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The Classical van der Corput Difference Theorem

Definition: A sequence (x,):2,; C [0, 1] is uniformly distributed if for any
open interval (a, b) C [0, 1] we have

1
lim N{1§n§N|xn€(a,b)} =b—a.

N—00

Theorem(van der Corput): If (x,)52, C [0,1] is such that (x5 — x,

n=1

(mod 1))>°, is uniformly distributed for every h € N, then (x,)0, is itself
uniformly distributed.
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Hilbertian van der Corput Difference Theorem

vdC1: If (z,)0°; € H is a bounded sequence satisfying

N

_ 1
Jim, 7 2 o) =0

for every h € N, then

|
Nh—r>noo||N21$”H = 0.
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Theorem(Poincaré): For any measure preserving system (X, %A, u,T), and
any A € # with u(A) > 0, there exists n € N for which

w(ANT™"A) > 0.

Theorem (Furstenberg-Sarkozy): For any measure preserving system (X, 4, u, T),
and any A € % with pu(A) > 0, there exists n € N for which

WANT ™ A) > 0.

Theorem (Furstenberg): For any measure preserving system (X, %, u,T),
any ¢ € N, and any A € A with u(A) > 0, there exists n € N for which

WANT"ANT2"AN---NT"A) > 0.
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A Hilbertian van der Corput Difference Theorem

Variant

vdC2: If (z,):°; C H is a bounded sequence satisfying

N

: 1
RENTDBEATEY

lim
h—00

then

1 N
Jim Iy 2 anll =0,
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Another Hilbertian van der Corput Difference
Theorem Variant

vdC3: If (z,):°; C H is a bounded sequence satisfying

1 & l
A 77 2|y 2 (o) =0

then

1 N
Jim Iy 2 anll =0,

Question: Why is this the variant of van der Corput’s Difference Theorem
that is used in the proof of Furstenberg’s multiple recurrence Theorem?
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The Ergodic Hierarchy of Mixing

Definition: Let X = (X, %, u,T) be a measure preserving system. If for
every A, B € % we have

N
1 npy _ . .
. ]\}EHOON z; P(ANT"B) = u(A)u(B), then X is ergodic.

H N
1
1 L —n gy _ _ '
. j'-}l—r>nooH 2 ]\}1_r>n00|N El P(ANT"B) — u(A)u(B)| = 0, then X is weakly
mixing.
. = pu(A)u(B), then X is

If there exists a g-algebra o7 such that {T~"A | A € o/, n > 0} generates %,
and for every A, B € &/ and n > 1 we have u(ANT7"B) = pu(A)u(B), then
X 1s Bernoulli.
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Symmetry and Mixing

Theorem: Let X = (X, %, u,T) be a measure preserving system. If for
every A € % we have

N
: 1 —n _ 2 : :
. Nll_rgoﬁ gl P(ANT"A) = u(A)?, then X is ergodic.

N
1
: 1 : —n 21 :
. ]}Eﬁoﬁ hg_l J\}l—%olﬁ 5_1 w(ANT™"A) — u(A)?] = 0, then X is weakly
mixing. :
. = 1(A)?, then X is
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Mixing van der Corput Theorems

Theorem(A. Tserunyan): Let & be a filter. If (e,)s2; € H is a
bounded sequence, then

P — lim & — lim (e,, e up) =0= 7 — lim (f,e,) =0Vf € H.

h—00 n—o00 n—o00

Remark: To see the resemblance with our previous van der Corput Theorems,
we first conisder a special case in which e,, = U"e;, where U : H — H is a
unitary operator. In this case, we see that

P — lim P — lim (e, eppp) = P — lim P — lim (Ue;, U ;)

h—00 n—00 h—00 n—00

= P — lim & — lim (e;,U"¢;) = & — lim (e1, Ue;)

h—o00 n— 00 h—00
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Hilbertian (Cesaro) van der Corput Difference
Theorems Revisited

Theorem: Let (2,)0°; C H be a bounded sequences which satisfies any of
(4), (i), and (737).

\Y
|
(i) lim ¥ Z<:L‘,,+;,, r,) =0 for every h € N.

N —00 -
n=1

1 & ] &
) 3 L v =0
Then

|
Nh_{nOOHWX;%H = 0.
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Bernoulli-Mixing van der Corput’s Difference
Theorem

MvdC1: If (x,)>2; C H is a bounded sequence satisfying

o0

, 1
]\}gnoo N Zl<xn+ha $n> — 07

for every h € N, then (x,)32, is a nearly orthogonal sequence.

Remark: One way to understand this result is to consider a new Hilbert
space H', whose elements are sequences ()5, of vectors coming from H.
[ntuitively, we may let

1 N

<(5'7n>n:17 (yn>n:1>7-l’: A};mooﬁ ;@m yn>

be the inner product on H'.
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The hypothesis that

1 -
0= lim Nz<xn+haxn> — <Uh<xn>n 1) <xn>n:1>7-[’7

N—oo
n=1

(cfu(ANT™"B)=u(A)u(B)Y A,Be o ,n>1)

for every h € N verifies that {U"(x,,)2%,}2°, is an orthonormal set in H', where
U denotes the left shift operator. It follows that

S0 )i, i dwl” < il ¥ ()i € M
h=0

Corollary: For any totally ergodic measure preserving system (X, %, u,T),
any rigid p-preserving transformation S : X — X, and any A, B € A, we
have

—n —n? L
ngnOONZu ANT™™B) = p(A)u(B).
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van der Corput’s Difference Theorem

MvdC2: If (z,)7°; C H is a bounded sequence satisfying

1
lim N@W;mm,m =0,

then (z,)2%, is a

Remark: Let H', (-, -, )3y, and U be as before. The given hypothesis implies

0= lim (U"(2n)721, ()7L )20

h—00 n=1

verifies that {U" ()0}, is a in ‘H'. It follows
that

lim <Uh(ajn)n 1> (yTL)?zO 1>7'[ 0V (yn) =1 < H/‘

h—00
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Theorem: Let (x,)2°; C H be a nearly strongly mixing sequence, (1,)5°; C
H a rigid sequence, and (cn)oey C C a rigid sequence. We have

N

, 1
A, 2o e} =0

and

| X
lim — E =
Novso N — Cnitn = 0,

with convergence taking place in the weak topology:.
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Weak Mixing van der Corput’s Difference Theorem
MvdC3: If (z,)°°; C H is a bounded sequence satisfying

1 H
Jim >

then (z,)>°, is a nearly weakly mixing sequence.
Remark: Let H', (-, -, )4y, and U be as before. The given hypothesis implies

0= lim _Z‘ Uh xn)? 17(3771)71 1>’H"

H—oo H

n 2 _
(cf}}gnoo—z;mAHT A)— (A =0V A e B)
verifies that {U"(z,)%,}5°, is a weakly mixing sequence in H'. It follows that

$$ﬁ§guﬂmﬁhw%nwwnvw%leﬁ
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Theorem: Let (x,)>; C H be anearly weakly mixing sequence, (1,)5°; C H
a compact sequence, and (€)%, C C a compact sequence. We have

|
]\}l—rgoﬁin_:l <517n,7°n> =0
and
|
R an ual| = 0.

Corollary: For any measure preserving system (X, %, u,T'), any £ € N, and
any compact p-preserving transformation S : X — X, there exists n € N for
which

wW(STTANT "ANT AN-NT™A) >0
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Ergodic van der Corput’s Difference Theorem

MvdC4: If (x,)7°; C H is a bounded sequence satisfying

. : 1
lim lim N Z (T, Tn)| =0,

H—o00o N—oo
1<h<H

1<n<N

then (z,)2°, is a completely ergodic sequence.

Remark: Let H', (-, -, )4y, and U be as before. The given hypothesis implies

0= lim <Uh(xn>720:17 (@n)nz1)2s

B oo n=1

(cf. lim —ZM (ANT"A) = u(A? VY A € B)

N—oo IV

verifies that {U"(z,,)%,}5%, is a ergodic sequence in H'. Tt follows that
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1 H

Jim — ;wh(xn)z%, (o) =0V (yn)ioy € H'.
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Theorem: Let (x,)°°; C H be a completely ergodic sequence, (1,)°°; C H
a invariant sequence, and (¢,)52; C C a invariant sequence. We have

N

A}Eﬂ@@%;@n,w =0
and
|
Jmn iy S el =0

The live talk had ended on this slide.
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Mixing and Uniform Distribution

Definition: Let us recall that C is a Hilbert space when equipped with the
inner product {(c1,co) = ¢163. By abuse of notation, let Cy(T) denote the
set of continuous complex valued functions f on T with fT fdm = 0. Let
(2,)2%; C T be a sequence.

00
n=1

(1) (SEn>n , is a e-sequence if for every f € T, f(z,))
ergodic sequence.

is a completely

(2) (z,)22, is a wm-sequence if for every f € Cy(T), (f(z,))°
weakly mixing sequence.

> 1 Is anearly

(3) (7,)2, is a mm-sequence if for every f € Cy(T), (f(x,))>
mildly mixing sequence.

- | Is anearly

(4) (z,)0%, is a sm-sequence if for every f € Cy(T), (f(x,))>2, is a nearly
strongly mixing sequence.

(5) (z,)5%, is a o-sequence if for every f € Cy(T), (f(x,))>2, is a nearly
orthogonal sequence.
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Notions Complementary to Mixing

Let A := (n4)72; € N have positive lower natural density.
(1) Ais invariant if d(AN(A—1)) =0.

2) Ais compact if (14(n))>2, is a compact sequence of complex numbers.

n=1

(2)
(3) Aisrigid if (14(n))>2, is a rigid sequence of complex numbers.
(4)

4) A has zero-entropy if (14(n))>°, is a zero-entropy sequence of complex
numbers.
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A Consequence of the Pointwise Ergodic Theorem

Definition: (z,)>°, C [0, 1]? is totally uniformly distributed if for any
a,b € N the sequence (x4,14)°2 is totally uniformly distributed.

Fact: If X = ([0,1]9, 8, m,T) is an ergodic m.p.s. then for Lebesgue a.e.
z € [0,1]%, the sequence (T"x)°°, is uniformly distributed. If X is totally
ergodic, then for Lebesgue a.e. x € [0,1]%, the sequence (T"x)°°, is totally
uniformly distributed.

Remark: The points z € [0, 1] for which the fact holds are precisely that x
that are generic for T
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The Consequence of Higher Order Pointwise Ergodic
Theorems

Theorem: Let X := ([0, 1]%, %, m,T) be an ergodic m.p.s. and let z € [0, 1]
be a generic point for T
(1) If X is weakly mixing, then (T"x)%°; is a wm-sequence.

(1.5) If X is mildly mixing, then (T"x)52, is a mm-sequence.
(2) If X is strongly mixing, then (T"x)>°, is a sm-sequence.
)

(3) (T"x)2, is not an o-sequence.
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Discrepancy

Given a sequence (x,)Y_; C [0,1]% the discrepancy of (z,,)>>, C [0, 1] is

n=

denoted by Dy ((z,)"_,) and given by
1
Dy((zn)y—y) =suwp | =[{1<n < N[z, €BY-mUB), (1)
Ber |V

where R denotes the collection of all rectangular prisms contained in [0, 1]%.
For an infinite sequence (x,,)°; C [0, 1], we let

D((wa)i2y) = Jim Dav((w,)yy), and we let 2)
D)1, (Ng)2a) = lm Dy (), 21), (3)

provided that the limit exists.
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Ergodic van der Corput

Theorem: {Z(, )} menz © T is uniformly distributed if and only if for
every k € N, we have

1

lim sup |—— Z e ikenm| — (), 4
oo N’M2K|NM 1<n<N l .
1gmgM

Theorem: If (x,);2; C T is such that (x,n — 25) 0, p)ene is uniformly dis-
tributed, then (z,)%° is also uniformly distributed.

n=1
distributed, then (x,, )72, is uniformly distributed for any invariant sequence

()72 1

'Theorem’: If (x,);2; C T is such that (Tu1n — @) pyene is uniformly
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Weakly Mixing van der Corput

Theorem: Let (z,)7°; C [0, 1] be a sequence for which

lim —ZD Tpan — Tn)oeq) = 0. ()

H—oo H
Then (x,)>2; is a wm-sequence.
Theorem: (z,)0°; C [0,1]% is a wm-sequence if and only if (z,, )7, is uni-

formly distributed whenever (n;)72, C N is compact.
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Mildly Mixing van der Corput

Theorem: Let (z,)7°; C [0, 1] be a sequence for which

[P* — lim D((xpin — 2,)°2,) = 0. (6)

h—00
Then (x,)>2, is a mm-sequence.

'Theorem’: (z,)>, C [0,1]% is a mm-sequence if and only if (z,, )72, is

uniformly distributed Whenever (ng)72; C N is rigid.
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Strongly Mixing van der Corput

Theorem: Let (z,)7°; C [0, 1] be a sequence for which

lim D((xpn — 2,)22) = 0. (7)

h—00

Then (x,)>2, is a sm-sequence.
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Nearly Orthogonal van der Corput and A Counter
Example

Theorem: (:cn)n C [0,1]¢ is an o-sequence if and only if for each h € N
(T, Tpan)>y C [0,1]%¢ is uniformly distributed.

Example: Let oz € R\ Q be artbirary and consider the sequence (x,)5,
defined by x, = n?a (mod 1) if n is odd and z,, = 2(n — 1)*>a (mod 1) if n is
even.

(1) (z,)5% is not an o-sequence.

(2) For each h € N the sequence (z,p — x,)5 is uniformly distributed.
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A Conjecture

Conjecture: If (2,)°, C [0,1]? is such that (z,,, — 2,)°%, is uniformly
distributed for every h € N, then (z,, )7, is uniformly distribtued for any
zero-entropy sequence (1) ;.
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Theorem: For (z,,)°°, C [0, 1]% the following are equivalent:
(1) (x,)22, is a wm-sequence.

(2) For any uniformly distributed (y,,)22; € [0,1]% and (Ng)>2; € N for

which ({ (@, Yntn)net Frers (Ng)o21) is a permissible pair, we have

f}ﬁﬂmﬁZ;D s )1 (N2) = 0. 5)

(3) For any (Ng)o2y € N for which ({(zn, Znin)ner by (Ng)o2y) is a per-
missible pair, we have

I}EHOOEZD xmanrh n=1> <N> =1 ) 0. (9>

(4) For any (Ng)o2y € N that makes ({(znrn — Tn)nty }i21s (Ng)oz1)) a per-
missible pair, we have

}}flooﬁ Z D((@nih — @n)pe1, (Ng)g=1) = 0. (10)
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’Theorem’: For (z,)°°, C [0, 1]% the following are equivalent:
(1) (x,)22, is a mm-sequence.

(2) For any uniformly distributed (y,)52; € [0,1]% and (Ng)o2; € N for
which ({(Zn, Ynrn)ne1 i1y (Ng)e21) is a permissible pair, we have

[P* — lim D((@n, Yntn)pers (NQEil) = 0. (11)

h—00

(3) For any (Ng)o2y € N for which ({(Zn, Znin)ner by (Ng)o2y) is a per-
missible pair, we have

[P* — Tim D((zn, Tpin)pei; (Nq)gil) = 0. (12)

h—00

(4) For any (N, € N that makes ({(@oen — 222,175, (N)2))) a
permissible pair, we have

[P* — lim D((@nn — )y, (Ng)gzr) = 0. (13)

h—00
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Theorem: For (z,,)°°, C [0, 1]% the following are equivalent:

(1) (x,)22, is a sm-sequence.

(2) For any uniformly distributed (y,)52; € [0,1]% and (Ng)o2; € N for
which ({(Zn, Ynin)ne1 i1y (Ng)o21) is a permissible pair, we have

lim D((@n, Ynth)pets (NQE.;l) = 0. (14)

h—00

(3) For any (Ng)o2y € N for which ({(Zn, Znin)ner by (Ng)o2y) is a per-
missible pair, we have

lim D((2n, Tnyn)pers (Nq>§i1) = 0. (15)

h—00

(4) For any (N, € N that makes ({(@oen — 222,175, (N)2))) a
permissible pair, we have

lim D((2n — Tn)nzs (Ng)g21) = 0. (16)

h—00 ¢=1



