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Partition regularity

Definition

Let R be a ring, n,m ∈ N, and p1, · · · , pm ∈ R[x1, · · · , xn] be
polynomials. The system of equations

p1(x1, · · · , xn) = 0
...

pm(x1, · · · , xn) = 0

(1)

is partition regular (p.r.) if for any partition R \ {0} =
⋃r

i=1 Ci ,
there is some 1 ≤ i0 ≤ r for which Ci0 contais a solution to the
system of equations in (1). We remove 0 since most equations that
we consider will be homogeneous and we want to omit trivial
solutions.
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z , Schur 1916 [17]
2) van der Waerden 1927 [20] (arithmetic progressions or A.P.s)

x1 − x2 = x2 − x3
...

xn−2 − xn−1 = xn−1 − xn

3) Brauer 1928 [4] (A.P.s and their common difference)

x1 − x2 = x0
...

xn−1 − xn = x0
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Positive results 2/2

4) Rado 1933 [15] classified which finite systems of linear
equations are p.r.
5) x − y = p(z) with p(z) ∈ zZ[z ], Bergelson 1996 [2] (page 53)
6) Bergelson, Moreira, and Johnson 2017 [3], for pi(x) ∈ xZ[x ]

x1 − x2 = p1(x0)
...

xn−1 − xn = pn−1(x0)

7) x2 − y 2 = z , Moreira 2017 [13]
8) z = xy , Sahasrabudhe 2018 [16]
9) x21 + x22 + x23 + x24 = x25 , Chow, Lindqvist, Prendiville [6], 2021.
(Some results here use the circle method, see also Prendiville [14])
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Negative results (all using Rado’s cp colorings)

The following systems of equations are not partition regular over N.
1) 2x + 3y = z , Rado 1933 [15]
2) Rado 1933 [15]

2x + y = z
3w + y = z

3) x + y = z2 (ignoring 2 + 2 = 22), Csikvári, Gyarmati, and
Sárközy 2012 [7]
4) x − 2y = z2, Di Nasso and Luperi Baglini 2018 [8]
5) x2 − 2y 2 = z , Di Nasso and Luperi Baglini 2018 [8]
6) x + y = w 3z2, F. and Magner 2022 [10]
7) 2x + 3y = wz2, F. and Magner 2022 [10]
8) F. and Magner 2022 [10]

x1 + 17y1 = w1z
100
1

9x2 + 18y2 = w2z
2
2
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x2 + y 2 = z2 (VERY popular, [9]), and w 2 + x2 + y 2 = z2

2) a(x2 − y 2) = bz2 + dw (important, cf. [14])
3) x3 + y 3 + z3 = w 3 (cf. [6])
4) x3 + y 3 = 1 + z3

5) x4 + y 4 + z4 = w 4 (cf. [6])
6) (VERY popular, cf. [13])

w = xy
z = x + y

7) 2x − 8y = wz3 (cf. [10])
8) (cf. [10])

16x1 + 17y1 = w1z
8
1

33x2 − 17y2 = w2z
8
2
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The cp-coloring

Let p ∈ N be a prime, and define a coloring (partition)
cp : Q \ {0} → [1, p − 1] by

cp(
r

s
) ≡ p−vp(

r
s
)rs−1 (mod p). (2)

Figure: c−1
3 ({1}) is red and c−1

3 ({2}) is orange. See also [1] and [5].
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Using the cp colorings 1/3

The equation 2x + 3y = z is not partition regular over N, as it
contains no solutions in any cell of c7. To see this, let us assume
for the sake of contradiction that for some i ∈ [1, 6] and
x , y , z ∈ c−1

7 ({i}) we have 2x + 3y = z . By considering the fact
that c7(2x + 3y) = c7(z), we see that

i ≡ c7(z) ≡


2i ≡ c7(2x) if v7(x) < v7(y)

3i ≡ c7(3y) if v7(x) > v7(y)

5i ≡ c7(2x + 3y) if v7(x) = v7(y),

(mod 7)

but none of these congruences can hold modulo 7, which yields the
desired contradiction.
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Using the cp colorings 2/3

The following system of equations is not partition regular over N.

2x + y = z
3w + y = z

(3)

We again assume for the sake of contradiction that there is some
i ∈ [1, 6] and w , x , y , z ∈ Ci satisfying the above system. The
considerations of the previous slide show us that we must have
i = 1 and v7(x), v7(w) > v7(y) = v7(z). WLOG, v7(x) ≥ v7(w),
so a contradiction is obtained by considering the digit zv7(w) in
position v7(w) of the base 7 expansion of z . In particular, we have
that

zv7(w) ≡ yv7(w) + 3i /∈ yv7(w) + {0, 2i} (mod 7). (4)
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Using the cp colorings 3/3

The equation 2x + 3y = wz2 is not partition regular over N. Let us
assume for the sake of contradiction that there was some
i ∈ [1, 42] and w , x , y , z ∈ c−1

43 ({i}) satisfying the given equation.
Since we have c43(2x + 3y) = c43(wz2), we see that

i3 ≡ c43(wz2) ≡


2i ≡ c43(2x) if v43(x) < v43(y)

3i ≡ c43(3y) if v43(x) > v43(y)

5i ≡ c43(2x + 3y) if v43(x) = v43(y),

(mod 43)

but none of the above congruences are solvable since 2, 3, and 5
are not squares modulo 43, which yields the desired contradiction.
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Ramsey Theory of the Pythagorean Equation

Graham and Erdős [9] asked whether or not the equation
x2 + y 2 = z2 is partition regular over N, and Erdős offered $250
for a solution. Heule, Kullman, and Marek [12] showed using (a
sophisticated) computer search that for any partition of the form
N = C1 ∪ C2, one of the Ci contains a pythagorean triple, but the
problem remains open for partitions of size 3 or more. In fact, it is
still open as to whether or not for any partition N =

⋃r
i=1 Ci , there

exists 1 ≤ i ≤ r and x , y ∈ Ci for which x2 + y 2 = λ2, where λ
need not come from Ci . The analagous problem for x2 + λ2 = z2 is
also open, but Frantzikinakis and Host [11] showed that many
equations such as 9x2 + 16y 2 = λ2 are partition regular. Sun [18],
[19] (as a corollary of work related to Sarnak’s möbius disjointness
conjecture) showed that ax2 + by 2 = λ2 is partition regular over
the ring of integers of Q(

√
a,
√
b,
√
a + b), so x2 + y 2 = λ2 is p.r.

over Z[
√

2] and x2 + λ2 = z2 is p.r. over Z[i ].
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Pythagorean Triples

We recall that Pythagorean Triples are parameterized by
(x , y , z) = (2kmn, k(m2 − n2), k(m2 + n2)). What can be said
about the range of y and z when x = N is fixed?
Conjecture 1: For each L ∈ N, there exists N ,w ∈ N for which

w , 2w , · · · , Lw ⊆

{
km2 − k

(
N

2mk

)2

| m, k ∈ N

}
. (5)

Conjecture 2: For each L ∈ N, there exists N , k1, k2 ∈ N for
which

{(iw1, jw2) | 1 ≤ i , j ≤ L} ⊆{(
km2 − k

(
N

2mk

)2

, km2 +

(
N

2mk

)2
)

| m, k ∈ N

}
. (6)
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Some implications

If Conjecture 1 is true, then the equation x2 + y 2 = λ2 is partition
regular over N. If Conjecture 2 is true, then the Pythagorean
Equation x2 + y 2 = z2 is partition regular over N. In fact, we only
need weaker versions of Conjecture 1 or Conjecture 2 to hold to
get these implications, but the weaker versions are too technical to
state here since they concern minimal idempotent ultrafilters.

Question: Is there a pleasant parameterization of the quadrauples
(w , x , y , z) for which w 2 + x2 + y 2 = z2? If so, a variant of
Conjecture 2 can be formulated to help and show that the
equation w 2 + x2 + y 2 = z2 is partition regular over N.
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[7] P. Csikvári, K. Gyarmati, and A. Sárközy.
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[9] P. Erdős and R. L. Graham.
Old and new problems and results in combinatorial number
theory, volume 28 of Monographies de L’Enseignement
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