

A generalization of van der Corput's difference theorem and applications to recurrence

Sohail Farhangi (sohailfarhangi.com, based on <https://arxiv.org/abs/2303.11832>)

University of Adam Mickiewicz

The van der Corput difference trick in Hilbert spaces

Theorem 1: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ a bounded sequence.

(i) If for every $h \in \mathbb{N}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0.$$

$$\text{(ii) If } \lim_{h \rightarrow \infty} \overline{\lim_{N \rightarrow \infty}} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0.$$

$$\text{(iii) If } \lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \overline{\lim_{N \rightarrow \infty}} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0.$$

The ergodic hierarchy of mixing properties

Theorem 2: Let $\mathcal{X} := (X, \mathcal{B}, \mu, T)$ be an invertible measure preserving system.

1. \mathcal{X} is **ergodic** if for any $f \in L_0^2(X, \mu)$ we have $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle U_T^n f, f \rangle = 0$.

2. \mathcal{X} is **weak mixing** if for any $f \in L_0^2(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |\langle U_T^n f, f \rangle| = 0.$$

3. \mathcal{X} is **strong mixing** if for any $f \in L_0^2(X, \mu)$ we have $\lim_{N \rightarrow \infty} \langle U_T^n f, f \rangle = 0$.

4. \mathcal{X} has **Lebesgue spectrum** if $L_0^2(X, \mu)$ has a basis of the form $\{U_T^n f_m\}_{m,n \in \mathbb{Z}}$. This is equivalent to $(\langle U_T^n f, f \rangle)_{n=1}^\infty$ being the Fourier coefficients of a measure $\mu \ll \text{Lebesgue}$ for every $f \in L_0^2(X, \mu)$.

Connecting vdCt to the ergodic hierarchy of mixing

Theorem 3: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ a bounded sequence. Suppose that $(c_n)_{n=1}^\infty, (c_n)_{n=1}^\infty, (c_n)_{n=1}^\infty \subseteq \mathbb{C}$ are bounded sequences that are **spectrally singular**, **anti-mixing** (cf. **Parreau factor**), and **compact** respectively.

(i) If for every $h \in \mathbb{N}$ we have

$$\underbrace{\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle}_{\text{Lebesgue spectrum}} = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N c_n x_n \right\| = 0.$$

$$\text{(ii) If } \underbrace{\lim_{h \rightarrow \infty} \overline{\lim_{N \rightarrow \infty}} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right|}_{\text{strong mixing}} = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N c_n x_n \right\| = 0.$$

$$\text{(iii) If } \underbrace{\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \overline{\lim_{N \rightarrow \infty}} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right|}_{\text{weak mixing}} = 0, \text{ then } \lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N c_n x_n \right\| = 0.$$

Failure of ergodic theorems without commutativity

Theorem 4(Frantzikinakis, Lesigne, Wierdl): Let $a, b : \mathbb{N} \rightarrow \mathbb{Z} \setminus \{0\}$ be injective sequences and F be any subset of \mathbb{N} . Then there exist a probability space (X, \mathcal{B}, μ) , measure preserving automorphisms $T, S : X \rightarrow X$, both of them Bernoulli, and $A \in \mathcal{B}$, such that

$$\mu(T^{-a(n)} A \cap S^{-b(n)} A) = \begin{cases} 0 & \text{if } n \in F, \\ \frac{1}{4} & \text{if } n \notin F. \end{cases} \quad (1)$$

Recurrence with noncommuting transformations

Theorem 5(Frantzikinakis 2022): Let $a : \mathbb{R}_+ \rightarrow \mathbb{R}$ be a Hardy field function for which there exist some $\epsilon > 0$ and $d \in \mathbb{Z}_+$ satisfying

$$\lim_{t \rightarrow \infty} \frac{a(t)}{t^{d+\epsilon}} = \lim_{t \rightarrow \infty} \frac{t^{d+1}}{a(t)} = \infty. \quad (\text{E.g. } a(t) = t^\beta, \beta \in \mathbb{R}_{\geq 1} \setminus \mathbb{N})$$

Furthermore, let (X, \mathcal{B}, μ) be a probability space and $T, S : X \rightarrow X$ be measure preserving transformations (not necessarily commuting). Suppose that the system (X, \mathcal{B}, μ, T) has zero entropy. Then

(i) For every $f, g \in L^\infty(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{\lfloor a(n) \rfloor} g = \mathbb{E}[f | \mathcal{I}_T] \cdot \mathbb{E}[g | \mathcal{I}_S],$$

where the limit is taken in $L^2(X, \mu)$.

(ii) For every $A \in \mathcal{B}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n} A \cap S^{-\lfloor a(n) \rfloor} A) \geq \mu(A)^3.$$

Whether a similar result holds for $a(n) = p(n) \in \mathbb{Z}[x]$ was asked by Frantzikinakis and later answered in the positive by Frantzikinakis and Host.

Theorem 6: Let (X, \mathcal{B}, μ) be a probability space and let $T, S : X \rightarrow X$ be measure preserving transformations. Suppose that the m.p.s. (X, \mathcal{B}, μ, T) has singular spectrum. Let $(k_n)_{n=1}^\infty \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha \pmod{1})_{n=1}^\infty$ is uniformly distributed in $\{\alpha \mid n \in \mathbb{N}\}$ for all $\alpha \in \mathbb{R}$ and $h \in \mathbb{N}$.

(i) For any $f, g \in L^\infty(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{k_n} g = \mathbb{E}[f | \mathcal{I}_T] \cdot \mathbb{E}[g | \mathcal{I}_S],$$

with convergence taking place in $L^2(X, \mu)$.

(ii) If $A \in \mathcal{B}$ then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n} A \cap S^{-k_n} A) \geq \mu(A)^3.$$

(iii) If $((k_{n+h} - k_n)\alpha)_{n=1}^\infty$ is uniformly distributed for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then (i)-(ii) hold when (X, \mathcal{B}, μ, S) is totally ergodic.

Sets of K but not $K+1$ Recurrence

Theorem 7(Frantzikinakis, Lesigne, Wierdl): Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let $R = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}$.

(i) If (X, \mathcal{B}, μ) is a probability space and $T_1, T_2, \dots, T_{k-1} : X \rightarrow X$ are commuting measure preserving transformations, then for any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R$ for which

$$\mu(A \cap T_1^{-n} A \cap T_2^{-n} A \cap \dots \cap T_{k-1}^{-n} A) > 0.$$

(ii) There exists a m.p.s. (X, \mathcal{B}, μ, T) and a set $A \in \mathcal{B}$ satisfying $\mu(A) > 0$ such that for all $n \in R$ we have

$$\mu(A \cap T^{-n} A \cap T^{-2n} A \cap \dots \cap T^{-kn} A) = 0.$$

Theorem 8: Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let $R = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}$. Let (X, \mathcal{B}, μ) be a probability space and $S, T_1, T_2, \dots, T_{k-1} : X \rightarrow X$ invertible measure preserving transformations generating a nilpotent group, for which (X, \mathcal{B}, μ, S) has singular spectrum and T_1, \dots, T_{k-1} commute. For any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R$ for which

$$\mu(A \cap S^{-n} A \cap T_1^{-n} A \cap T_2^{-n} A \cap \dots \cap T_{k-1}^{-n} A) > 0.$$

It is worth noting that the example of a m.p.s. (X, \mathcal{B}, μ, T) given satisfying Theorem 10(ii) has zero entropy and a Lebesgue component in its maximal spectral type.

Multiple ergodic averages with noncommutativity

Theorem 9: Let (X, \mathcal{B}, μ) be a probability space and $T, S : X \rightarrow X$ be measure preserving automorphisms. Suppose that T has singular spectrum and S is totally ergodic. Let $p_1, \dots, p_K \in \mathbb{Q}[x]$ be integer polynomials for which $\deg(p_1) \geq 2$ and $\deg(p_i) \geq 2 + \deg(p_{i-1})$. For any $f, g_1, \dots, g_K \in L^\infty(X, \mu)$, we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \prod_{i=1}^K S^{p_i(n)} g_i = \mathbb{E}[f | \mathcal{I}_T] \prod_{i=1}^K \int_X g_i d\mu, \quad (2)$$

with convergence taking place in $L^2(X, \mu)$.

Theorem 10: Let (X, \mathcal{B}, μ) be a probability space and $T, R, S : X \rightarrow X$ be measure preserving automorphisms. Suppose that T has singular spectrum, R and S commute, and S is weakly mixing. Let $\ell \in \mathbb{N}$ and let $p_1, \dots, p_\ell \in \mathbb{Q}[x]$ be pairwise essentially distinct integer polynomials, each having degree at least 2. For any $f, h, g_1, \dots, g_\ell \in L^\infty(X, \mu)$ satisfying $\int_X g_j d\mu = 0$ for some $1 \leq j \leq \ell$, we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f R^n h \prod_{j=1}^\ell S^{p_j(n)} g_j = 0, \quad (3)$$

with convergence taking place in $L^2(X, \mu)$.