

Connections between van der Corput's Difference Theorem and the Hierarchy of Mixing Properties Part 3.

Sohail Farhangi

October 2020

The Classical van der Corput Difference Theorem

Theorem: If $(x_n)_{n=1}^{\infty} \subseteq \mathbb{T}^d$ is a sequence for which $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself a uniformly distributed sequence.

Example: For any $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ the sequence $(n^2\alpha \pmod{1})_{n=1}^{\infty}$ is uniformly distributed in $[0, 1]$.

Some New Notions

Definition: Let us recall that \mathbb{C} is a Hilbert space when equipped with the inner product $\langle c_1, c_2 \rangle = c_1 \overline{c_2}$. By abuse of notation, let $C_0(\mathbb{T})$ denote the set of continuous complex valued functions f on \mathbb{T} with $\int_{\mathbb{T}} f dm = 0$. Let $(x_n)_{n=1}^{\infty} \subseteq \mathbb{T}^d$ be a sequence.

- (1) $(x_n)_{n=1}^{\infty}$ is a **wm-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly weakly mixing sequence.
- (1.5) $(x_n)_{n=1}^{\infty}$ is a **mm-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly mildly mixing sequence.
- (2) $(x_n)_{n=1}^{\infty}$ is a **sm-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly strongly mixing sequence.
- (3) $(x_n)_{n=1}^{\infty}$ is a **o-sequence** if for every $f \in C_0(\mathbb{T})$, $(f(x_n))_{n=1}^{\infty}$ is a nearly orthogonal sequence.

Notions Complementary to Mixing

Let $A := (n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ have positive lower natural density.

- (1) A is **invariant** if $d(A \cap (A - 1)) = 0$.
- (2) A is **compact** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a compact sequence of complex numbers.
- (3) A is **rigid** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a rigid sequence of complex numbers.
- (4) A has **zero-entropy** if $(\mathbb{1}_A(n))_{n=1}^{\infty}$ is a zero-entropy sequence of complex numbers.

A Consequence of the Pointwise Ergodic Theorem

Definition: $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$ is **totally uniformly distributed** if for any $a, b \in \mathbb{N}$ the sequence $(x_{an+b})_{n=1}^{\infty}$ is totally uniformly distributed.

Fact: If $\mathcal{X} := ([0, 1]^d, \mathcal{B}, m, T)$ is an ergodic m.p.s. then for Lebesgue a.e. $x \in [0, 1]^d$, the sequence $(T^n x)_{n=1}^{\infty}$ is uniformly distributed. If \mathcal{X} is totally ergodic, then for Lebesgue a.e. $x \in [0, 1]^d$, the sequence $(T^n x)_{n=1}^{\infty}$ is totally uniformly distributed.

Remark: The points $x \in [0, 1]$ for which the fact holds are precisely that x that are generic for T .

The Consequence of Higher Order Pointwise Ergodic Theorems

Theorem: Let $\mathcal{X} := ([0, 1]^d, \mathcal{B}, m, T)$ be an ergodic m.p.s. and let $x \in [0, 1]^d$ be a generic point for T .

- (1) If \mathcal{X} is weakly mixing, then $(T^n x)_{n=1}^\infty$ is a **wm**-sequence.
- (1.5) If \mathcal{X} is mildly mixing, then $(T^n x)_{n=1}^\infty$ is a **mm**-sequence.
- (2) If \mathcal{X} is strongly mixing, then $(T^n x)_{n=1}^\infty$ is a **sm**-sequence.
- (3) $(T^n x)_{n=1}^\infty$ is **not** an **o**-sequence.

Discrepancy

Given a sequence $(x_n)_{n=1}^N \subseteq [0, 1]^d$, the **discrepancy** of $(x_n)_{n=1}^\infty \subseteq [0, 1]^d$ is denoted by $D_N((x_n)_{n=1}^N)$ and given by

$$D_N((x_n)_{n=1}^N) = \sup_{B \in \mathcal{R}} \left| \frac{1}{N} |\{1 \leq n \leq N \mid x_n \in B\}| - m^d(B) \right|, \quad (1)$$

where \mathcal{R} denotes the collection of all rectangular prisms contained in $[0, 1]^d$. For an infinite sequence $(x_n)_{n=1}^\infty \subseteq [0, 1]^d$, we let

$$\overline{D}((x_n)_{n=1}^\infty) = \overline{\lim_{N \rightarrow \infty}} D_N((x_n)_{n=1}^N), \text{ and we let} \quad (2)$$

$$D((x_n)_{n=1}^\infty, (N_q)_{q=1}^\infty) = \lim_{q \rightarrow \infty} D_{N_q}((x_n)_{n=1}^{N_q}), \quad (3)$$

provided that the limit exists.

Ergodic van der Corput

Theorem: $\{x_{(n,m)}\}_{(n,m) \in \mathbb{N}^2} \subseteq \mathbb{T}$ is uniformly distributed if and only if for every $k \in \mathbb{N}$, we have

$$\lim_{K \rightarrow \infty} \sup_{N, M \geq K} \left| \frac{1}{NM} \sum_{\substack{1 \leq n \leq N \\ 1 \leq m \leq M}} e^{2\pi i k x_{n,m}} \right| = 0. \quad (4)$$

Theorem: If $(x_n)_{n=1}^\infty \subseteq \mathbb{T}$ is such that $(x_{n+h} - x_n)_{(n,h) \in \mathbb{N}^2}$ is uniformly distributed, then $(x_n)_{n=1}^\infty$ is also uniformly distributed.

'Theorem': If $(x_n)_{n=1}^\infty \subseteq \mathbb{T}$ is such that $(x_{n+h} - x_n)_{(n,h) \in \mathbb{N}^2}$ is uniformly distributed, then $(x_{n_k})_{k=1}^\infty$ is uniformly distributed for any invariant sequence $(n_k)_{k=1}^\infty$.

Weakly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ be a sequence for which

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0. \quad (5)$$

Then $(x_n)_{n=1}^{\infty}$ is a wm-sequence.

Theorem: $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$ is a wm-sequence if and only if $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed whenever $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ is compact.

Mildly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ be a sequence for which

$$\text{IP}^* - \lim_{h \rightarrow \infty} \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0. \quad (6)$$

Then $(x_n)_{n=1}^{\infty}$ is a mm-sequence.

'Theorem': $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$ is a mm-sequence if and only if $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed whenever $(n_k)_{k=1}^{\infty} \subseteq \mathbb{N}$ is rigid.

Strongly Mixing van der Corput

Theorem: Let $(x_n)_{n=1}^{\infty} \subseteq [0, 1]$ be a sequence for which

$$\lim_{h \rightarrow \infty} \overline{D}((x_{n+h} - x_n)_{n=1}^{\infty}) = 0. \quad (7)$$

Then $(x_n)_{n=1}^{\infty}$ is a sm-sequence.

Nearly Orthogonal van der Corput and A Counter Example

Theorem: $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$ is an *o*-sequence if and only if for each $h \in \mathbb{N}$ $(x_n, x_{n+h})_{n=1}^{\infty} \subseteq [0, 1]^{2d}$ is uniformly distributed.

Example: Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be arbitrary and consider the sequence $(x_n)_{n=1}^{\infty}$ defined by $x_n = n^2\alpha \pmod{1}$ if n is odd and $x_n = 2(n-1)^2\alpha \pmod{1}$ if n is even.

- (1) $(x_n)_{n=1}^{\infty}$ is **not** an *o*-sequence.
- (2) For each $h \in \mathbb{N}$ the sequence $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed.

A Conjecture

Conjecture: If $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^d$ is such that $(x_{n+h} - x_n)_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_{n_k})_{k=1}^{\infty}$ is uniformly distributed for any zero-entropy sequence $(n_k)_{k=1}^{\infty}$.

If and only If Weakly Mixing van der Corput

Theorem: For $(x_n)_{n=1}^{\infty} \subseteq [0, 1]^{d_1}$ the following are equivalent:

- (1) $(x_n)_{n=1}^{\infty}$ is a *wm*-sequence.
- (2) For any uniformly distributed $(y_n)_{n=1}^{\infty} \subseteq [0, 1]^{d_2}$ and $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H D((x_n, y_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0. \quad (8)$$

- (3) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is a permissible pair, we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H D((x_n, x_{n+h})_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0. \quad (9)$$

- (4) For any $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ that makes $(\{(x_{n+h} - x_n)_{n=1}^{\infty}\}_{h=1}^{\infty}, (N_q)_{q=1}^{\infty})$ a permissible pair, we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H D((x_{n+h} - x_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty}) = 0. \quad (10)$$

If and only If Mildly Mixing van der Corput

Theorem': For $(x_n)_{n=1}^\infty \subseteq [0, 1]^{d_1}$ the following are equivalent:

(1) $(x_n)_{n=1}^\infty$ is a mm-sequence.

(2) For any uniformly distributed $(y_n)_{n=1}^\infty \subseteq [0, 1]^{d_2}$ and $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty)$ is a permissible pair, we have

$$\text{IP}^* - \lim_{h \rightarrow \infty} D((x_n, y_{n+h})_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (11)$$

(3) For any $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty)$ is a permissible pair, we have

$$\text{IP}^* - \lim_{h \rightarrow \infty} D((x_n, x_{n+h})_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (12)$$

(4) For any $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ that makes $((\{(x_{n+h} - x_n)_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty))$ a permissible pair, we have

$$\text{IP}^* - \lim_{h \rightarrow \infty} D((x_{n+h} - x_n)_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (13)$$

If and only If Strongly Mixing van der Corput

Theorem: For $(x_n)_{n=1}^\infty \subseteq [0, 1]^{d_1}$ the following are equivalent:

- (1) $(x_n)_{n=1}^\infty$ is a sm-sequence.
- (2) For any uniformly distributed $(y_n)_{n=1}^\infty \subseteq [0, 1]^{d_2}$ and $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ for which $(\{(x_n, y_{n+h})_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty)$ is a permissible pair, we have

$$\lim_{h \rightarrow \infty} D((x_n, y_{n+h})_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (14)$$

- (3) For any $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ for which $(\{(x_n, x_{n+h})_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty)$ is a permissible pair, we have

$$\lim_{h \rightarrow \infty} D((x_n, x_{n+h})_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (15)$$

- (4) For any $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ that makes $((\{(x_{n+h} - x_n)_{n=1}^\infty\}_{h=1}^\infty, (N_q)_{q=1}^\infty))$ a permissible pair, we have

$$\lim_{h \rightarrow \infty} D((x_{n+h} - x_n)_{n=1}^\infty, (N_q)_{q=1}^\infty) = 0. \quad (16)$$

Clap Here

