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The Classical van der Corput Difference Theorem

Definition

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed if for any

open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N

∣∣∣{1 ≤ n ≤ N | xn ∈ (a, b)}
∣∣∣ = b − a. (1)

Theorem (van der Corput, [13])

If (xn)
∞
n=1 ⊆ [0, 1] is such that (xn+h − xn (mod 1))∞n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α (mod 1))∞n=1 is uniformly
distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, [1])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, [1])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (4)

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, [1])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (6)

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (7)

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X ,B, µ,T ), and any
A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any m.p.s. (X ,B, µ,T ), and any A ∈ B with µ(A) > 0, there
exists n ∈ N for which

µ(A ∩ T−n2A) > 0. (9)

Furstenberg’s proof implicitly uses a form of vdCDT.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg, [10])

For any m.p.s. (X ,B, µ,T ), any A ∈ B with µ(A) > 0, and any
ℓ ∈ N, there exists n ∈ N for which

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA) > 0. (10)

Furstenberg’s proof uses an equivalent form of HvdCT3. Other
proofs directly use HvdCT3.

Theorem (Bergelson and Leibman, [3])

For any m.p.s. (X ,B, µ, {Ti}ℓi=1) with the Tis commuting, any
A ∈ B with µ(A) > 0, and any {pi(x)}ℓi=1 ⊆ xN[x ], there exists
n ∈ N for which

µ(A ∩ T
−p1(n)
1 A ∩ T

−p2(n)
2 A ∩ · · · ∩ T

−pℓ(n)
ℓ A) > 0. (11)

Uses an equivalent form of HvdCT3.
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The Ergodic Hierarchy of Mixing

Definition

Let X = (X ,B, µ,T ) be a m.p.s. If for every f , g ∈ L20(X , µ)

1 lim
N→∞

1
N

N∑
n=1

⟨Un
T f , g⟩ = 0, then X is ergodic.

2 lim
N→∞

1
N

N∑
n=1

|⟨Un
T f , g⟩| = 0, then X is weakly mixing,

3 IP∗ − lim
n→∞

⟨Un
T f , g⟩ = 0, then X is mildly mixing,

4 lim
n→∞

⟨Un
T f , g⟩ = 0, then X is strongly mixing,

5 and if L20(X , µ) has an orthogonal basis of the form
{Un

T fm}n,m∈Z, then X has Lebesgue spectrum.

These definitions also apply to individual elements f ∈ L20(X , µ).
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The Symmetric Ergodic Hierarchy of Mixing

Theorem

Let X = (X ,B, µ,T ) be a m.p.s. If for every f ∈ L20(X , µ)

1 lim
N→∞

1
N

N∑
n=1

⟨Un
T f , f ⟩ = 0, then X is ergodic,

2 lim
N→∞

1
N

N∑
n=1

|⟨Un
T f , f ⟩| = 0, then X is weakly mixing,

3 IP∗ − lim
n→∞

⟨Un
T f , f ⟩ = 0, then X is mildly mixing,

4 lim
n→∞

⟨Un
T f , f ⟩ = 0, then X is strongly mixing.

This theorem also applies to individual elements f ∈ L20(X , µ).
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Anti-Mixing

Definition

Let X = (X ,B, µ,T ) be a m.p.s. If f ∈ L20(X , µ) satisfies

1 UT f = f , then f is invariant.

2 p − limn→∞ Un
T f = f in the weak (and hence norm) topology

for some minimal idempotent ultrafilter p, then f is compact
(cf. Theorem 2.25 in [4]), i.e., f ∈ L2(X ,K , µ) where
(X ,K , µ,T ) is the Kronecker factor of (X ,B, µ,T ).

3 lim
k→∞

||Unk
T f − f ||2 = 0, for some (nk)

∞
k=1 ⊆ N, then f is rigid.

Theorem

For f , g ∈ L20(X , µ), we have ⟨f , g⟩ = 0 if

1 f is invariant and g is ergodic.

2 f is compact and g is weakly mixing.

3 f is rigid and g is mildly mixing.
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The dual of strong mixing?

Theorem (Blum and Hanson, [5])

The m.p.s. X = (X ,B, µ,T ) is strongly mixing if and only if for
any f ∈ L20(X , µ) and any increasing (nk)

∞
k=1 ⊆ N we have

lim
K→∞

1

K

K∑
k=1

Unk
T f = 0. (12)

Definition

An element g ∈ L2(X , µ) is weakly rigid if there exists
h ∈ L2(X , µ) and (nk)

∞
k=1 ⊆ N for which

g = lim
K→∞

1

K

K∑
k=1

Unk
T h. (13)

If f is strongly mixing and g is weakly rigid, then ⟨f , g⟩ = 0.
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The dual of countable Lebesgue spectrum?

Definition

An element g ∈ L2(X , µ) is very weakly rigid if there exists
(hk)

∞
k=1 ⊆∈ L2(X , µ), (cn,k)n,k∈Z ⊆ C and (nk)

∞
k=1 ⊆ N for which

g = lim
K→∞

1

K

K∑
k=1

cnk ,KU
nk
T hK , and (14)

(
K∑

k=1

|cnk ,K |2
)
||hK ||2 = o(K 2). (15)

If f is well approximated by the “Lebesgue spectrum subspace”
and g is very weakly rigid, then ⟨f , g⟩ = 0.
In [2] it is shown that a ’typical’ m.p.s. is weakly mixing and rigid,
hence the class of very weakly rigid system is also quite large, and
might include many strongly mixing systems.
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A strong mixing van der Corput difference theorem

Theorem (MvdCT)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (16)

then (xn)
∞
n=1 is a nearly strongly mixing sequence. This means that

for any other bounded sequence (yn)
∞
n=1 ⊆ H we morally (but not

literally) have that

lim
h→∞

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

⟨xn+h, yn⟩

∣∣∣∣∣ = 0. (17)

Sohail Farhangi Mixing, van der Corput’s difference theorem, Katai’s ⊥ criterion Frame16



A Lebesgue spectrum vdCdt

Theorem (MvdCT)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying for all h ∈ N

lim
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (18)

then (xn)
∞
n=1 is a nearly orthogonal sequence. This means that for

any other in some other Hilbert space H whose vectors are
sequences of vectors from H, the set {(xn+h)

∞
n=1}∞h=1 consists of

orthogonal vectors.

See Chapter 2 of [6] for variations of MvdCT related to other
levels of mixing, as well as uniform distribution. See also [12].
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Noncommutative ergodic theorems 1/2

Theorem ((Corollary 1.7 in [7]))

Let a : R+ → R be a Hardy field function for which there exist
some ϵ > 0 and d ∈ Z+ satisfying

lim
n→∞

a(n)

td+ϵ
= lim

n→∞

td+1

a(n)
= ∞. (19)

Furthermore, let (X ,B, µ) be a probability space and
T , S : X → X be measure preserving transformations. Suppose
that the system (X ,B, µ,T ) has zero entropy. Then

(i) For every f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · S⌊a(n)⌋g = E[f |IT ] · E[g |IS ], (20)

where the limit is taken in L2(X , µ).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)

(ii) For every A ∈ B we have

lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ S−⌊a(n)⌋A) ≥ µ(A)3. (21)

In [8] a similar theorem is proven for a(n) = p(n) with p(x) ∈ Z[x ]
of degree at least 2. It is also mentioned in [7] that the zero
entropy assumption on T cannot, in general, be weakened.
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Application 1/4

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving transformations. Suppose that the m.p.s.
(X ,B, µ,T ) is very weakly rigid, and that the m.p.s. (X ,B, µ, S)
is totally ergodic. Let (kn)

∞
n=1 ⊆ N be a sequence for which

((kn+h − kn)α (mod 1))∞n=1 is uniformly distributed for all
α ∈ R \Q and h ∈ N.
(i) For any f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · Skng = E[f |IT ]E[g |IS ], (22)

with convergence taking place in L2(X , µ).
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Application 1/4 continued

Theorem (Continued)

(ii) If A ∈ B then

lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ S−knA) ≥ µ(A)3. (23)

(iii) If ((kn+h − kn)α (mod 1))∞n=1 is uniformly distributed in its
orbit closure for all α ∈ R then (i) and (ii) hold even when
(X ,B, µ, S) is not ergodic.

Sohail Farhangi Mixing, van der Corput’s difference theorem, Katai’s ⊥ criterion Frame21



Sets of K but not K + 1 recurrence?

Theorem ((Theorem 1.4 and Corollary 4.4 of [9]))

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk = {n ∈ N | nkα ∈ [1

4
, 3
4
]}.

(i) If (X ,B, µ) is a probability space and
T1,T2, · · · ,Tk−1 : X → X are commuting measure preserving
transformations, then for any A ∈ B with µ(A) > 0, there
exists n ∈ Rk for which

µ(A ∩ T−n
1 A ∩ T−n

2 A ∩ · · · ∩ T−n
k−1A) > 0. (24)

(ii) There exists a m.p.s. (X ,B, µ,T ) and a set A ∈ B satisfying
µ(A) > 0 such that for all n ∈ Rk we have

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) = 0. (25)
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Application 2/4

Theorem (F., 2022)

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk = {n ∈ N | nkα ∈ [1

4
, 3
4
]}. Let (X ,B, µ) be a probability space

and T1,T2, · · · ,Tk−1 : X → X commuting measure preserving
transformations. Let S : X → X be an measure preserving
transformation for which (X ,B, µ, S) is very weakly rigid, and
{S ,T1,T2, · · · ,Tk−1} generate a nilpotent group. For any A ∈ B
with µ(A) > 0, there exists n ∈ Rk for which

µ(A ∩ S−nA ∩ T−n
1 A ∩ T−n

2 A ∩ · · · ∩ T−n
k−1A) > 0. (26)

It is worth noting that the skew system (T2,B2,m2,T ) with
T (x , y) = (x + α, y + x) is the system used in item (ii) of the last
slide when k = 2. Consequently, the current theorem does not
hold for a general S with zero entropy.
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Application 3/4

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and T , S : X → X be
measure preserving transformations. Suppose that (X ,B, µ,T ) is
very weakly rigid and (X ,B, µ, S) is totally ergodic. Let
p1, · · · , pK ∈ Q[x ] be a collection of integer polynomials such that
{p1(n + h)− p1(n), p2(n + h)− p1(n) · · · , pK (n + h)−
p1(n), p2(n)− p1(n), · · · , pK (n)− p1(n)} is independent for all
h ∈ N. For any f0, f1, · · · , fK ∈ L∞(X , µ), we have

lim
N→∞

1

N

N∑
n=1

T nf0

K∏
i=1

Spi (n)fi = E[f0|IT ]
K∏
i=1

∫
X

fidµ, (27)

with convergence taking place in L2(X , µ).
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Application 4/4

Theorem (F., 2022)

Let (X ,B, µ) be a probability space and T , S1, S2 : X → X be
measure preserving transformations. Suppose that (X ,B, µ,T ) is
very weakly rigid, S1 and S2 commute, and (X ,B, µ, S2) is weakly
mixing. Let p : R → R either be a polynomial of degree at least 2,
or of the form p(n) = nα log(n)β with α > 1 and β ≤ 0. For any
f0, f1, f2 ∈ L∞(X , µ) satisfying

∫
X
f2dµ = 0, we have

lim
N→∞

1

N

N∑
n=1

T nf0 · Sn
1 f1 · S

⌊p(n)⌋
2 f2 = 0, (28)

with convergence taking place in L2(X , µ).
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An update

The following slides contain statements which I believed to be true
when I gave this talk, but for which I had not yet written down a
formal proof. Upon trying to write down a formal proof, I obtained
different statements which are discussed in the file in the link
below.

https://sohailfarhangi.files.wordpress.com/2023/03/vandercorputandkatai .pdfhttps :
//sohailfarhangi .files.wordpress.com/2023/03/
van der corput and katai.pdf

Consequently, the variations of Katai’s criterion presented in the
following slides are now stated as conjectures instead of theorems.
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Katai’s orthogonality criterion

Theorem (Katai, [11])

Let (cn)
∞
n=1 be a bounded sequence of complex numbers satisfying

lim
N→∞

1

N

N∑
n=1

cpncqn = 0, (29)

for all distinct primes p and q. If f : N → C is a bounded
multiplicative function, then

lim
N→∞

1

N

N∑
n=1

cnf (n) = 0. (30)
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Ergodicity and Katai’s criterion

Conjecture (F., 2022)

Let (pk)
∞
k=1 be the increasing enumeration of the primes. Let

(cn)
∞
n=1 be a bounded sequence of complex numbers such that

lim
K→∞

lim sup
N→∞

∣∣∣∣∣ 1K 2

K∑
k1,k2=1

1

N

N∑
n=1

cpk1ncpk2n

∣∣∣∣∣ = 0. (31)

If f : N → C is a bounded multiplicative function, then

lim
N→∞

1

N

N∑
n=1

cnf (n) = 0. (32)
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Strong mixing and Katai’s criterion

Conjecture (F., 2022)

Let (ak)
∞
k=1 ⊆ N be increasing. Let (cn)

∞
n=1 be a bounded sequence

of complex numbers such that for all W ∈ N we have

lim
k→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

caW ncakn

∣∣∣∣∣ = 0. (33)

If f : N → C satisfies

lim
K→∞

lim sup
N→∞

∣∣∣∣∣ 1K
K∑

k=1

1

N

N∑
n=1

(
dkg

(
n

ak

)
− f (n)

)∣∣∣∣∣ = 0, (34)

for some bounded (dk)
∞
k=1 ⊆ C and g : Q → C, then

lim
N→∞

1

N

N∑
n=1

cnf (n) = 0. (35)
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Lebesgue spectrum and Katai’s criterion

Conjecture (F., 2022)

Let (ak)
∞
k=1 ⊆ N be increasing. Let (cn)

∞
n=1 be a bounded sequence

of complex numbers such that for all k2 ̸= k2 ∈ N we have

lim
N→∞

∣∣∣∣∣ 1N
N∑

n=1

cak1ncak2n

∣∣∣∣∣ = 0. (36)

If f : N → C satisfies

lim
K→∞

lim sup
N→∞

∣∣∣∣∣ 1K
K∑

k=1

1

N

N∑
n=1

(
dnk ,KgK

(
n

ak

)
− f (n)

)∣∣∣∣∣ = 0, (37)

for some “very weakly rigid pair” (dk)
∞
k=1 ⊆ C, g : Q → C, then

lim
N→∞

1

N

N∑
n=1

cnf (n) = 0. (38)
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