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© A review of Ramsey Theory on rings
e Rado’s ¢, colorings

© An approach to the partition regularity of the Pythagorean
Equation

Sohail Farhangi P.R. Systems of Polynomial Equations 2



Partition regularity

Definition
Let R be aring, n.meN, and p1, -+, pm € R[x1,- -, x,] be
polynomials. The system of equations

pl(Xl7H' 7Xn) =0
: (1)
pm(X17 o 7Xn) =0

is partition regular (p.r.) if for any partition R\ {0} = J_, G,
there is some 1 < jyp < r for which C; contais a solution to the
system of equations in (1). We remove 0 since most equations that
we consider will be homogeneous and we want to omit trivial
solutions.
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z, Schur 1916 [17]
2) van der Waerden 1927 [20] (arithmetic progressions or A.P.s)

X1 —Xo = Xo— X3
Xp—2 — Xp—1 = Xp—1— Xp

3) Brauer 1928 [4] (A.P.s and their common difference)

X1 — X2 = Xo

Xp—1 —Xnp = Xo
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Positive results 2/2

4) Rado 1933 [15] classified which finite systems of linear
equations are p.r.

5) x —y = p(z) with p(z) € zZ]|z], Bergelson 1996 [2] (page 53)
6) Bergelson, Moreira, and Johnson 2017 [3], for p;(x) € xZ[x]

xi—x2 = pi(x)
Xn—1 — Xn = pn—l(XO)
7) x? — y? = z, Moreira 2017 [13]
8) z = x”, Sahasrabudhe 2018 [16]
9) x? + x3 + x§ + xz = x2, Chow, Lindqvist, Prendiville [6], 2021.

(Some results here use the circle method, see also Prendiville [14])
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Negative results (all using Rado’s ¢, colorings)

The following systems of equations are not partition regular over N.
1) 2x + 3y = z, Rado 1933 [15]
2) Rado 1933 [15]

2x+y = z

3w+y = z

3) x +y = z2 (ignoring 2 + 2 = 22), Csikvari, Gyarmati, and
Sérkozy 2012 [7]
4) x — 2y = 72, Di Nasso and Luperi Baglini 2018 [8]
5) x> — 2y? = z, Di Nasso and Luperi Baglini 2018 [g]
6) x+y=w z2 F. and Magner 2022 [10]
7) 2x + 3y = wz?, F. and Magner 2022 [10]
8) F. and Magner 2022 [10]

x1+ 17y = wyzi®
9% 4+ 18y, = W2222
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x +y2 = z? (VERY popular, [9]), and w? + x? + y? = 72
2) a(x* — )— bz? + dw (important, cf. [14])
3) 3+y +z —W (cf. [6])
) X +y}=1+2
5) x*
6)

N

+y* + 2% = w* (cf. [6])
(VERY popular, cf. [13])

w = Xy
zZ = X+y

7) 2x — 8y = wz® (cf. [10])
8) (cf. [10])

16x; + 17y = lef

33x — 17y, = wpZd
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The c,-coloring

Let p € N be a prime, and define a coloring (partition)
¢ 1 Q\ {0} — [1,p — 1] by

(mod p). (2)

Figure: c3*({1}) is red and c; *({2}) is orange. See also [1] and [5].
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Using the ¢, colorings 1/3

The equation 2x 4+ 3y = z is not partition regular over N, as it
contains no solutions in any cell of ¢;. To see this, let us assume
for the sake of contradiction that for some i € [1, 6] and

x,y,z € ¢; '({i}) we have 2x + 3y = z. By considering the fact
that ¢;(2x + 3y) = ¢7(z), we see that

2i = ¢7(2x) if v7(x) < ve(y)
= ¢7(3y) if vo(x) > w(y) (mod 7)
5/ = ¢c7(2x + 3y)  if v(x) = wr(y),

I
Q9
—~

N
~

Il

@

Il

but none of these congruences can hold modulo 7, which yields the
desired contradiction.
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Using the ¢, colorings 2/3

The following system of equations is not partition regular over N.

2x+y = z
3w+y = z (3)

We again assume for the sake of contradiction that there is some
i €[1,6] and w, x,y,z € C; satisfying the above system. The
considerations of the previous slide show us that we must have
i=1and v7(x), vz(w) > w(y) = v¢(2). WLOG, v7(x) > v7(w),
so a contradiction is obtained by considering the digit z,,(,) in
position v7(w) of the base 7 expansion of z. In particular, we have
that

Zvs(w) = Yvr(w) +3i §é Yva(w) + {07 2’} (mOd 7) (4)
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Using the ¢, colorings 3/3

The equation 2x + 3y = wz? is not partition regular over N. Let us
assume for the sake of contradiction that there was some

i €[1,42] and w, x,y,z € c;3'({i}) satisfying the given equation.
Since we have cy3(2x + 3y) = cy3(wz?), we see that

2i = cy3(2x) if vas(x) < vas(y)
| = C43(3_y) if V43(X) > V43(y) (mod 43)
5i = cp3(2x + 3y)  if vaz(x) = wvaz(y),

Il
0
w
—~
5
~
Il
@
|

but none of the above congruences are solvable since 2,3, and 5
are not squares modulo 43, which yields the desired contradiction.
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Ramsey Theory of the Pythagorean Equation

Graham and Erdds [9] asked whether or not the equation

x? + y? = 7% is partition regular over N, and Erdds offered $250
for a solution. Heule, Kullman, and Marek [12] showed using (a
sophisticated) computer search that for any partition of the form
N = (3 U G, one of the C; contains a pythagorean triple, but the
problem remains open for partitions of size 3 or more. In fact, it is
still open as to whether or not for any partition N = | J/_; C;, there
exists 1 < i < r and x,y € G for which x> 4 y? = \2, where \
need not come from C;. The analagous problem for x? + \? = z
also open, but Frantzikinakis and Host [11] showed that many
equations such as 9x? + 16y? = A\? are partition regular. Sun [18],
[19] (as a corollary of work related to Sarnak’'s mobius disjointness
conjecture) showed that ax? + by? = \? is partition regular over
the ring of integers of Q(v/a, V/b,va + b), so x> + y*> = 2 is p.r.
over Z[v/2] and x? + \? = Z2 is p.r. over Z][i].

2is
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Pythagorean Triples

We recall that Pythagorean Triples are parameterized by
(x,y,z) = (2kmn, k(m? — n?), k(m? + n?)). What can be said
about the range of y and z when x = N is fixed?

Conjecture 1: For each L € N, there exists N, w € N for which

2
w, 2w, Lw C {km2_k(%> |m,keN}. (5)

Conjecture 2: For each L € N, there exists N, ky, ko € N for
which

{(img, juwy) [ 1< j <L} C

{(km2 — k (%)2,km2+ (%)j | m, k € N}. (6)
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Some implications

If Conjecture 1 is true, then the equation x> + y? = )2 is partition
regular over N. If Conjecture 2 is true, then the Pythagorean
Equation x? + y? = 72 is partition regular over N. In fact, we only
need weaker versions of Conjecture 1 or Conjecture 2 to hold to
get these implications, but the weaker versions are too technical to
state here since they concern minimal idempotent ultrafilters.

Question: Is there a pleasant parameterization of the quadrauples
(w, x, y, z) for which w? + x? + y? = z?? If so, a variant of
Conjecture 2 can be formulated to help and show that the
equation w? + x? + y? = 22 is partition regular over N.
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