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Partition regularity

Definition

Let R be a ring, S ⊆ R , n,m ∈ N, and p1, · · · , pm ∈ R[x1, · · · , xn]
be polynomials. The system of equations

p1(x1, · · · , xn) = 0
...

pm(x1, · · · , xn) = 0

(1)

is partition regular (p.r.) over S if for any partition
S =

⋃r
i=1 Ci , there is some 1 ≤ i0 ≤ r for which Ci0 contais a

solution to the system of equations in (1). We remove 0 since
most equations that we consider will be homogeneous and we want
to omit trivial solutions.
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z , Schur 1916 [19]
2) van der Waerden 1927 [22] (arithmetic progressions or A.P.s)

x1 − x2 = x2 − x3
...

xn−2 − xn−1 = xn−1 − xn

3) Brauer 1928 [5] (A.P.s and their common difference)

x1 − x2 = x0
...

xn−1 − xn = x0
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Positive results 2/2

4) Rado 1933 [17] classified which finite systems of linear
equations are p.r.
5) x − y = p(z) with p(z) ∈ zZ[z ], Bergelson 1996 [3] (page 53)
6) Bergelson, Moreira, and Johnson 2017 [4], for pi(x) ∈ xZ[x ]

x1 − x2 = p1(x0)
...

xn−1 − xn = pn−1(x0)

7) x2 − y 2 = z , Moreira 2017 [15]
8) z = xy , Sahasrabudhe 2018 [18]
9) x21 + x22 + x23 + x24 = x25 , Chow, Lindqvist, Prendiville 2021 [7]
(Some results here use the circle method, see also Prendiville [16])
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Negative results (all using Rado’s cp colorings)

The following systems of equations are not partition regular over N.
1) 2x + 3y = z , Rado 1933 [17]
2) Rado 1933 [17]

2x + y = z
3w + y = z

3) x + y = z2 (ignoring 2 + 2 = 22), Csikvári, Gyarmati, and
Sárközy 2012 [8] (see also [13])
4) x − 2y = z2, Di Nasso and Luperi Baglini 2018 [9]
5) x2 − 2y 2 = z , Di Nasso and Luperi Baglini 2018 [9]
6) x + y = w 3z2, F. and Magner 2022 [11]
7) 2x + 3y = wz2, F. and Magner 2022 [11]
8) F. and Magner 2022 [11]

x1 + 17y1 = w1z
100
1

9x2 + 18y2 = w2z
2
2
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x2 + y 2 = z2 (VERY popular, [10]), and w 2 + x2 + y 2 = z2

2) a(x2 − y 2) = bz2 + dw (important, cf. [16])
3) x3 + y 3 + z3 = w 3 (cf. [7])
4) x3 + y 3 = 1 + z3

5) x4 + y 4 + z4 = w 4 (cf. [7])
6) (VERY popular, cf. [15])

w = xy
z = x + y

7) 2x − 8y = wz3 (cf. [11])
8) (cf. [11])

16x1 + 17y1 = w1z
8
1

33x2 − 17y2 = w2z
8
2
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The cp-coloring

For p ∈ N a prime define a partition cp : Q \ {0} → [1, p − 1] by
the first nonzero digit of the p-adic expansion, i.e.,

cp(
r

s
) ≡ (p−vp(r)r)(p−vp(s)s)−1 (mod p). (2)

Figure: c−1
3 ({1}) is red and c−1

3 ({2}) is orange. See also [2] and [6].
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Using the cp colorings 1/3

The equation 2x + 3y = z is not partition regular over N, as it
contains no solutions in any cell of c7. To see this, let us assume
for the sake of contradiction that for some i ∈ [1, 6] and
x , y , z ∈ c−1

7 ({i}) we have 2x + 3y = z . By considering the fact
that c7(2x + 3y) = c7(z), we see that

i ≡ c7(z) ≡


2i ≡ c7(2x) if v7(x) < v7(y)

3i ≡ c7(3y) if v7(x) > v7(y)

5i ≡ c7(2x + 3y) if v7(x) = v7(y),

(mod 7)

but none of these congruences can hold modulo 7, which yields the
desired contradiction.
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Using the cp colorings 2/3

The following system of equations is not partition regular over N.

2x + y = z
3w + y = z

(3)

We again assume for the sake of contradiction that there is some
i ∈ [1, 6] and w , x , y , z ∈ Ci satisfying the above system. The
considerations of the previous slide show us that we must have
i = 1 and v7(x), v7(w) > v7(y) = v7(z). WLOG, v7(x) ≥ v7(w),
so a contradiction is obtained by considering the digit zv7(w) in
position v7(w) of the base 7 expansion of z . In particular, we have
that

zv7(w) ≡ yv7(w) + 3i /∈ yv7(w) + {0, 2i} (mod 7). (4)
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Using the cp colorings 3/3

The equation 2x + 3y = wz2 is not partition regular over N. Let us
assume for the sake of contradiction that there was some
i ∈ [1, 42] and w , x , y , z ∈ c−1

43 ({i}) satisfying the given equation.
Since we have c43(2x + 3y) = c43(wz2), we see that

i3 ≡ c43(wz2) ≡


2i ≡ c43(2x) if v43(x) < v43(y)

3i ≡ c43(3y) if v43(x) > v43(y)

5i ≡ c43(2x + 3y) if v43(x) = v43(y),

(mod 43)

but none of the above congruences are solvable since 2, 3, and 5
are not squares modulo 43, which yields the desired contradiction.
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Ramsey Theory of the Pythagorean Equation

Graham and Erdős [10] asked whether or not the equation
x2 + y 2 = z2 is partition regular over N, and Erdős offered $250
for a solution. Heule, Kullman, and Marek [14] showed using (a
sophisticated) computer search that for any partition of the form
N = C1 ∪ C2, one of the Ci contains a pythagorean triple, but the
problem remains open for partitions of size 3 or more. In fact, it is
still open as to whether or not for any partition N =

⋃r
i=1 Ci , there

exists 1 ≤ i ≤ r and x , y ∈ Ci for which x2 + y 2 = λ2, where λ
need not come from Ci . The analagous problem for x2 + λ2 = z2 is
also open, but Frantzikinakis and Host [12] showed that many
equations such as 9x2 + 16y 2 = λ2 are partition regular. Sun [20],
[21] (as a corollary of work related to Sarnak’s möbius disjointness
conjecture) showed that ax2 + by 2 = λ2 is partition regular over
the ring of integers of Q(

√
a,
√
b,
√
a + b), so x2 + y 2 = λ2 is p.r.

over Z[
√

2] and x2 + λ2 = z2 is p.r. over Z[i ].
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Pythagorean Triples

We recall that Pythagorean Triples are parameterized by
(x , y , z) = (2kmn, k(m2 − n2), k(m2 + n2)). Using this structure
we can show that the partition regularity of the Pythagorean
equation is resistant to many extensions of Rado’s cp colorings. Let
us first consider an alternative point of view on partitions of N. We
see that some of the most basic partitions are N =

⋃r
i=1 Ci , where

Ci = {x ∈ N | x ≡ i (mod r)}. We observe that these partitions
can also be defined by declaring x , y ∈ N to be in the same cell of
the partition if and only if x ≡ y (mod r). In particular, the
partition can be created as equivalence classes under the
equivalence relation induced by reduction modulo r .
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Resilience of the Pythagorean Equation!

Exercise: Fix ℓ ∈ N, let p1, · · · , pℓ ∈ N be distinct primes, and let
N =

⋃r
i=1 Ci ,j be a partition for each 1 ≤ j ≤ ℓ. Create a partition

N =
⋃r ′

i=1Di as follows. For x , y ∈ N, but x and y in the same cell
of the partition if and only if for each 1 ≤ j ≤ ℓ we have

1 The first ℓ digits of the base pj expansion of x and y starting
at their respective first nonzero digits agree.

2 The first ℓ nonzero digits of the base pj expansion of x and y
agree.

3 The last ℓ digits of the base pj expansion of x and y .

4 The last ℓ nonzero digits of the base pj expansion of x and y .

5 vpj (x), vpj (y) ∈ Ci ,j for some 1 ≤ i ≤ r .

6 ⌊logpj
(x)⌋, ⌊logpj

(y)⌋ ∈ Ci ,j for some 1 ≤ i ≤ r .

Show that there is a 1 ≤ i ≤ r ′ and x , y , z ∈ Di satisfying
x2 + y 2 = z2.
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Resilience of the Pythagorean Equation?

Question: Suppose that we refine the partition N =
⋃r ′

i=1Di

further by placing the following additional restrictions on x and y .
Let N =

⋃w
i=1 Ei be a partition (maybe w = r ′ and Ei = Di?).

7 Ω(x),Ω(y) ∈ Ei for some i , where Ω counts the number of
prime divisors with repetition.

8 ω(x), ω(y) ∈ Ei for some i , where Ω counts the number of
prime divisors without repetition.

9 sqf(x), sqf(y) ∈ Ei for some i , where sqf denotes the square
free part.

10 ϕ(x), ϕ(y) ∈ Ei for some i where ϕ is Euler’s totient function.

11 τ(x), τ(y) ∈ Ei for some i where τ(x) counts the number of
positive divisors of x .

Does there exist a 1 ≤ i ≤ r ′ and x , y , z ∈ D ′
i satisfying

x2 + y 2 = z2?

Sohail Farhangi Some special diophantine equations Ramsey theory and number theory 15



The Markov Equation 1/3

The Markov Equation is

x2 + y 2 + z2 = 3xyz . (5)

The Markov Equation is connected to the study of continued
fractions, hyperbolic geometry, quadratic forms, combinatorics,
and many other parts of math as discussed in [1]. The partition
regularity of the Markov equation cannot be disproven using the
methods of slides 9-11. Can it be disproven using the methods of
slides 14-15? We will show that it can be disproven if we assume
the uniqueness conjecture, which is the other main topic of [1]. We
remark this if the methods of slides 14-15 were insufficient, but the
uniqueness conjecture was true, then the Markov Equation would
be a crucial example in Ramsey theory by objectively showing that
partition regularity of polynomial equations is vastly more complex
than that of linear equations.
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The Markov Equation 2/3

As discussed in [1, pg. 45-47], solutions of the Markov Equation
naturally have the structure of a binary tree as shown below.

The uniqueness conjecture is that the underlined terms of the
binary tree appear exactly once.
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The Markov Equation 3/3

If the uniqueness conjecture is true, then the partition of N into 2
sets as indicated in the following picture will avoid all nontrivial
solutions to the Markov equation in each cell.
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The end goal

Question: Can we find examples of diophantine equations other
than the Markov equation (or xn + yn = zn with n ≥ 3) whose
partition regularity cannot be determined using the methods of
slides 9-11 or 14, but can be determined through knowledge about
the structure of their solution sets? Such examples may help
advance the understanding of partition regularity of polynomial
equations. Is (x2 − 1)(y 2 − 1)(z2 − 1) = (k2 − 1) such an example?
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