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1 Introduction

Theorem 1.1 (Katai’s criterion). Let (an)∞n=1 ⊆ C be a bounded sequence for which

lim
N→∞

1

N

N∑
n=1

apnaqn = 0, (1)

whenever p and q are distinct primes. If f : N → C is a bounded multiplicative function, then

lim
N→∞

1

N

N∑
n=1

anf(n) = 0. (2)

The purpose of this paper is to examine Theorem 1.1 from a more abstract perspective as is

done with van der Corput’s difference theorem in Chapter 2 of [4]. The main idea is to view a

sequences of vectors (xn)∞n=1 and (yn)∞n=1 coming from a a Hilbert space H as vectors in a new

Hilbert space H endowed with the inner product

⟨(xn)∞n=1, (yn)∞n=1⟩H = lim
N→∞

1

N

N∑
n=1

⟨xn, yn⟩H. (3)

While the limit in Equation (3) may not exist, we can always pass to a subsequence for which it

does exist. Section 2 is dedicated to a rigorous construction of the Hilbert space H and Section 3

is dedicated to proving variants of Katai’s orthogonality criterion through the use of H . For the

sake of the current discussion, we will assume for the rest of this section that the limit defining

⟨·, ·⟩H always exists.

Recalling that H = C is a Hilbert space, we may now view Katai’s criterion as follows. We

have sequences (an)∞n=1 and (f(n))∞n=1 uniformly bounded by M that we will now view as vectors

in a Hilbert space H . For each prime p, we have a (not necessarily bounded) linear operator

Up : H → H defined by Up(xn)∞n=1 = (xpn)∞n=1. The boundedness of (an)∞n=1 and the assumption

of Equation (1) tells us that {Up(an)∞n=1}p∈P is an orthogonal set of vectors that is bounded in

norm. We now proceed as Katai did in [5] and use the Turán-Kubilius inequality to deduce that

for any ϵ > 0 there is a finite set of primes P (ϵ) with min(P (ϵ)) > 1
ϵ and

∑
p∈P (ϵ)

1
p > 1

ϵ for which
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⟨(an)∞n=1, (f(n))∞n=1⟩H
√
ϵ

≈

 ∑
p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
⟨Up(an)∞n=1, Up(f(n))∞n=1⟩H (4)

Mϵ
≈

 ∑
p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

f(p)

p
⟨Up(an)∞n=1, (f(n))∞n=1⟩H . (5)

Since {Up(an)∞n=1}p∈P is a bounded set of orthogonal vectors, we see that the sequence (⟨Up(an)∞n=1

, (f(n))∞n=1⟩H )p∈P is square summable. Since f is bounded, we conclude that the quantity in

Equation (5) can be made arbitrarily close to 0, which proves Equation (2).

We see now that the assumption of multiplicativity on f is only used to show that Up(f(n))∞n=1 ≈
f(p)(f(n))∞n=1 for large enough primes p. Similarly, the assumption of Equation (1) is used to show

that each term of the average in Equation (5) is going to 0, so that we can conclude that the average

is itself going to 0. These observations suggest that we can generalize Katai’s orthogonality criterion

by either relaxing the sense in which Up(f(n))∞n=1 ≈ (f(n))∞n=1, or by relaxing the assumptions on

(an)∞n=1 so that the average in Equation (5) is still small even if not every constituent term of the

average is small. This leads us to the following generalizations of Katai’s criterion that are related

to the ergodic hierarchy of mixing.

Theorem 1.2 (Pseudo Ergodic Katai). Let (an)∞n=1 ⊆ C be a bounded sequence such that for any

sequence of primes (qk)∞k=1 satisfying
∑∞

k=1
1
qk

= ∞ we have

lim
K→∞

lim sup
N→∞

∣∣∣∣∣∣
(

K∑
k=1

1

qk

)−2 ∑
1≤k1,k2≤K

1

N

N∑
n=1

aqk1n

qk1

aqk2n

qk2

∣∣∣∣∣∣ = 0. (6)

If f : N → C is a bounded function such that for all ϵ > 0 there exists a set of primes P(ϵ) = {pk}∞k=1

and a function gϵ : N → C uniformly bounded by M (independent of ϵ) satisfying

(i)
∑∞

k=1
1
pk

= ∞, and

(ii) lim
K→∞

lim sup
N→∞

(
K∑
k=1

1

pk

)−1 K∑
k=1

∣∣∣∣∣ 1

pkN

N∑
n=1

(f(pkn) − gϵ(n))

∣∣∣∣∣ < ϵ

then

lim
N→∞

1

N

N∑
n=1

anf(n) = 0. (7)

We see that Equation (6) is implied by Equation (1), and it can be shown with the aid of Lemma

3.19 of [2] that every multiplicative function f satisfies Inequality (ii) with gϵ(n) = uf(n) where u is

some limit point of (f(p))p prime, so Theorem 1.2 is a generalization of Theorem 1.1. Furthermore,

it is shown in [2] that for a wide class of level sets of multiplicative functions, the indicator function

f = 1E satisfies Inequality (ii), which allows us to recover the following generalization of Katai’s

criterion.
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Corollary 1.3. Let (an)∞n=1 ⊆ C be a bounded sequence for which

lim
K→∞

lim sup
N→∞

∣∣∣∣∣∣
(

K∑
k=1

1

qk

)−2 ∑
1≤k1,k2≤K

1

N

N∑
n=1

aqk1n

qk1

aqk2n

qk2

∣∣∣∣∣∣ = 0. (8)

If m : N → C is a bounded multiplicative function, and R = {(r, θ) | r ∈ I1 & θ ∈ I2} where I1 and

I2 are bounded intervals in [0,∞) that may be open, closed, or half open, then

lim
N→∞

1

N

N∑
n=1

an1m−1(R)(n) = 0. (9)

At this point, it is worth mentioning that the condition on f in Theorem 1.2 more closely

resembles a rigidity condition (the dual of strong mixing) than an invariance condition (the dual of

ergodicity) since the sequence of primes P(ϵ) is almost arbitrary. To better understand this remark,

let us consider the following theorem that does not even imply Theorem 1.1.

Theorem 1.4 (Ergodic Katai). Let (qk)∞k=1 be the increasing enumeration of the primes. Let

(an)∞n=1 ⊆ C be a bounded sequence for which

lim
K→∞

lim sup
N→∞

∣∣∣∣∣∣
(

K∑
k=1

1

qk

)−2 ∑
1≤k1,k2≤K

1

N

N∑
n=1

aqk1n

qk1

aqk2n

qk2

∣∣∣∣∣∣ = 0. (10)

If f : N → C is a bounded function such that there exists a bounded function g : N → C satisfying

lim
K→∞

lim sup
N→∞

(
K∑
k=1

1

qk

)−1 K∑
k=1

∣∣∣∣∣ 1

qkN

N∑
n=1

(f(qkn) − g(n))

∣∣∣∣∣ = 0, (11)

then

lim
N→∞

1

N

N∑
n=1

anf(n) = 0. (12)

In Section 3 we state three more generalizations of Theorem 1.2 (and hence of Theorem 1.1)

corresponding to weak mixing, strong mixing, and countable Lebesgue spectrum as Theorems 3.4,

3.5, and 3.6 respectively. We defer them to Section 3 since they are more abstract and require

terminology from Section 2. The main reason we encounter these difficulty is that the family of

operators {Up}p prime is not a semigroup, so we cannot use the ideas introduced in

https://sohailfarhangi.files.wordpress.com/2022/11/talkfortorunnovember2022.pdf

and we cannot state an analogue of Theorem 1.1 for mild mixing.

2 A Hilbert space of sequences

The contents of this section are a slight modification of the contents of Chapters 2.2 and 2.3 of

[4] that we need to construct H . The only difference is that we will be constructing H from a

3
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countable collection of sequences {(xn,m)∞n=1}∞m=1 instead of just a pair of sequences, because for

a given pair of sequences (an)∞n=1 and (f(n))∞n=1, we are required to also consider the countable

collection of sequences {(apn)∞n=1}p prime.

Let H be a Hilbert space. In this section we will discuss how to construct a Hilbert space H

out of sequences of vectors coming from H. We will then use H to prove our generalizations of

Katai’s orthogonality criterion for sequences of vectors coming from H.

Let || · || and ⟨·, ·⟩ denote the norm and inner product on H and let || · ||H and ⟨·, ·⟩H denote

the norm and inner product on H . We denote the collection of square averageable sequences by

SA(H) := {(fn)∞n=1 ⊆ H | lim sup
N→∞

1

N

N∑
n=1

||fn||2 < ∞}. (13)

Let (fn)∞n=1, (gn)∞n=1 ∈ SA(H) and observe that

lim sup
N→∞

1

N

∣∣∣∣∣
N∑

n=1

⟨fn, gn⟩

∣∣∣∣∣ ≤ lim sup
N→∞

1

N

∑
||fn|| · ||gn|| (14)

≤

(
lim sup
N→∞

1

N

N∑
n=1

||fn||2
) 1

2
(

lim sup
N→∞

1

N

N∑
n=1

||gn||2
) 1

2

< ∞.

It follows that we may use diagonalization to construct an increasing sequence of positive integers

(Nq)
∞
q=1 for which

lim
q→∞

1

Nq

Nq∑
n=1

⟨xn,m1 , xn,m2⟩ (15)

exists for all m1,m2 ∈ N. We now construct a new Hilbert space H = H ({(xn,m)∞n=1}∞m=1, (Nq)
∞
q=1)

from {(xn,m)∞n=1}∞m=1 and (Nq)
∞
q=1 as follows. For all (fn)∞n=1, (gn)∞n=1 ∈ {(xn,m)∞n=1}∞m=1, we define

⟨(fn)∞n=1, (gn)∞n=1⟩H = lim
q→∞

1

Nq

Nq∑
n=1

⟨fn, gn⟩. (16)

We see that ⟨·, ·⟩H is a sesquilinear form on H ′ = SpanC({(xn,m)∞n=1}∞m=1) with scalar multiplica-

tion and addition occuring pointwise. Letting

H ′′ = {(en)∞n=1 ∈ SA(H) | ∀ ϵ > 0 ∃ (hn(ϵ))∞n=1 ∈ H ′ s.t. (17)

lim sup
q→∞

1

Nq

Nq∑
n=1

||en − hn(ϵ)||2 < ϵ}, and

4
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S = {(xn)∞n=1 ∈ H ′′ | lim
q→∞

1

Nq

Nq∑
n=1

||xn||2 = 0}, (18)

we see that H ′′/S is a pre-Hilbert space. We will soon see that H ′′ is sequentially closed under the

topology induced by ⟨·, ·⟩H (cf. Theorem 2.1), so we define H ({(xn,m)∞n=1}∞m=1, (Nq)
∞
q=1) = H ′′/S.

We call H ({(xn,m)∞n=1}∞m=1, (Nq)
∞
q=1) the Hilbert space induced by ({(xn,m)∞n=1}∞m=1, (Nq)

∞
q=1), and

we may write H in place of H ({(xn,m)∞n=1}∞m=1, (Nq)
∞
q=1) if ({(xn,m)∞n=1}∞m=1, (Nq)

∞
q=1) is under-

stood from the context.

For {(xn,m)∞n=1}∞m=1 ⊆ SA(H) and (Nq)
∞
q=1 ⊆ N we say that ({(xn,m)∞n=1}∞m=1, (Nq)

∞
q=1) is a

permissible pair if H ({(xn,m)∞n=1}∞m=1, (Nq)
∞
q=1) is well defined. Given (fn)∞n=1 ⊆ H for which

(fn)∞n=1 ∈ H ′′, we may view (fn)∞n=1 as an element of H by identifying (fn)∞n=1 with its equivalence

class in H ′′/S. We will now show that H is a Hilbert space by verifying that it is complete.

Theorem 2.1. Let H be a Hilbert space and {(xn,m)∞n=1}∞m=1 ⊆ SA(H). Let ({(xn,m)∞n=1}∞m=1,

(Nq)
∞
q=1) be a permissible pair and H = H ({(xn,m)∞n=1}∞m=1, (Nq)

∞
q=1). If {(ξn,m)∞n=1}∞m=1 ⊆ H ′′

is a Cauchy sequence with respect to the metric induced by || · ||H , then there exists (ξn)∞n=1 ∈ H ′′

for which

lim
m→∞

 lim
q→∞

1

Nq

Nq∑
n=1

||ξn,m − ξn||2
 = 0. (19)

In particular, H is a Hilbert space.

Proof. We proceed by modifying the proof of the main result in section §2 of chapter II of [3]. Let

(ϵm)∞m=1 be a sequence of real numbers tending to 0 for which

lim
q→∞

1

Nq

Nq∑
n=1

||ξn,m − ξn,k||2 < ϵm (20)

whenever k ≥ m. By induction, let T0 = N0 = 0 and let (Tm)∞m=1 ⊆ N be such that conditions

(i)-(iii) below hold.

(i) For every m ≥ 1, every k ≥ m, and every T ≥ Tk

1

NT

NT∑
n=1

||ξn,k − ξn,m||2 < ϵm. (21)

(ii) For every m ≥ 1 and every k ≥ m

1

NTk
−NTk−1

NTk∑
n=NTk−1

+1

||ξn,k − ξn,m||2 < ϵm. (22)

5
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(iii) For every m ≥ 1

1

NTm

m−1∑
j=1

NTj∑
n=NTj−1

+1

||ξn,j − ξn,m||2 < ϵm. (23)

Now let us define (ξn)∞n=1 by ξn = ξn,m where m is such that NTm−1 < n ≤ NTm . To conclude

the proof, we note that for m ≥ 1, k > m, and Tk−1 < T ≤ Tk we have

NT∑
n=1

||ξn,m − ξn||2 (24)

=

m−1∑
j=1

NTj∑
n=NTj−1

+1

||ξn,j − ξn,m||2 +

k−1∑
j=m

NTj∑
n=NTj−1

+1

||ξn,m − ξn||2 +

NT∑
n=NTk−1

+1

||ξn,m − ξn||2

≤NTmϵm +
k−1∑
j=m

(NTj −NTj−1)ϵm +

NT∑
n=1

||ξn,k − ξn,m||2

≤NTk−1
ϵm + NT ϵm ≤ 2NT ϵm.

3 Proofs

We begin with a lemma that is a well known consequence of the Turán-Kubilius inequality.

Lemma 3.1. Let H be a Hilbert space and (xn)∞n=1, (yn)∞n=1 ⊆ H bounded sequences. Let P be a

finite collection of primes with Sp :=
∑

p∈P
1
p . We have

lim
N→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(

N∑
n=1

⟨xn, yn⟩

)
−

 1

Sp

∑
p∈P

N
p∑

n=1

⟨xpn, ypn⟩


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

1√
Sp

. (25)

Theorem 3.2 (Pseudo Ergodic Katai). Let (an)∞n=1 ⊆ C be a bounded sequence such that for any

sequence of primes (qk)∞k=1 satisfying
∑∞

k=1
1
qk

= ∞ we have

lim
K→∞

lim sup
N→∞

∣∣∣∣∣∣
(

K∑
k=1

1

qk

)−2 ∑
1≤k1,k2≤K

1

N

N∑
n=1

aqk1n

qk1

aqk2n

qk2

∣∣∣∣∣∣ = 0. (26)

If f : N → C is a bounded function such that for all ϵ > 0 there exists a set of primes P(ϵ) = {pk}∞k=1

and a function gϵ : N → C uniformly bounded by M (independent of ϵ) satisfying

(i)
∑∞

k=1
1
pk

= ∞, and

6
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(ii) lim
K→∞

lim sup
N→∞

(
K∑
k=1

1

pk

)−1 K∑
k=1

∣∣∣∣∣ 1

pkN

N∑
n=1

(f(pkn) − gϵ(n))

∣∣∣∣∣ < ϵ

then

lim
N→∞

1

N

N∑
n=1

anf(n) = 0. (27)

Proof. Let (Nk)∞k=1 be any sequence for which

lim
k→∞

1

Nk

Nk∑
n=1

anf(n) (28)

exists, and let (Mk)∞k=1 be a subsequence of (Nk)∞k=1 for which H = H ({(an)∞n=1, (f(n))∞n=1} ∪
{(apn)∞n=1}p prime, (Nk)∞k=1) is well defined. We see that

lim
K→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K∑
k=1

1

pk

)−1 K∑
k=1

1

pk
(apkn)∞n=1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

H

(29)

= lim
K→∞

lim sup
N→∞

∣∣∣∣∣∣
(

K∑
k=1

1

pk

)−2 ∑
1≤k1,k2≤K

⟨ 1

pk1
(apk1n)∞n=1,

1

pk2
(apk2n)∞n=1⟩H

∣∣∣∣∣∣ = 0. (30)

Now let ϵ > 0 be arbitrary, and let P (ϵ) ⊆ P(ϵ) be a finite set of primes for which
∑

p∈P (ϵ)
1
p > 1

ϵ2
.

By Lemma 3.1 we see that

lim
k→∞

1

Nk

Nk∑
n=1

anf(n) = lim
k→∞

1

Mk

Mk∑
n=1

anf(n) = ⟨(an)∞n=1, (f(n))∞n=1⟩H (31)

ϵ
≈

 ∑
p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
⟨Up(an)∞n=1, Up(f(n))∞n=1⟩H . (32)

By increasing the size of P (ϵ) if necessary, we may further assume that

∣∣∣∣∣∣
∣∣∣∣∣∣
 ∑

p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
Up(an)∞n=1

∣∣∣∣∣∣
∣∣∣∣∣∣ < ϵ, and (33)

lim sup
N→∞

∣∣∣∣∣∣
 ∑

p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

pN

N∑
n=1

(f(pn) − gϵ(n))

∣∣∣∣∣∣ < ϵ. (34)

We now see that

7
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∣∣∣∣∣∣
 ∑

p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
⟨Up(an)∞n=1, Up(f(n))∞n=1⟩H

∣∣∣∣∣∣ (35)

ϵ
≈

∣∣∣∣∣∣
 ∑

p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
⟨Up(an)∞n=1, (gϵ(n))∞n=1⟩H

∣∣∣∣∣∣ (36)

=

∣∣∣∣∣∣
〈 ∑

p∈P (ϵ)

1

p

−1 ∑
p∈P (ϵ)

1

p
Up(an)∞n=1, (gϵ(n))∞n=1

〉
H

∣∣∣∣∣∣ < ϵ||(gϵ(n))∞n=1||H ≤ Mϵ. (37)

Since the sequence (Nk)∞k=1 and ϵ were both arbitrary, the desired result follows.

Proof of Corollary 1.3. Since any bounded function g can be uniformly approximated by functions

of the form
∑K

k=1 ck1g−1(Rk)(x), it suffices to show that f = 1m−1(R)(x) satisfies equation (ii) for

some set of prime numbers P = P (R,m). If d(m−1(R)) = 0, then it is clear that

lim
N→∞

1

N

N∑
n=1

an1m−1(R)(n) = 0, (38)

so let us assume that d(m−1(R)) > 0. Let ϵ > 0 be arbitrary. Propositions 3.5 and 3.8 of [2] provide

us with sets E1, E2 ⊆ N and a set of prime numbers P = {pk}∞k=1 which satisfy

(i) d(E2 \ E1) < ϵ.

(ii)
∑∞

k=1
1
pk

= ∞.

(iii) For all p ∈ P and n ∈ N with gcd(n, p) = 1, we have 1E1(n) ≤ 1m−1(R)(np) ≤ 1E2 .

We now see that it suffices to take gϵ = 1E2 in Theorem 3.2, so we see that Equation (38) holds in

this case as well.

Before proving our next theorem, we require a lemma that is a variation of Theorem 3.1 of [1].

Lemma 3.3. Let H be a Hilbert space, (fn)∞n=1 ⊆ H a bounded sequence, and (qk)∞k=1 an increasing

sequence of primes for which
∑∞

k=1
1
pk

= ∞. We have that (i) → (ii) → (iii).

(i) lim
K→∞

(
K∑
k=1

1

qk

)−2 K∑
m,n=1

∣∣∣∣〈fm
qm

,
fn
qn

〉∣∣∣∣ = 0.

(ii) If d((nk)∞k=1) > 0, then

lim
K→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K∑
k=1

1

qnk

)−1 K∑
k=1

fnk

qnk

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0. (39)

8
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(iii) For any g ∈ H we have

lim
K→∞

(
K∑
k=1

1

qk

)−1 K∑
k=1

∣∣∣∣〈fk
qk

, g

〉∣∣∣∣ = 0. (40)

Proof. Let us first show that (i) → (ii). There exists a positive integer C such that nk ≤ Ck for

all k ≥ 1. One consequence of this is that

C

∞∑
k=1

1

qnk

≥
∞∑
k=1

1

qk
= ∞. (41)

We now see that

lim
K→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
(

K∑
k=1

1

qnk

)−1 K∑
k=1

fnk

qnk

∣∣∣∣∣∣
∣∣∣∣∣∣ = lim

K→∞

(
K∑
k=1

1

qnk

)−2 K∑
i,j=1

〈
fni

qni

,
fnj

qnj

〉
(42)

≤ lim
K→∞

(
K∑
k=1

1

qnk

)−2 CK∑
i,j=1

∣∣∣∣〈fi
qi
,
fj
qj

〉∣∣∣∣ ≤ lim
K→∞

C2

(
CK∑
k=1

1

qk

)−2 CK∑
i,j=1

∣∣∣∣〈fi
qi
,
fj
qj

〉∣∣∣∣ = 0. (43)

Now let us show that (ii) → (iii). Let us assume for the sake of contradiction that

lim sup
K→∞

(
K∑
k=1

1

qk

)−1 K∑
k=1

∣∣∣∣〈fk
qk

, g

〉∣∣∣∣ = ϵ > 0. (44)

It follows that there is some sequence (n′
k)∞k=1 for which |⟨

fn′
k

qn′
k

, g⟩| > ϵ
2 for all k and d((n′

k)∞k=1)

> ϵ
2−ϵ . Consequently, there exists a subsequence (n′′

k)∞k=1 for which α := d((n′′
k)∞k=1) > 0, and

⟨
fn′′

k
qn′′

k

, g⟩ ∈ B ϵ
10

(p) for some p ∈ C. Let C > 1000α−1 be an integer and let (nk)∞k=1 be the increasing

enumeration of (n′′
k)∞k=1 ∪ CN. Since d((nk)∞k=1) >

1
C , we see that

0 = lim
K→∞

(
K∑
k=1

1

qnk

)−1 K∑
k=1

〈
fnk

qnk

, g

〉
(45)

≥ lim
K→∞

(
K∑
k=1

1

qnk

)−1
∑

n′′
k

〈
fnk

qnk

, g

〉−

(∑
CN

〈
fnk

qnk

, g

〉) ≥ α

α + C−1
· 2ϵ

5
, (46)

which yields the desired contradiction.

Theorem 3.4 (Weak Mixing Katai). Let (qk)∞k=1 be an increasing sequence of primes for which∑∞
k=1

1
qk

= ∞. Let (an)∞n=1 ⊆ C be a bounded sequence for which

9
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lim
K→∞

(
K∑
k=1

1

qk

)−2 ∑
1≤k1,k2≤K

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

aqk1n

qk1

aqk2n

qk2

∣∣∣∣∣ = 0. (47)

For any bounded sequence (bn)∞n=1 and any (Nw)∞w=1 ⊆ N, we have

lim
K→∞

(
K∑
k=1

1

qk

)−1 K∑
k=1

1

qk

∣∣∣∣∣ lim
w→∞

1

Nw

Nw∑
n=1

aqknbn

∣∣∣∣∣ = 0, (48)

provided that all of the above limits exist. In other words, whenever H = H ({(an)∞n=1, (bn)∞n=1}∪
{(apn)∞n=1}p prime, (Nw)∞w=1), the collection {(aqkn)∞n=1}∞k=1 is a “weakly mixing sequence”.

Proof. This is a direct consequence of Lemma 3.3.

We observe that if H is an infinite dimensional Hilbert space, and ξ ∈ H, then for the i.i.d.

process (Xn)∞n=1 taking values in S1 uniformly, the sequence of vectors Xnξ will be ergodic in a

sense similar to that of Theorem 3.2, but will not satisfy Lemma 3.3.

Theorem 3.5 (Strong Mixing Katai). Let (an)∞n=1 ⊆ C be a bounded sequence satisfying

lim
K→∞

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

aqKnaqkn

∣∣∣∣∣ = 0, (49)

for all k ∈ N. For any bounded sequence (bn)∞n=1 and any (Nw)∞w=1 ⊆ N, we have

lim
k→∞

lim
w→∞

1

Nw

Nw∑
n=1

apknbn = 0, (50)

provided that all of the above limits exist. In other words, whenever H = H ({(an)∞n=1, (bn)∞n=1}∪
{(apn)∞n=1}p prime, (Nw)∞w=1), the collection {(apn)∞n=1}p prime is a strongly mixing sequence.1

Proof. This is a consequence of Lemma 1 of [6].

Theorem 3.6 (Lebesgue Spectrum Katai). Let (an)∞n=1 ⊆ C be a sequence uniformly bounded by

1 for which

lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

apnaqn

∣∣∣∣∣ = 0, (51)

for all distinct primes p and q. For any bounded sequence (bn)∞n=1 and any (Nw)∞w=1 ⊆ N, we have

∞∑
k=1

∣∣∣∣∣ lim
w→∞

1

Nw

Nw∑
n=1

apknbn

∣∣∣∣∣
2

≤ lim
w→∞

1

Nw

Nw∑
n=1

|bn|2, (52)

provided that all of the above limits exist. In other words, whenever H = H ({(an)∞n=1, (bn)∞n=1}∪
{(apn)∞n=1}p prime, (Nw)∞w=1), the collection {(apn)∞n=1}p prime consistents of orthogonal vectors.

1It has not yet been proven that this sequence is strongly mixing in the sense discussed in [1].

10
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Proof. This is immediate from the construction of H .

4 Applications
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