

Table of Contents

- 1 Review of mixing and van der Corput's difference theorem within ergodic theory
- 2 Mixing van der Corput difference theorems and applications
 - Statements of new vdC difference theorems
 - Applications to Noncommuting ergodic averages
- 3 Katai's orthogonality criterion
 - An update
 - Variations of Katai's criterion

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ is **uniformly distributed** if for any open interval $(a, b) \subseteq [0, 1]$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \left| \{1 \leq n \leq N \mid x_n \in (a, b)\} \right| = b - a. \quad (1)$$

Theorem (van der Corput, [13])

If $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ is such that $(x_{n+h} - x_n \pmod{1})_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

Corollary

If $\alpha \in \mathbb{R}$ is irrational, then $(n^2\alpha \pmod{1})_{n=1}^{\infty}$ is uniformly distributed.

Theorem (HvdCDT1, [1])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle = 0, \quad (2)$$

for every $h \in \mathbb{N}$, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0. \quad (3)$$

Theorem (HvdCDT3, [1])

If \mathcal{H} is a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \text{ then} \quad (6)$$

$$\lim_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N x_n \right| = 0. \quad (7)$$

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are both corollaries of HvdCDT3? Why are there at least 3 Hilbertian vdCDTs and only 1 vdCDT in the theory of uniform distribution?

Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A) > 0. \quad (8)$$

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any m.p.s. (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n^2}A) > 0. \quad (9)$$

Furstenberg's proof implicitly uses a form of vdCDT.

Applications of HvdCDTs 2/2

Theorem (Furstenberg, [10])

For any m.p.s. (X, \mathcal{B}, μ, T) , any $A \in \mathcal{B}$ with $\mu(A) > 0$, and any $\ell \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \cdots \cap T^{-\ell n}A) > 0. \quad (10)$$

Furstenberg's proof uses an equivalent form of HvdCT3. Other proofs directly use HvdCT3.

Theorem (Bergelson and Leibman, [3])

For any m.p.s. $(X, \mathcal{B}, \mu, \{T_i\}_{i=1}^\ell)$ with the T_i 's commuting, any $A \in \mathcal{B}$ with $\mu(A) > 0$, and any $\{p_i(x)\}_{i=1}^\ell \subseteq x\mathbb{N}[x]$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T_1^{-p_1(n)}A \cap T_2^{-p_2(n)}A \cap \cdots \cap T_\ell^{-p_\ell(n)}A) > 0. \quad (11)$$

Uses an equivalent form of HvdCT3.

The Ergodic Hierarchy of Mixing

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a m.p.s. If for every $f, g \in L_0^2(X, \mu)$

- ① $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle U_T^n f, g \rangle = 0$, then \mathcal{X} is **ergodic**.
- ② $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |\langle U_T^n f, g \rangle| = 0$, then \mathcal{X} is **weakly mixing**,
- ③ $\text{IP}^* - \lim_{n \rightarrow \infty} \langle U_T^n f, g \rangle = 0$, then \mathcal{X} is **mildly mixing**,
- ④ $\lim_{n \rightarrow \infty} \langle U_T^n f, g \rangle = 0$, then \mathcal{X} is **strongly mixing**,
- ⑤ and if $L_0^2(X, \mu)$ has an orthogonal basis of the form $\{U_T^n f_m\}_{n, m \in \mathbb{Z}}$, then \mathcal{X} has **Lebesgue spectrum**.

These definitions also apply to individual elements $f \in L_0^2(X, \mu)$.

The Symmetric Ergodic Hierarchy of Mixing

Theorem

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a m.p.s. If for every $f \in L_0^2(X, \mu)$

- ① $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle U_T^n f, f \rangle = 0$, then \mathcal{X} is *ergodic*,
- ② $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |\langle U_T^n f, f \rangle| = 0$, then \mathcal{X} is *weakly mixing*,
- ③ $|P^* - \lim_{n \rightarrow \infty} \langle U_T^n f, f \rangle| = 0$, then \mathcal{X} is *mildly mixing*,
- ④ $\lim_{n \rightarrow \infty} \langle U_T^n f, f \rangle = 0$, then \mathcal{X} is *strongly mixing*.

This theorem also applies to individual elements $f \in L_0^2(X, \mu)$.

Anti-Mixing

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a m.p.s. If $f \in L_0^2(X, \mu)$ satisfies

- ① $U_T f = f$, then f is **invariant**.
- ② $p - \lim_{n \rightarrow \infty} U_T^n f = f$ in the weak (and hence norm) topology for some minimal idempotent ultrafilter p , then f is **compact** (cf. Theorem 2.25 in [4]), i.e., $f \in L^2(X, K, \mu)$ where (X, K, μ, T) is the Kronecker factor of (X, \mathcal{B}, μ, T) .
- ③ $\lim_{k \rightarrow \infty} \|U_T^{n_k} f - f\|_2 = 0$, for some $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$, then f is **rigid**.

Theorem

For $f, g \in L_0^2(X, \mu)$, we have $\langle f, g \rangle = 0$ if

- ① f is **invariant** and g is **ergodic**.
- ② f is **compact** and g is **weakly mixing**.
- ③ f is **rigid** and g is **mildly mixing**.

The dual of strong mixing?

Theorem (Blum and Hanson, [5])

The m.p.s. $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ is **strongly mixing** if and only if for any $f \in L_0^2(X, \mu)$ and any increasing $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ we have

$$\lim_{K \rightarrow \infty} \frac{1}{K} \sum_{k=1}^K U_T^{n_k} f = 0. \quad (12)$$

Definition

An element $g \in L^2(X, \mu)$ is **weakly rigid** if there exists $h \in L^2(X, \mu)$ and $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ for which

$$g = \lim_{K \rightarrow \infty} \frac{1}{K} \sum_{k=1}^K U_T^{n_k} h. \quad (13)$$

If f is **strongly mixing** and g is **weakly rigid**, then $\langle f, g \rangle = 0$.

The dual of countable Lebesgue spectrum?

Definition

An element $g \in L^2(X, \mu)$ is **very weakly rigid** if there exists $(h_k)_{k=1}^{\infty} \subseteq L^2(X, \mu)$, $(c_{n,k})_{n,k \in \mathbb{Z}} \subseteq \mathbb{C}$ and $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ for which

$$g = \lim_{K \rightarrow \infty} \frac{1}{K} \sum_{k=1}^K c_{n_k, K} U_T^{n_k} h_K, \text{ and} \quad (14)$$

$$\left(\sum_{k=1}^K |c_{n_k, K}|^2 \right) \|h_K\|^2 = o(K^2). \quad (15)$$

If f is well approximated by the “Lebesgue spectrum subspace” and g is very weakly rigid, then $\langle f, g \rangle = 0$.

In [2] it is shown that a 'typical' m.p.s. is **weakly mixing** and **rigid**, hence the class of **very weakly rigid** system is also quite large, and **might** include many **strongly mixing** systems.

Table of Contents

- 1 Review of mixing and van der Corput's difference theorem within ergodic theory
- 2 Mixing van der Corput difference theorems and applications
 - Statements of new vdC difference theorems
 - Applications to Noncommuting ergodic averages
- 3 Katai's orthogonality criterion
 - An update
 - Variations of Katai's criterion

Theorem (MvdCT)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \quad (16)$$

then $(x_n)_{n=1}^{\infty}$ is a **nearly strongly mixing sequence**. This means that for any other bounded sequence $(y_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ we morally (**but not literally**) have that

$$\lim_{h \rightarrow \infty} \left| \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, y_n \rangle \right| = 0. \quad (17)$$

Theorem (MvdCT)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying for all $h \in \mathbb{N}$

$$\lim_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0, \quad (18)$$

then $(x_n)_{n=1}^{\infty}$ is a nearly orthogonal sequence. This means that for any other in some other Hilbert space \mathcal{H}' whose vectors are sequences of vectors from \mathcal{H} , the set $\{(x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}$ consists of orthogonal vectors.

See Chapter 2 of [6] for variations of MvdCT related to other levels of mixing, as well as uniform distribution. See also [12].

Noncommutative ergodic theorems 1/2

Theorem ((Corollary 1.7 in [7]))

Let $a : \mathbb{R}_+ \rightarrow \mathbb{R}$ be a Hardy field function for which there exist some $\epsilon > 0$ and $d \in \mathbb{Z}_+$ satisfying

$$\lim_{n \rightarrow \infty} \frac{a(n)}{t^{d+\epsilon}} = \lim_{n \rightarrow \infty} \frac{t^{d+1}}{a(n)} = \infty. \quad (19)$$

Furthermore, let (X, \mathcal{B}, μ) be a probability space and $T, S : X \rightarrow X$ be measure preserving transformations. Suppose that the system (X, \mathcal{B}, μ, T) has **zero entropy**. Then

(i) For every $f, g \in L^\infty(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{\lfloor a(n) \rfloor} g = \mathbb{E}[f | \mathcal{I}_T] \cdot \mathbb{E}[g | \mathcal{I}_S], \quad (20)$$

where the limit is taken in $L^2(X, \mu)$.

Theorem (Continued)

(ii) For every $A \in \mathcal{B}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n}A \cap S^{-\lfloor a(n) \rfloor}A) \geq \mu(A)^3. \quad (21)$$

In [8] a similar theorem is proven for $a(n) = p(n)$ with $p(x) \in \mathbb{Z}[x]$ of degree at least 2. It is also mentioned in [7] that the **zero entropy** assumption on T cannot, in general, be weakened.

Application 1/4

Theorem (F., 2022)

Let (X, \mathcal{B}, μ) be a probability space and let $T, S : X \rightarrow X$ be measure preserving transformations. Suppose that the m.p.s. (X, \mathcal{B}, μ, T) is very weakly rigid, and that the m.p.s. (X, \mathcal{B}, μ, S) is totally ergodic. Let $(k_n)_{n=1}^{\infty} \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha \pmod{1})_{n=1}^{\infty}$ is uniformly distributed for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $h \in \mathbb{N}$.

(i) For any $f, g \in L^{\infty}(X, \mu)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f \cdot S^{k_n} g = \mathbb{E}[f | \mathcal{I}_T] \mathbb{E}[g | \mathcal{I}_S], \quad (22)$$

with convergence taking place in $L^2(X, \mu)$.

Theorem (Continued)

(ii) If $A \in \mathcal{B}$ then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(A \cap T^{-n}A \cap S^{-k_n}A) \geq \mu(A)^3. \quad (23)$$

(iii) If $((k_{n+h} - k_n)\alpha \pmod{1})_{n=1}^{\infty}$ is uniformly distributed in its orbit closure for all $\alpha \in \mathbb{R}$ then (i) and (ii) hold even when (X, \mathcal{B}, μ, S) is not ergodic.

Sets of K but not $K + 1$ recurrence?

Theorem ((Theorem 1.4 and Corollary 4.4 of [9]))

Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let

$$R_k = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}.$$

(i) If (X, \mathcal{B}, μ) is a probability space and

$T_1, T_2, \dots, T_{k-1} : X \rightarrow X$ are commuting measure preserving transformations, then for any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R_k$ for which

$$\mu(A \cap T_1^{-n}A \cap T_2^{-n}A \cap \dots \cap T_{k-1}^{-n}A) > 0. \quad (24)$$

(ii) There exists a m.p.s. (X, \mathcal{B}, μ, T) and a set $A \in \mathcal{B}$ satisfying $\mu(A) > 0$ such that for all $n \in R_k$ we have

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-kn}A) = 0. \quad (25)$$

Application 2/4

Theorem (F., 2022)

Let $k \geq 2$ be an integer and $\alpha \in \mathbb{R}$ be irrational. Let $R_k = \{n \in \mathbb{N} \mid n^k \alpha \in [\frac{1}{4}, \frac{3}{4}]\}$. Let (X, \mathcal{B}, μ) be a probability space and $T_1, T_2, \dots, T_{k-1} : X \rightarrow X$ commuting measure preserving transformations. Let $S : X \rightarrow X$ be a measure preserving transformation for which (X, \mathcal{B}, μ, S) is very weakly rigid, and $\{S, T_1, T_2, \dots, T_{k-1}\}$ generate a nilpotent group. For any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in R_k$ for which

$$\mu(A \cap S^{-n}A \cap T_1^{-n}A \cap T_2^{-n}A \cap \dots \cap T_{k-1}^{-n}A) > 0. \quad (26)$$

It is worth noting that the skew system $(\mathbb{T}^2, \mathcal{B}^2, m^2, T)$ with $T(x, y) = (x + \alpha, y + x)$ is the system used in item (ii) of the last slide when $k = 2$. Consequently, the current theorem does not hold for a general S with **zero entropy**.

Application 3/4

Theorem (F., 2022)

Let (X, \mathcal{B}, μ) be a probability space and $T, S : X \rightarrow X$ be measure preserving transformations. Suppose that (X, \mathcal{B}, μ, T) is very weakly rigid and (X, \mathcal{B}, μ, S) is totally ergodic. Let $p_1, \dots, p_K \in \mathbb{Q}[x]$ be a collection of integer polynomials such that $\{p_1(n+h) - p_1(n), p_2(n+h) - p_1(n), \dots, p_K(n+h) - p_1(n), p_2(n) - p_1(n), \dots, p_K(n) - p_1(n)\}$ is independent for all $h \in \mathbb{N}$. For any $f_0, f_1, \dots, f_K \in L^\infty(X, \mu)$, we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f_0 \prod_{i=1}^K S^{p_i(n)} f_i = \mathbb{E}[f_0 | \mathcal{I}_T] \prod_{i=1}^K \int_X f_i d\mu, \quad (27)$$

with convergence taking place in $L^2(X, \mu)$.

Application 4/4

Theorem (F., 2022)

Let (X, \mathcal{B}, μ) be a probability space and $T, S_1, S_2 : X \rightarrow X$ be measure preserving transformations. Suppose that (X, \mathcal{B}, μ, T) is very weakly rigid, S_1 and S_2 commute, and $(X, \mathcal{B}, \mu, S_2)$ is weakly mixing. Let $p : \mathbb{R} \rightarrow \mathbb{R}$ either be a polynomial of degree at least 2, or of the form $p(n) = n^\alpha \log(n)^\beta$ with $\alpha > 1$ and $\beta \leq 0$. For any $f_0, f_1, f_2 \in L^\infty(X, \mu)$ satisfying $\int_X f_2 d\mu = 0$, we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N T^n f_0 \cdot S_1^n f_1 \cdot S_2^{\lfloor p(n) \rfloor} f_2 = 0, \quad (28)$$

with convergence taking place in $L^2(X, \mu)$.

Table of Contents

- 1 Review of mixing and van der Corput's difference theorem within ergodic theory
- 2 Mixing van der Corput difference theorems and applications
 - Statements of new vdC difference theorems
 - Applications to Noncommuting ergodic averages
- 3 Katai's orthogonality criterion
 - An update
 - Variations of Katai's criterion

An update

The following slides contain statements which I believed to be true when I gave this talk, but for which I had not yet written down a formal proof. Upon trying to write down a formal proof, I obtained different statements which are discussed in the file in the link below.

https://sohailfarhangi.files.wordpress.com/2023/03/van_der_corput_and_katai.pdf

Consequently, the variations of Katai's criterion presented in the following slides are now stated as conjectures instead of theorems.

Katai's orthogonality criterion

Theorem (Katai, [11])

Let $(c_n)_{n=1}^{\infty}$ be a bounded sequence of complex numbers satisfying

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{pn} \overline{c_{qn}} = 0, \quad (29)$$

for all distinct primes p and q . If $f : \mathbb{N} \rightarrow \mathbb{C}$ is a bounded multiplicative function, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n \overline{f(n)} = 0. \quad (30)$$

Ergodicity and Katai's criterion

Conjecture (F., 2022)

Let $(p_k)_{k=1}^{\infty}$ be the increasing enumeration of the primes. Let $(c_n)_{n=1}^{\infty}$ be a bounded sequence of complex numbers such that

$$\lim_{K \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{K^2} \sum_{k_1, k_2=1}^K \frac{1}{N} \sum_{n=1}^N c_{p_{k_1} n} \overline{c_{p_{k_2} n}} \right| = 0. \quad (31)$$

If $f : \mathbb{N} \rightarrow \mathbb{C}$ is a *bounded multiplicative function*, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n \overline{f(n)} = 0. \quad (32)$$

Strong mixing and Katai's criterion

Conjecture (F., 2022)

Let $(a_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ be increasing. Let $(c_n)_{n=1}^{\infty}$ be a bounded sequence of complex numbers such that for all $W \in \mathbb{N}$ we have

$$\lim_{k \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N c_{a_W n} \overline{c_{a_k n}} \right| = 0. \quad (33)$$

If $f : \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$\lim_{K \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{K} \sum_{k=1}^K \frac{1}{N} \sum_{n=1}^N \left(d_k g \left(\frac{n}{a_k} \right) - f(n) \right) \right| = 0, \quad (34)$$

for some bounded $(d_k)_{k=1}^{\infty} \subseteq \mathbb{C}$ and $g : \mathbb{Q} \rightarrow \mathbb{C}$, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n \overline{f(n)} = 0. \quad (35)$$

Lebesgue spectrum and Katai's criterion

Conjecture (F., 2022)

Let $(a_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ be increasing. Let $(c_n)_{n=1}^{\infty}$ be a bounded sequence of complex numbers such that for all $k_1 \neq k_2 \in \mathbb{N}$ we have

$$\lim_{N \rightarrow \infty} \left| \frac{1}{N} \sum_{n=1}^N c_{a_{k_1} n} \overline{c_{a_{k_2} n}} \right| = 0. \quad (36)$$

If $f : \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$\lim_{K \rightarrow \infty} \limsup_{N \rightarrow \infty} \left| \frac{1}{K} \sum_{k=1}^K \frac{1}{N} \sum_{n=1}^N \left(d_{n_k, K} g_K \left(\frac{n}{a_k} \right) - f(n) \right) \right| = 0, \quad (37)$$

for some “very weakly rigid pair” $(d_k)_{k=1}^{\infty} \subseteq \mathbb{C}$, $g : \mathbb{Q} \rightarrow \mathbb{C}$, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n \overline{f(n)} = 0. \quad (38)$$

References I

- [1] V. Bergelson.
Weakly mixing PET.
Ergodic Theory Dynam. Systems, 7(3):337–349, 1987.
- [2] V. Bergelson, A. del Junco, M. Lemańczyk, and J. Rosenblatt.
Rigidity and non-recurrence along sequences.
Ergodic Theory Dynam. Systems, 34(5):1464–1502, 2014.
- [3] V. Bergelson and A. Leibman.
Polynomial extensions of van der Waerden's and Szemerédi's theorems.
J. Amer. Math. Soc., 9(3):725–753, 1996.

References II

- [4] V. Bergelson and R. McCutcheon.
Idempotent ultrafilters, multiple weak mixing and Szemerédi's theorem for generalized polynomials.
J. Anal. Math., 111:77–130, 2010.
- [5] J. R. Blum and D. L. Hanson.
On the mean ergodic theorem for subsequences.
Bull. Amer. Math. Soc., 66:308–311, 1960.
- [6] S. Farhangi.
Topics in ergodic theory and ramsey theory.
PhD dissertation, the Ohio State University, 2022.

References III

- [7] N. Frantzikinakis.
Furstenberg systems of Hardy field sequences and applications.
J. Anal. Math., 147(1):333–372, 2022.
- [8] N. Frantzikinakis and B. Host.
Multiple recurrence and convergence without commutativity.
arXiv:2111.01518v2 [math.DS], 2021.
- [9] N. Frantzikinakis, E. Lesigne, and M. Wierdl.
Sets of k -recurrence but not $(k + 1)$ -recurrence.
Ann. Inst. Fourier (Grenoble), 56(4):839–849, 2006.

References IV

- [10] H. Furstenberg.
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions.
J. Analyse Math., 31:204–256, 1977.
- [11] I. Kátai.
A remark on a theorem of H. Daboussi.
Acta Math. Hungar., 47(1-2):223–225, 1986.
- [12] A. Tserunyan.
A Ramsey theorem on semigroups and a general van der Corput lemma.
J. Symb. Log., 81(2):718–741, 2016.

[13] J. G. van der Corput.

Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins.

Acta Math., 56(1):373–456, 1931.