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1 Introduction

Theorem 1.1 (Katai’s criterion). Let (a,)52; € C be a bounded sequence for which
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whenever p and ¢ are distinct primes. If f : N — C is a bounded multiplicative function, then
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The purpose of this paper is to examine Theorem from a more abstract perspective as is
done with van der Corput’s difference theorem in Chapter 2 of [4]. The main idea is to view a
sequences of vectors (z,)5; and (y,)5%; coming from a a Hilbert space H as vectors in a new

Hilbert space 27 endowed with the inner product

N
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While the limit in Equation may not exist, we can always pass to a subsequence for which it
does exist. Section [2]is dedicated to a rigorous construction of the Hilbert space .7 and Section
is dedicated to proving variants of Katai’s orthogonality criterion through the use of 5. For the
sake of the current discussion, we will assume for the rest of this section that the limit defining
(-, ) » always exists.

Recalling that H = C is a Hilbert space, we may now view Katai’s criterion as follows. We

o0

have sequences (a,)52; and (f(n))52,

uniformly bounded by M that we will now view as vectors
in a Hilbert space . For each prime p, we have a (not necessarily bounded) linear operator
Up : A — H defined by Up(2y,)72 = (zpn)5>;. The boundedness of (a,)52; and the assumption
of Equation tells us that {Up(an)22,}pep is an orthogonal set of vectors that is bounded in
norm. We now proceed as Katai did in [5] and use the Turdn-Kubilius inequality to deduce that

for any € > 0 there is a finite set of primes P(e) with min(P(e)) > L and 2 peP(e) % > 1 for which
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Since {Up(an)52; }pep is a bounded set of orthogonal vectors, we see that the sequence ((Up(an)o2,

,(f(n)221) 7 )pep is square summable. Since f is bounded, we conclude that the quantity in
Equation can be made arbitrarily close to 0, which proves Equation .

We see now that the assumption of multiplicativity on f is only used to show that U,(f(n))s2; ~
f(p)(f(n))oe, for large enough primes p. Similarly, the assumption of Equation is used to show
that each term of the average in Equation is going to 0, so that we can conclude that the average
is itself going to 0. These observations suggest that we can generalize Katai’s orthogonality criterion
by either relaxing the sense in which U,(f(n))s2; = (f(n))>2,, or by relaxing the assumptions on
(an)22 4 so that the average in Equation is still small even if not every constituent term of the
average is small. This leads us to the following generalizations of Katai’s criterion that are related

to the ergodic hierarchy of mixing.

Theorem 1.2 (Pseudo Ergodic Katai). Let (a,)52; € C be a bounded sequence such that for any

sequence of primes (qx)52, satisfying Y -, i = 0o we have
K - Aoy Go
n
lim limsup <Z ) Z Z I T ), (6)
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If f : N — Cis a bounded function such that for all € > 0 there exists a set of primes P(¢) = {pi}72,
and a function g, : N — C uniformly bounded by M (independent of ¢€) satisfying

() S5, b = oo, and

K -1
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We see that Equation @ is implied by Equation , and it can be shown with the aid of Lemma
3.19 of [2] that every multiplicative function f satisfies Inequality (iil) with g.(n) = u f (n) where u is
some limit point of (f(p))p prime, S0 Theorem [1.2|is a generahzatlon of Theorem 1.1} Furthermore,
it is shown in [2] that for a wide class of level sets of multiplicative functions, the indicator function
f = 1 satisfies Inequality , which allows us to recover the following generalization of Katai’s

criterion.
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Corollary 1.3. Let (ay)22; C C be a bounded sequence for which

K q - Qg n Ggpn
Klim lim sup (Z ) Z Z ) (8)
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If m : N — C is a bounded multiplicative function, and R = {(r,0) | r € Iy & 0 € I} where I; and

I are bounded intervals in [0, 00) that may be open, closed, or half open, then

lim — Z anl (n) =0. 9)

N—ooo N

At this point, it is worth mentioning that the condition on f in Theorem more closely
resembles a rigidity condition (the dual of strong mixing) than an invariance condition (the dual of
ergodicity) since the sequence of primes P(¢) is almost arbitrary. To better understand this remark,

let us consider the following theorem that does not even imply Theorem

Theorem 1.4 (Ergodic Katai). Let (gx)32, be the increasing enumeration of the primes. Let
(an)2; € C be a bounded sequence for which

K1 - Qg n Qg n
lim limsup Z— Z Z 11—, (10)
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If f:N — C is a bounded function such that there exists a bounded function g : N — C satisfying

K -1 K | X
lim lim sup — — qxn) —g(n))| =0, 11
gt (320323 ) <o) i
then
fm LS 0 =0 (12)
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In Section (3| we state three more generalizations of Theorem (and hence of Theorem |[1.1))
corresponding to weak mixing, strong mixing, and countable Lebesgue spectrum as Theorems
and respectively. We defer them to Section [3] since they are more abstract and require
terminology from Section [28 The main reason we encounter these difficulty is that the family of

operators {Up}p prime 1S DOt a semigroup, so we cannot use the ideas introduced in
https://sohailfarhangi.files.wordpress.com/2022/11/talkfortorunnovember2022.pdf

and we cannot state an analogue of Theorem for mild mixing.

2 A Hilbert space of sequences

The contents of this section are a slight modification of the contents of Chapters 2.2 and 2.3 of

[4] that we need to construct .#°. The only difference is that we will be constructing . from a
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countable collection of sequences {(znm)ne;}ro_; instead of just a pair of sequences, because for

a given pair of sequences (ay)2%; and (f(n))s,, we are required to also consider the countable
collection of sequences {(apn)5e;}p prime-

Let H be a Hilbert space. In this section we will discuss how to construct a Hilbert space ¢
out of sequences of vectors coming from H. We will then use 5 to prove our generalizations of

Katai’s orthogonality criterion for sequences of vectors coming from H.

Let || - || and (-,-) denote the norm and inner product on H and let || - ||+ and (-,-) » denote

the norm and inner product on 5. We denote the collection of square averageable sequences by

N
SA(H) = ()72 € 1 | Tmsup 5 3 [14]F < oo}, (13)
—00 n=1

Let (fn)22, (gn)52, € SA(H) and observe that

lim sup —
N—o0

N
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It follows that we may use diagonalization to construct an increasing sequence of positive integers
(Ng)g2q for which

N,
. 1 —
qlgglo Fq nzl (Trmy s xn,m2> (15)

exists for all my, ma € N. We now construct a new Hilbert space 5 = 7 ({(zn,m)n1 bre1, (Ng)g21)
from {(znm)p2y b1 and (Ng)g2y as follows. For all (f)o21, (9n)nz1 € {(Tnm)nsy ton=1, We define

Ng

()i () = i S (). (16)

—00
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We see that (-, ) is a sesquilinear form on ¢’ = Spanc ({(zn,m)52; }o°_;) with scalar multiplica-

tion and addition occuring pointwise. Letting

H" = {(en), € SAH) | ¥ e>0 3 (h (€), € # sit. (17)
li — " — 2 <€}, and
msup - Z le (O)I° <e}, an
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N,
N R
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we see that 7" /S is a pre-Hilbert space. We will soon see that 7" is sequentially closed under the
topology induced by (-, -) # (cf. Theorem 2.1}, so we define J({(zn,m)5>1 }v=1, (Ng)g21) = H"/S.
We call 7 ({(@n,m)ne1 ton=1> (Ng)g21) the Hilbert space induced by ({(znm)nZ1 boee1, (Ng)g21), and
we may write 7 in place of J({(znm)nz1 toe1, (Ng)g21) i ({(@nm)nzs =1, (Ng)g=1) is under-
stood from the context.

For {(znm)nZi}me1 © SA(H) and (Ng)g2y € N we say that ({(znm)nzq o1, (Ng)go1) is a
permissible pair if J7({(zn,m )51 fome1, (Ng)g21) is well defined. Given (fn);2; € H for which
(fn)o2, € A, we may view (f,)22, as an element of . by identifying (f,,)°; with its equivalence
class in " /S. We will now show that /7 is a Hilbert space by verifying that it is complete.

Theorem 2.1. Let H be a Hilbert space and {(xpm)oe; ooy € SA(H). Let ({(znm)oZq}too—1,
(Ng)z2) be a permissible pair and = #({(znm) S0 )51 (N)22r). T {(Enm) St} € 2
is a Cauchy sequence with respect to the metric induced by || - ||#, then there exists (§,)22, € "
for which

N,
. R I 2
Jim | lim qul\lén,m —&ll* ] =0. (19)
n=
In particular, 77 is a Hilbert space.

Proof. We proceed by modifying the proof of the main result in section §2 of chapter II of [3]. Let

(em)2°_; be a sequence of real numbers tending to 0 for which

N,
ol )
i 2 3 6nm = el < (20)

whenever k£ > m. By induction, let Tp = Ny = 0 and let (7,,)5°_; € N be such that conditions
(i)-(iii) below hold.

(i) For every m > 1, every k > m, and every T > T},

QLA
NiT Z ||£n,k - gn,mH2 < €m- (21)
n=1

(ii) For every m > 1 and every k > m

N,

Z |€ne — fn,mH2 < €m. (22)

n:NTk_l +1

1
NTk: - NTk—l
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(iii) For every m > 1

Z Z 1n.5 = &nmll* < €m. (23)
NT

j=1 n=Np,_,+1

Now let us define (£,)02, by &, = &,m where m is such that N7, | < n < Nr,,. To conclude
the proof, we note that for m > 1, k > m, and Ty_1 < T < T} we have

Nt
Z 1nm — &nll® (24)

m-1 N1y k-1 DN Ny
=2 2 M GnlP Y X =&l 3D [l =&l
7=1 ”:NTj,l‘H j=m n:NTj71+1 n:Nkal-‘rl
k—1 Nt
<NT €m + Z NT 1)€m+ZH§n,k _gn,mHZ
,] =m n=1

SNTk_lem + Nrém < 2Nrep.

3 Proofs

We begin with a lemma that is a well known consequence of the Turan-Kubilius inequality.

Lemma 3.1. Let H be a Hilbert space and (a:n)g’o 1 (Yn)o2; € H bounded sequences. Let P be a

finite collection of primes with S, We have

pGP p

n=1

gg< o) Z;%wm o @
et (an

Theorem 3.2 (Pseudo Ergodic Katai).
sequence of primes (g;)72, satisfying Zk 17

1 € C be a bounded sequence such that for any

1 = o0 we have

—2

N A anlnCLQkQ

Klgn lim sup Z — Z Z = 0. (26)
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If f: N — Cis a bounded function such that for all € > 0 there exists a set of primes P(¢) = {px}32,
and a function g, : N — C uniformly bounded by M (independent of ¢€) satisfying

(1) ZZO:I i = 00, and
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K -1
(ii) lim limsup (Z )
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exists, and let (My)22, be a subsequence of (Vi) for which J# = J({(an);Z:, (f(n))p=} U
{(apn)se1 }p primes (NE)72) is well defined. We see that

2

K -1 K 1
Jim (Z) > ()i (29)

— Dk — Dk
k=1 k=1 w

K -2
. . 1 1 1
:Khm lim sup (Z ) Z <7(apk1n);o:1v E(apkzn)?:ﬁ%” = 0. (30)
2

%
O N—oo k=1 Pk 1<k ko <K Pk,

Now let € > 0 be arbitrary, and let P(e) C P(¢) be a finite set of primes for which
By Lemma [3.1] we see that

1 1
pEP(€) p > a-

N, My,
Jim jék > anfn) = Jim, - > and0) = (o), Sl (31)
—1
~| > . > 1<Up(an)zo:1’ Up(f(n))pZ) - (32)
pEP () pEP(e) p

By increasing the size of P(e) if necessary, we may further assume that

—1
1 1
‘ Z - Z —Up(an)n—1|| < €, and (33)
veP© ) per(o
1 B 1
lim sup Z - Z T\/Z(f(pn) — ge(n))| <e. (34)
N—oo p _
pEP(e) pEP(e€) n=1

We now see that
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-1
1 1 N
pEP(€) peP(e)
-1
€ 1 1 N
~ p) 5 CLn " 1 (ge( ))n:1>¢%0 (36)
peP(e) peP(e)
-1
1 1 . N
— ]; ];Up Cln n 1 (gﬁ( ))n:l < eH(ge(n))n:lij < Me. (37)
pEP(e) PEP(e) P
Since the sequence (N)2 e, and € were both arbitrary, the desired result follows. ]

Proof of Corollary[I.3 Since any bounded function g can be uniformly approximated by functions
of the form S5 cklg-1(r,) (), it suffices to show that f = 1,,-1(p)(z) satisfies equation for
some set of prime numbers P = P(R,m). If d(m~*(R)) = 0, then it is clear that

N
1
Jim 2—31 anly-1(r)(n) =0, (38)

so let us assume that d(m~1(R)) > 0. Let € > 0 be arbitrary. Propositions 3.5 and 3.8 of [2] provide
us with sets Ey, By C N and a set of prime numbers P = {p;}7°, which satisfy

(i) d(Ex\ Ey) < e
(i) 25y i =
(iii) For all p € P and n € N with ged(n, p) = 1, we have 1g, (n) < 1,,-1(g)(np) < 1g,.

We now see that it suffices to take g = 1p, in Theorem so we see that Equation holds in

this case as well. ]
Before proving our next theorem, we require a lemma that is a variation of Theorem 3.1 of [I].

Lemma 3.3. Let H be a Hilbert space, (f,)52; € H a bounded sequence, and (gj)3° ; an increasing
sequence of primes for which > 77, i = 0o. We have that (i) — (ii) — (ii9).

o E T E e h
o () (k)=

m,n=1

(i) If d((nk)3Z,) > 0, then
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(iii) For any g € H we have

M

(8o

Proof. Let us first show that (i) — (i7). There exists a positive integer C' such that n; < Ck for
all £ > 1. One consequence of this is that

SRR S "
1 Qny, —1 qk

k=1

We now see that

K -1 g K -2 K
. 1 fn . 1 <fn- fn->
lim — R = lim — O 42
K—oco (Z an> ; Any, K—o0 (; an> Z dn; d4n; ( )

k=1 i,j=1
K ~? CK CK -2 oK
1 i [ 1 .
<gm (31 §:<ﬂ;ﬂwg i 2 (301 §:<ﬂ;ﬂﬂzo. (43)
K—oo 1 an ij=1 qi qj K—oo Pt q i q; q]

Now let us show that (i) — (éi7). Let us assume for the sake of contradiction that

lim sup (i 1>_1 3 <§:,g>' =e>0. (44)

K—o0 —1 qik =1
It _
It follows that there is some sequence (nj )32, for which [(=* . L g)| > § for all k and d((n})72,)

2

> 5. Consequently, there exists a subsequence (n})%2; for which « = d((n})%,) > 0, and

Futr
<q , ,g) € B1 (p) for some p € C. Let C' > 1000cc™! be an integer and let (ny)$2, be the increasing

enumeration of (n}])?2,; UCN. Since d((n)2,) > &, we see that

k=1 =1 \ I
LA f f 2
e €
> (S (L) | - (S(220)) ) 2 i 5 o)
m () ((B0a)-(S0)) = e 5
which yields the desired contradiction. O

Theorem 3.4 (Weak Mixing Katai). Let (gx)72, be an increasing sequence of primes for which
POy Qk = 00. Let (a,)72; C C be a bounded sequence for which
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<K 1\ 1 N gy n Ggoyn
lim Z) Z lim sup —Z B ™ QkQ ‘—0 (47)
Koo IS ) igmer Voo [N G ks
For any bounded sequence (b,,)72; and any (Ny,)o; € N, we have
K 4 -1 K No
(0] Sl Sewn] =0 )

provided that all of the above limits exist. In other words, whenever & = J({(an)52 1, (bn)o2q U

{(apn)3 1 }p prime, (Nw)ge—1), the collection {(agn)se,}52, is a “weakly mixing sequence”.

Proof. This is a direct consequence of Lemma [3.3] O

We observe that if H is an infinite dimensional Hilbert space, and & € H, then for the i.i.d.
process (X,,)%2; taking values in S' uniformly, the sequence of vectors X,,¢ will be ergodic in a
sense similar to that of Theorem but will not satisfy Lemma

Theorem 3.5 (Strong Mixing Katai). Let (a,)52; C C be a bounded sequence satisfying

N
1
lim i =0 49
dim limsup | = ; GgyenTigen| =0, (49)
for all k£ € N. For any bounded sequence (b,)52; and any (Ny)o—; € N, we have
lim lim — Z apnbn =0, (50)

k—oo w—oo N,

provided that all of the above limits exist. In other words, whenever 72 = 7 ({(an)2 1, (b))%, } U

{(apn)21}p prime, (Nw)o—q), the collection {(apn )52 }p prime is & strongly mixing sequenceﬂ

Proof. This is a consequence of Lemma 1 of [6]. O

Theorem 3.6 (Lebesgue Spectrum Katai). Let (a,)52; C C be a sequence uniformly bounded by
1 for which

lim
N—o0

—0, (51)

N

1 Z
— Cpn @
pnlgn

Nn:1

for all distinct primes p and ¢. For any bounded sequence (b,)5° ; and any (Ny)oo; € N, we have

[e%s) 2 1 Nuw
—_— 3 [ 2
2 \Jim, Z b < Jim 5 3 ol (52)
= n=

provided that all of the above limits exist. In other words, whenever & = J({(an)5> 1, (bn)o2; U

{(apn)21 }p prime, (Nw)o_q), the collection {(apn )22 }p prime consistents of orthogonal vectors.

Tt has not yet been proven that this sequence is strongly mixing in the sense discussed in [I].

10
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Proof. This is immediate from the construction of 2. O

4 Applications
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