (⟨Un
T f , f ⟩)∞n=1 are the Fourier

coefficients of some h ∈ L1([0, 1],L) taking nonnegative real
values.

This theorem also applies to individual elements f ∈ L20(X , µ).
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Dual notions to various levels of mixing

Definition

Let X = (X ,B, µ,T ) be a m.p.s. If f ∈ L2(X , µ) satisfies

1 UT f = f , then f is invariant.

2 f ∈ L2(X ,K , µ) where (X ,K , µ,T ) is the Kronecker factor of
(X ,B, µ,T ), then f is compact.

3 f ∈ L2(X ,BP , µ), where Bp is the Parreau factor from [25,
Theorem 11], then f is ‘anti-mixing’ (provisional term).

4 If (⟨Un
T f , f ⟩)∞n=1 are the Fourier coefficients of a measure µf ,T

that is mutually singular with the Lebesgue measure then f
has singular spectrum.

5 T has singular spectrum if all f ∈ L2(X , µ) have singular
spectrum, i.e., the maximal spectral type of T is singular.
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Disjointness and orthogonality

Theorem

For f , g ∈ L20(X , µ), we have ⟨f , g⟩ = 0 if

1 f is invariant and g is ergodic.

2 f is compact and g is weakly mixing.

3 f is ‘anti-mixing’ and g is strongly mixing.

# f has singular spectrum and g has Lebesgue spectrum.
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A weak mixing van der Corput difference theorem

Theorem (F. 2022)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (14)

then (xn)
∞
n=1 is a nearly weakly mixing sequence. This means that

for any other bounded sequence (yn)
∞
n=1 ⊆ H we morally (but not

literally) have that

lim
H→∞

1

H

H∑
h=1

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

⟨xn+h, yn⟩

∣∣∣∣∣ = 0. (15)

Loosely speaking, this can be interpretted as a weak mixing in any
ultrapower H of H with respect to a unitary operator induced by
the left shift. Note that elements of H are sequences in H.
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A strong mixing van der Corput difference theorem

Theorem (F. 2022)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (16)

then (xn)
∞
n=1 is a nearly strongly mixing sequence. This means that

for any other bounded sequence (yn)
∞
n=1 ⊆ H we morally (but not

literally) have that

lim
h→∞

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

⟨xn+h, yn⟩

∣∣∣∣∣ = 0. (17)

Loosely speaking, this can be interpretted as a strong mixing in
any ultrapower H of H with respect to a unitary operator induced
by the left shift. Note that elements of H are sequences in H.
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A Lebesgue spectrum vdCdt

Theorem (F. 2023)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying for all h ∈ N

∞∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣
2

< ∞, (18)

then (xn)
∞
n=1 is a spectrally Lebesgue sequence. If H = L2(X , µ)

and (yn)
∞
n=1 ⊆ L∞(X , µ) is bounded and spectrally singular, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xnyn

∣∣∣∣∣
∣∣∣∣∣ = 0. (#)

Upgrading the weak convergence from # to the strong
convergence in # necessitates a new proof of the classical vdCDT.
See [12, Chapter 2] for variations of MvdCT related to other levels
of mixing, as well as uniform distribution. See also [33] and [9].
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Noncommutative ergodic theorems 1/2

Theorem (Frantzikinakis [14, Corollary 1.7])

Let a : R+ → R be a Hardy field function for which there exist
some ϵ > 0 and d ∈ Z+ satisfying

lim
t→∞

a(t)

td+ϵ
= lim

t→∞

td+1

a(t)
= ∞.

(
e.g. a(t) = t1.5

)
(19)

Furthermore, let (X ,B, µ) be a probability space and
T , S : X → X be measure preserving transformations. Suppose
that the system (X ,B, µ,T ) has zero entropy. Then

(i) For every f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · S⌊a(n)⌋g = E[f |IT ] · E[g |IS ], (20)

where the limit is taken in L2(X , µ).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)

(ii) For every A ∈ B we have

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−⌊a(n)⌋A

)
≥ µ(A)3. (21)

Frantzikinakis and Host [15] proved a similar theorem for
a(n) = p(n) with p(x) ∈ Z[x ] of degree at least 2. The zero
entropy assumption on T cannot be removed as seen by [20, Page
40] or [2, Example 7.1]. Rohlin [27] showed that every T with
singular spectrum must also have zero entropy. Note that the
Horocycle flow has zero entropy [22] and Lebesgue spectrum [26]
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There is no Roth Theorem for solvable groups

Theorem (Bergelson-Leibman [7, Theorem 1.2])

Let G be a finitely generated solvable group of exponential growth.
For any partition R

⋃
P = Z \ {0}, there exist an action {Tg}g∈G

of G on a probability space (X ,B, µ), g1, g2 ∈ G, and set A ∈ B
with µ(A) > 0 such that

µ
(
Tgn

1
A ∩ Tgn

2
A
)
= 0 if n ∈ R and

µ
(
Tgn

1
A ∩ Tgn

2
A
)
≥ 1

6
if n ∈ P .

Note that the group used in [2, Example 7.1] is non-solvable.
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Another Example

Theorem (Frantzikinakis, Lesigne, Wierdl [17, Lemma 4.1])

Let a, b : N → Z \ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X ,B, µ), measure
preserving automorphisms T , S : X → X, both of them Bernoulli,
and A ∈ B, such that

µ
(
T−a(n)A ∩ S−b(n)A

)
=

{
0 if n ∈ F ,
1
4

if n /∈ F .
(22)
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Application 1/4

Theorem (F., 2023)

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving automorphisms for which T has singular
spectrum. Let (kn)

∞
n=1 ⊆ N be a sequence for which

((kn+h − kn)α)
∞
n=1 is uniformly distributed in the orbit closure of α

for all α ∈ R and h ∈ N.
(i) For any f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · Skng = E [f |IT ]E[g |IS ], (23)

with convergence taking place in L2(X , µ).
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Application 1/4 continued

Theorem (Continued)

(ii) If A ∈ B then

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−knA

)
≥ µ(A)3. (24)

(iii) If we only assume that ((kn+h − kn)α)
∞
n=1 is uniformly

distributed for all α ∈ R \Q and h ∈ N, then (i) and (ii) hold
when S is totally ergodic.

Examples include kn = ⌊a(n)⌋ with a(n) being as in frame 19,
kn = ⌊n2 log2(n)⌋, and for part (iii) we may take kn = p(n) for
p(x) ∈ xZ[x ] with degree at least 2.
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Sets of K but not K + 1 recurrence?

Theorem (Frantzikinakis, Lesigne, Wierdl [16])

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
.

(i) If (X ,B, µ) is a probability space and
S1, S2, · · · , Sk−1 : X → X are commuting measure preserving
transformations, then for any A ∈ B with µ(A) > 0, there
exists n ∈ Rk for which

µ
(
A ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (25)

(ii) There exists a m.p.s. (X ,B, µ,T ) and a set A ∈ B satisfying
µ(A) > 0 such that for all n ∈ Rk we have

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
= 0. (26)
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Application 2/4

Theorem (F., 2023)

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
. Let (X ,B, µ) be a probability

space and S1, S2, · · · , Sk−1 : X → X commuting measure
preserving automorphisms. Let T : X → X be an measure
preserving automorphism with singular spectrum, and for which
{T , S1, S2, · · · , Sk−1} generate a nilpotent group. For any A ∈ B
with µ(A) > 0, there exists n ∈ R for which

µ
(
A ∩ T−nA ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (27)

Since the system (T2,B2,L2,T ) with T (x , y) = (x + α, y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with 0 entropy. Also note
that the maximal spectral type of T is L+

∑
n∈Z δnα.
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Application 3/4 (A special case)

Theorem (F., 2023)

Let (X ,B, µ) be a probability space and T , S : X → X be measure
preserving automorphisms. Suppose that T has singular spectrum
and S is totally ergodic. Let p1, · · · , pK ∈ Q[x ] be integer
polynomials for which deg(p1) ≥ 2 and deg(pi) ≥ 2 + deg(pi−1).
For any f , g1, · · · , gK ∈ L∞(X , µ), we have

lim
N→∞

1

N

N∑
n=1

T nf
K∏
i=1

Spi (n)gi = E[f |IT ]
K∏
i=1

∫
X

gidµ, (28)

with convergence taking place in L2(X , µ).
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Application 4/4 (A special case)

Theorem (F., 2023)

Let (X ,B, µ) be a probability space and T ,R , S : X → X be
measure preserving automorphisms. Suppose that T has singular
spectrum, R and S commute, and S is weakly mixing. Let ℓ ∈ N
and let p1, · · · , pℓ ∈ Q[x ] be pairwise essentially distinct integer
polynomials, each having degree at least 2. For any
f , h, g1, · · · , gℓ ∈ L∞(X , µ) satisfying

∫
X
gjdµ = 0 for some

1 ≤ j ≤ ℓ, we have

lim
N→∞

1

N

N∑
n=1

T nf · Rnh ·
ℓ∏

j=1

Spj (n)gj = 0, (29)

with convergence taking place in L2(X , µ).
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An example to justify our assumptions

Consider the m.p.s. ([0, 1]2,B,L2,T , S) with
S(x , y) = (x + 2α, y + x) for some α ∈ R \Q, and
T (x , y) = (x , y + x). We see that ([0, 1]2,B,L2, S) and
([0, 1]2,B,L2,T ) are both zero entropy systems that are not
weakly mixing, and the former is totally ergodic. Furthermore, T
and S generate a 2-step nilpotent group. For
f0(x , y) = e2πi(x−y), f1(x , y) = e2πiy , and f2(x , y) = e−2πix , we see
that

lim
N→∞

1

N

N∑
n=1

T nf0(x , y)S
nf1(x , y)S

1
2
(n2−n)f2(x , y)

= lim
N→∞

1

N

N∑
n=1

e2πi((1−n)x−y+y+nx+(n2−n)α−x−(n2−n)α) = 1 ̸= 0.
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Examples of systems with singular spectrum

In [5, Proposition 2.9] it is shown that if (X ,B, µ) is a standard
probability space, and Aut(X ,B, µ) is endowed with the strong
operator topology, then the set of transformations that are weakly
mixing and rigid is a generic set. Since any rigid automorphism has
singular spectrum, we see that the set of singular automorphisms is
generic. Now let S ⊆ Aut(X ,B, µ) denote the collection of
strongly mixing transformation, and note that S is a meager set
since an automorphism cannot simultaneously be rigid and strongly
mixing. Since S is not a complete metric space with respect to the
topology induced by the strong operator topology, a new topology
was introduced in [32], with respect to which S is a complete
metric space. It is shown in the Corollary to Theorem 7 of [32]
that a generic T ∈ S has singular spectrum, and such a T is
mixing of all orders due a well known result of Host [23]. See [13]
and [24] for concrete examples of T ∈ S that have singular
spectrum. See also [1], [8], and [18].

Sohail Farhangi Mixing, vdC difference thm, Furstenberg’s correspondence principle Frame 36



References I

[1] C. Aistleitner and M. Hofer.
On the maximal spectral type of a class of rank one
transformations.
Dyn. Syst., 27(4):515–523, 2012.

[2] D. Berend.
Joint ergodicity and mixing.
J. Analyse Math., 45:255–284, 1985.

[3] V. Bergelson.
Weakly mixing PET.
Ergodic Theory Dynam. Systems, 7(3):337–349, 1987.

Sohail Farhangi Mixing, vdC difference thm, Furstenberg’s correspondence principle Frame 37



References II

[4] V. Bergelson.
Ergodic Ramsey theory—an update.
In Ergodic theory of Zd actions (Warwick, 1993–1994),
volume 228 of London Math. Soc. Lecture Note Ser., pages
1–61. Cambridge Univ. Press, Cambridge, 1996.

[5] V. Bergelson, A. del Junco, M. Lemańczyk, and
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