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The Classical van der Corput Difference Theorem

Definition

A sequence (x,)7°; C [0,1] is uniformly distributed if for any
open interval (a, b) C [0, 1] we have
1
lim —{1<n<N|x,€(ab)}=b—a (1)
N—oo N

Theorem (van der Corput, [13])

If (x,)224 C [0, 1] is such that (X,+n — X, (mod 1)), is uniformly
distributed for every h € N, then (x,)3; is itself uniformly
distributed.

If « € R is irrational, then (na (mod 1)), is uniformly
distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, [1])

If H is a Hilbert space and (x,)5%; C H is a bounded sequence
satisfying

N
_ 1
Jdim > (i, xm) =0, (2)

n=1

for every h € N, then

Jim II—ZXnII (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, [1])

If H is a Hilbert space and (x,)%,; C H is a bounded sequence
satisfying

=0, then (4)

||m ||—ZX,,|| (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, [1])

If H is a Hilbert space and (x,)52; C H is a bounded sequence
satisfying

N
=0, then (6)

Why would we ever use HvdCDT1 or HvdCD T2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X, %, u, T), and any
A € % with u(A) > 0, there exists n € N for which

(AN T~"A) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sarkozy)

For any m.p.s. (X, 2%,u, T), and any A € % with u(A) > 0, there
exists n € N for which

(AN T"A) > 0. (9)

Furstenberg's proof implicitly uses a form of vdCDT.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg, [10])

For any m.p.s. (X, %,u, T), any A € B with u(A) > 0, and any
¢ € N, there exists n € N for which

WANT"ANT2"AN---N T "A) > 0. (10)

Furstenberg's proof uses an equivalent form of HvdCT3. Other
proofs directly use HvdCT3.

Theorem (Bergelson and Leibman, [3])

For any m.p.s. (X, %, u,{T;}._,) with the T;s commuting, any
A € B with u(A) > 0, and any {p;(x)}:_; C xN[x], there exists
n € N for which

pAN TP AN TP AN 0 7,774 4) > 0. (11)

Uses an equivalent form of HvdCT3.
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The Ergodic Hierarchy of Mixing

Let X = (X,%,u, T) be am.ps. If for every f, g € L3(X, u)
N

(1) Nlim = E (U7f,g) =0, then X is ergodic.
—00
n=1

N
Q I|m lZ] U7f,g)| =0, then X is weakly mixing,
Q@ IP"— I|m (Urf,g) =0, then X is mildly mixing,
n—o0
o =0, then X is ,

@ and if L3(X, ) has an orthogonal basis of the form
{U%fn}nmez, then X has Lebesgue spectrum.

These definitions also apply to individual elements f € L3(X, u).
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The Symmetric Ergodic Hierarchy of Mixing

Let X = (X, %, u, T) be a m.p.s. If for every f € L3(X, i)

N
Q@ Im lZ<U”f f) =0, then X is ergodic,

N—>ooN
n=1

N
ﬁ Z [(UTf,f)| =0, then X is weakly mixing,
n=1
© /P — lim (ULf,f) =0, then X is mildly mixing,

n—o0

(%) =0, then X is

This theorem also applies to individual elements f € L3(X, 11).
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Anti-Mixing
Let X = (X,%,u, T) be am.ps. If f € L3(X,u) satisfies

@ Usf = f, then f is invariant.

@ p—lim, o UFf = f in the weak (and hence norm) topology
for some minimal idempotent ultrafilter p, then f is compact
(cf. Theorem 2.25 in [4]), i.e., f € L*(X, K, i) where
(X, K, p, T) is the Kronecker factor of (X, A, u, T).

Q inm [|UFf — f||2 = 0, for some (n,)32; C N, then f is rigid.
—00

For f,g € L3(X, 1), we have (f,g) =0 if
© f is invariant and g is ergodic.

@ f is compact and g is weakly mixing.

© f is rigid and g is mildly mixing.

v
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The dual of strong mixing?

Theorem (Blum and Hanson, [5])

The mp.s. X = (X, B,u, T) is if and only if for
any f € L3(X, ) and any increasing (n)32; C N we have

lim i U =0. (12)

K—oo K
k=1

Definition
An element g € L2(X, 1) is if there exists
h e L2(X,p) and (nk)52; C N for which

g=lim - Z U%h. (13)

If fis and g is , then (f,g) = 0.
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The dual of countable Lebesgue spectrum?

Definition

An element g € L?(X, p) is very weakly rigid if there exists
(he)2, Ce L2(X, 1), (cnk)nkez € C and (ng)32; € N for which

K
1 5
m_ X kg_l Cn.k UT i, and (14)

(Z Ian7KI2> [1hkll* = o(K?). (15)

If f is well approximated by the “Lebesgue spectrum subspace”
and g is very weakly rigid, then (f, g) = 0.

In [2] it is shown that a 'typical’ m.p.s. is weakly mixing and rigid,
hence the class of very weakly rigid system is also quite large, and
might include many systems.

v
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A strong mixing van der Corput difference theorem

Theorem (MvdCT)
If (x,)5, C H is a bounded sequence satisfying

~0, (16)

then (x,)2, is a . This means that
for any other bounded sequence (y,);>; € H we morally (but not
literally) have that

N

.1
lim N Z(Xn-i-hayn)

N—oo
n=1

lim = 0. (17)
h—o0
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A Lebesgue spectrum vdCdt

Theorem (MvdCT)
If (x,)0, € H is a bounded sequence satisfying for all h € N

N
1
E Xn+h Xn
n=1

then (x,)%2, is a nearly orthogonal sequence. This means that for
any other in some other Hilbert space 7 whose vectors are
sequences of vectors from H, the set {(x,1r)2;}52, consists of
orthogonal vectors.

=0, (18)

5\,

See Chapter 2 of [6] for variations of MvdCT related to other
levels of mixing, as well as uniform distribution. See also [12].
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Noncommutative ergodic theorems 1/2

Theorem ((Corollary 1.7 in [7]))

Let a: R, — R be a Hardy field function for which there exist
some € > 0 and d € Z, satisfying
a(n) o pdtt

P e A o) (19)

Furthermore, let (X, %, 1) be a probability space and
T,S : X — X be measure preserving transformations. Suppose
that the system (X, %, u, T) has . Then

(i) For every f,g € L>(X, ) we have

lim —ZT”f Slelg — EB[f|Z7] - E[g|Zs],  (20)

N—oo N

where the limit is taken in L>(X, p).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)
(ii) For every A € B we have

N—oo

N
1
1 _n ~la(n)] 3
lim N nE:1 w(ANT"ANS A) > u(A)°. (21)

In [8] a similar theorem is proven for a(n) = p(n) with p(x) € Z[x]
of degree at least 2. It is also mentioned in [7] that the zero
entropy assumption on T cannot, in general, be weakened.
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Application 1/4

Theorem (F., 2022)

Let (X, A, 1) be a probability space and let T,S : X — X be
measure preserving transformations. Suppose that the m.p.s.

(X, P, u, T) is very weakly rigid, and that the m.p.s. (X, %, u,S)
is totally ergodic. Let (k,)>>; C N be a sequence for which
((knn — kn)a (mod 1))%2, is uniformly distributed for all
aceR\Qand heN.

(i) Forany f,g € L>(X, ) we have

lim —ZT” . Sk"g = B[f|Z7]|E[g|Zs], (22)

N—oo N

with convergence taking place in L>(X, 11).
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Application 1/4 continued

Theorem (Continued)
(i) IfA€ B then

. n kn >

Jim Z,uAﬂT ANS A > (AP, (23)

(iii) If ((knern — ko) (mod 1)), is uniformly distributed in its
orbit closure for all « € R then (i) and (ii) hold even when
(X, A, 1, S) is not ergodic.
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Sets of K but not K + 1 recurrence?

Theorem ((Theorem 1.4 and Corollary 4.4 of [9]))

Let k > 2 be an integer and o € R be irrational. Let
R« ={neN|nfa € [},3]}.
(i) If (X, 9B, ) is a probability space and
Ty, Ty, -+, Te—1 : X — X are commuting measure preserving
transformations, then for any A € 2 with u(A) > 0, there
exists n € Ry for which

p(ANT"ANT,"AN---N T, "A) > 0. (24)

(ii) There exists a m.p.s. (X, B, u, T) and a set A € A satisfying
w(A) > 0 such that for all n € R, we have

WANT "ANT 2"AN---N T *A) = 0. (25)

Sohail Farhangi Mixing, van der Corput's difference theorem, Katai's _L criterion Frame22




Application 2/4

Theorem (F., 2022)

Let k > 2 be an integer and o € R be irrational. Let

R« ={neN| nfa € [3,3]}. Let (X, B, 1) be a probability space
and Ty, Ty, --- |, Tx_1 : X = X commuting measure preserving
transformations. Let S : X — X be an measure preserving
transformation for which (X, 8, u,S) is very weakly rigid, and
{S, T1, Tp,---, Tx_1} generate a nilpotent group. For any A € A

with p(A) > 0, there exists n € Ry for which

p(ANST"TANT"ANT,"An---N T, "JA) > 0. (26)

It is worth noting that the skew system (T2, %2 m?, T) with
T(x,y) = (x + a,y + x) is the system used in item (ii) of the last
slide when k = 2. Consequently, the current theorem does not
hold for a general S with
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Application 3/4

Theorem (F., 2022)

Let (X, A, 1) be a probability space and T,S : X — X be
measure preserving transformations. Suppose that (X, %, u, T) is
very weakly rigid and (X, B, i, S) is totally ergodic. Let

p1, -, px € Q[x] be a collection of integer polynomials such that
{p1(n+ h) — pi(n), p2(n+ h) — ps(n) - - -, p(n + h) —

pi(n), p2(n) — p1(n),--- , px(n) — p1(n)} is independent for all

h € N. For any fy, f,- -, fx € L(X, 1), we have

N K K
1
Rem 2 n i(n) £ y
im, 5 3 T [ 5% = Bloizn [ ] [ @)

i=

with convergence taking place in L>(X, ).
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Application 4/4

Theorem (F., 2022)

Let (X, %, 1) be a probability space and T,5;,S, : X — X be
measure preserving transformations. Suppose that (X, 2, u, T) is
very weakly rigid, Sy and S, commute, and (X, %, i, S;) is weakly
mixing. Let p: R — R either be a polynomial of degree at least 2,
or of the form p(n) = n®log(n)? with « > 1 and 3 < 0. For any
fo, fi, fo € L>°(X, ) satistying [, fdu =0, we have

N
H 1 n n n
lim n§:1 T'f, - Sfy - sketlg — o, (28)

with convergence taking place in L2(X, ).
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The following slides contain statements which | believed to be true
when | gave this talk, but for which | had not yet written down a
formal proof. Upon trying to write down a formal proof, | obtained
different statements which are discussed in the file in the link
below.

https://sohailfarhangi.files.wordpress.com /2023 /03 /vanger.orput,ndya
//sohailfarhangi.files.wordpress.com/2023/03/
van_der_corput_and_katai.pdf

Consequently, the variations of Katai's criterion presented in the
following slides are now stated as conjectures instead of theorems.
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Katai's orthogonality criterion

Theorem (Katai, [11])

Let (c,)32; be a bounded sequence of complex numbers satisfying

N—oo0

N
.1 Z _
lim N - ConCqn = 0, (29)

for all distinct primes p and q. If f : N — C is a bounded
multiplicative function, then

.1 —
Jim Z cof(n) = 0. (30)
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Ergodicity and Katai's criterion

Conjecture (F., 2022)

Let (pk)?2, be the increasing enumeration of the primes. Let
(cn)52, be a bounded sequence of complex numbers such that

1 &K1
5 D 7 D oo

kiko=1 = n=1

lim limsup
K=o N—oo

= i) (31)

If f : N — C is a bounded multiplicative function, then
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Strong mixing and Katai's criterion

Conjecture (F., 2022)

Let (ax)?2; € N be increasing. Let (c,)32, be a bounded sequence
of complex numbers such that for all W € N we have

=0. (33)

If f : N — C satisfies

for some bounded (di)?2; € C and g : Q — C, then
N
1 _
lim —» «¢,f(n)=0. (35)

N—oo N
n=1
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Lebesgue spectrum and Katai's criterion

Conjecture (F., 2022)

Let (ak)72; € N be increasing. Let (c,)32; be a bounded sequence
of complex numbers such that for all k; # k, € N we have

N

1

N g Cay, nCagyn| = O (36)
n=1

lim
N— o0

If f : N — C satisfies

lim limsup

K—=00 N

1 —
Jim > cf(n)=0. (38)
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