

Connections between van der Corput's Difference Theorem and the Hierarchy of Mixing Properties Part 2.

Sohail Farhangi

October 2020

Standing Assumption

For the rest of this presentation, we will assume that any sequence $(x_n)_{n=1}^{\infty}$ in a Hilbert space \mathcal{H} satisfies

$$\overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \|x_n\|^2 < \infty. \quad (1)$$

Nearly Weakly Mixing sequences

Definition 1: $(f_n)_{n=1}^{\infty}$ is a **nearly weakly mixing sequence** if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$, we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \left| \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, g_n \rangle \right| = 0. \quad (2)$$

Example: If (X, \mathcal{B}, μ, T) is a weakly mixing m.p.s., then for any $f \in L^2(X, \mu)$, $(U_T^n f)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

Weakly Mixing van der Corput

MvdC3: Let \mathcal{H} be a Hilbert space and let $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. If

$$\overline{\lim}_{H \rightarrow \infty} \sum_{h=1}^H \frac{1}{H} \left| \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle f_{n+h}, f_n \rangle \right| = 0, \quad (3)$$

then $(f_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

Nearly Strongly Mixing Sequences

Definition 2: $(f_n)_{n=1}^{\infty}$ is a **nearly strongly mixing sequence** if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$, we have

$$\lim_{h \rightarrow \infty} \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, g_n \rangle = 0. \quad (4)$$

Example: If (X, \mathcal{B}, μ, T) is a strongly mixing m.p.s., then for any $f \in L^2(X, \mu)$, $(U_T^n f)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Strongly Mixing van der Corput

MvdC2: Let \mathcal{H} be a Hilbert space and let $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. If

$$\overline{\lim}_{H \rightarrow \infty} \left| \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle f_{n+h}, f_n \rangle \right| = 0, \quad (5)$$

then $(f_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Nearly Orthogonal Sequences

Definition 2: $(f_n)_{n=1}^{\infty}$ is a **nearly orthogonal sequence** if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$, we have

$$\sum_{h=0}^{\infty} \left| \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, g_n \rangle \right|^2 \leq \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \|g_n\|^2. \quad (6)$$

'Orthogonally Mixing' van der Corput

MvdC1: Let \mathcal{H} be a Hilbert space and let $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. If

$$\overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle f_{n+h}, f_n \rangle = 0, \quad (7)$$

for every $h \in \mathbb{N}$, then $(f_n)_{n=1}^{\infty}$ is an nearly orthogonal sequence.

A Sad Fact of Life

Sad Fact: For any sequence of complex numbers $(x_n)_{n=1}^\infty$ satisfying

$$\overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |x_n| < \infty, \quad (8)$$

there exists a sequence $(y_n)_{n=1}^\infty \subseteq \mathbb{S}^1$ for which

$$\overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N x_{n+h} \overline{y_n} = \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N |x_n|, \quad (9)$$

for every $h \geq 0$.

Characterization of Nearly Weakly Mixing

Theorem 1: $(f_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence if and only if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (f_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$ we have

$$\lim_{H \rightarrow \infty} \sum_{h=1}^H \frac{1}{H} \left| \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, f_n \rangle \right| = 0. \quad (10)$$

Characterization of Nearly Strongly Mixing

Theorem 2: $(f_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence if and only if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (f_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$ we have

$$\lim_{h \rightarrow \infty} \left| \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, f_n \rangle \right| = 0. \quad (11)$$

Characterization of Nearly Orthogonal

Theorem 3: $(f_n)_{n=1}^{\infty}$ is a nearly orthogonal sequence if and only if for any permissible triple of the form $((f_n)_{n=1}^{\infty}, (f_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$ we have

$$\lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, f_n \rangle = 0, \quad (12)$$

for every $h \in \mathbb{N}$.

A Brief Review of Mixing

Mixing Notion	Ergodicity	Weak Mixing	Mild Mixing	Strong Mixing
Complementary Notion	Invariance	Compactness	Rigidity	???
Mixing Notion	K-Mixing	Bernoulli		
Complementary Notion	Zero Entropy	???		

Mixing Notion	K-Mixing	Bernoulli
Complementary Notion	Zero Entropy	???

Compact Sequences

Definition: $(c_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a **compact sequence** if for any $\epsilon > 0$, there exists $K \in \mathbb{N}$ for which

$$\sup_{m \in \mathbb{N}} \min_{1 \leq k \leq K} \overline{\lim_{N \rightarrow \infty}} \frac{1}{N} \sum_{n=1}^N \|c_{n+m} - c_{n+k}\|^2 < \epsilon. \quad (13)$$

Example: If (X, \mathcal{B}, μ, T) is a discrete spectrum m.p.s., then for any $f \in L^2(X, \mu)$, $(U_T^n f)_{n=1}^{\infty}$ is a compact sequence.

Rigid Sequences

Definition: $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a **rigid sequence** if there exists $(k_m)_{m=1}^{\infty} \subseteq \mathbb{N}$ for which

$$\lim_{m \rightarrow \infty} \overline{\lim_{N \rightarrow \infty}} \frac{1}{N} \sum_{n=1}^N \|r_{n+k_m} - r_n\|^2 < \epsilon. \quad (14)$$

Example: If (X, \mathcal{B}, μ, T) is a m.p.s., and $f \in L^2(X, \mu)$ is rigid with respect to U_T , then $(U_T^n f)_{n=1}^{\infty}$ is a rigid sequence.

Zero Entropy Sequences

Definition: $(z_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a **zero entropy sequence** if there exists a dynamical system (X, T) with zero topological entropy, a $x \in X$, and a $f : X \rightarrow \mathcal{H}$ that is continuous with respect to the weak topology of \mathcal{H} for which $z_n = f(T^n x)$.

The Orthogonality between Compactness and Weak Mixing

Theorem 4: If $(w_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly weakly mixing and $(c_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a compact sequence, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle w_n, c_n \rangle = 0. \quad (15)$$

Conjecture 1: If $(w_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly weakly mixing and $(c'_n)_{n=1}^{\infty}$ is a compact sequence of complex numbers then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N c'_n w_n \right\| = 0. \quad (16)$$

The Orthogonality between Rigidity and Mild Mixing

Theorem 5: If $(s_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly strongly (mildly) mixing and $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a rigid sequence, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle s_n, r_n \rangle = 0. \quad (17)$$

Conjecture 2: If $(s_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly strongly (mildly) mixing and $(r'_n)_{n=1}^{\infty}$ is a rigid sequence of complex numbers, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N r'_n s_n \right\| = 0. \quad (18)$$

At Long Last.... An Application!!!!

Let (X, \mathcal{B}, μ) be a probability space.

Exercise 1: Show that if $T : X \rightarrow X$ is a totally ergodic m.p.t., and $p : \mathbb{Z} \rightarrow \mathbb{Z}$ is a polynomial of degree at least 2 then $(\mathbb{1}_{T^n A} - \mu(T^n A))_{n=1}^\infty$ is a nearly orthogonal sequence in $L^2(X, \mu)$.

Exercise 2: Show that if $T : X \rightarrow X$ is a totally ergodic m.p.t. and $S : X \rightarrow X$ is a discrete spectrum m.p.t., then for any polynomial $p : \mathbb{Z} \rightarrow \mathbb{Z}$ of degree at least 2 and any $A, B \in \mathcal{B}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu(T^{p(n)}(A) \cap S^n(B)) = \mu(A)\mu(B). \quad (19)$$

Remark: Can discrete spectrum be relaxed to rigidity?

The Orthogonality between Zero Entropy and K-Mixing

Conjecture 3: If $(o_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly orthogonal (K-mixing) and $(z_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a 'zero entropy' sequence, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle o_n, z_n \rangle = 0. \quad (20)$$

Conjecture 4: If $(o_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is nearly orthogonal (K-mixing) and $(z'_n)_{n=1}^{\infty}$ is a zero entropy sequence of complex numbers, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^{\infty} z'_n o_n \right\| = 0. \quad (21)$$

Mildly Mixing van der Corput

MvdC6: Let \mathcal{H} be a Hilbert space and let $(f_n)_{n=1}^\infty \subseteq \mathcal{H}$ be a bounded sequence. If

$$\text{IP}^* - \lim_{h \rightarrow \infty} \left| \overline{\lim_{N \rightarrow \infty}} \frac{1}{N} \sum_{n=1}^N \langle f_{n+h}, f_n \rangle \right| = 0, \quad (22)$$

then $(f_n)_{n=1}^\infty$ is a nearly mildly mixing sequence. In particular, if $((f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ is a permissible triple, then

$$\text{IP}^* - \lim_{h \rightarrow \infty} \lim_{q \rightarrow \infty} \left| \frac{1}{N_q} \sum_{n=1}^{N_q} \langle f_{n+h}, g_n \rangle \right| = 0. \quad (23)$$

K-Mixing van der Corput

Exercise 3: Formulate and prove a van der Corput difference Theorem corresponding to K-mixing.

Clap here

