

Connections between van der Corput's Difference Theorem and the Hierarchy of Mixing Properties.

Sohail Farhangi

October 2020

Some Existing Variants of van der Corput's Difference Theorem

vdC1: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle = 0,$$

for every $h \in \mathbb{N}$, then

$$\lim_{N \rightarrow \infty} \left\| \frac{1}{N} \sum_{n=1}^N x_n \right\| = 0.$$

Some Existing Variants of van der Corput's Difference Theorem

vdC2: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\overline{\lim}_{h \rightarrow \infty} \left| \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0,$$

then

$$\lim_{N \rightarrow \infty} \left| \left| \frac{1}{N} \sum_{n=1}^N x_n \right| \right| = 0.$$

Some Existing Variants of van der Corput's Difference Theorem

vdC3: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \left| \overline{\lim_{N \rightarrow \infty}} \frac{1}{N} \sum_{n=1}^N \langle x_{n+h}, x_n \rangle \right| = 0,$$

then

$$\lim_{N \rightarrow \infty} \left| \left| \frac{1}{N} \sum_{n=1}^N x_n \right| \right| = 0.$$

Generalizing Existing Variants of van der Corput's Difference Theorem

MvdC1: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle = 0,$$

for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is a **nearly orthogonal sequence**.

Intuitively, $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a nearly orthogonal sequence if there exists another (to be specified) Hilbert space \mathcal{H}' whose elements are sequences of elements from \mathcal{H} , and $\{(x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty}$ is an orthogonal set of vectors in \mathcal{H}' .

Generalizing Existing Variants of van der Corput's Difference Theorem

MvdC2: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\overline{\lim}_{h \rightarrow \infty} \left| \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then $(x_n)_{n=1}^\infty$ is a **nearly strongly mixing sequence**.

Intuitively, $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ is a nearly strongly mixing sequence if there exists another (to be specified) Hilbert space \mathcal{H}' whose elements are sequences of elements from \mathcal{H} , and $\{(x_{n+h})_{n=1}^\infty\}_{h=1}^\infty$ is a strongly mixing sequence of vectors¹ in \mathcal{H}' .

¹As defined by Berend and Bergelson

Generalizing Existing Variants of van der Corput's Difference Theorem

MvdC3: Let \mathcal{H} be a Hilbert space and $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ a bounded sequence of vectors. If

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H \left| \overline{\lim_{N \rightarrow \infty}} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then $(x_n)_{n=1}^\infty$ is a **nearly weakly mixing sequence**.

Intuitively, $(x_n)_{n=1}^\infty \subseteq \mathcal{H}$ is a nearly weakly mixing sequence if there exists another (to be specified) Hilbert space \mathcal{H}' whose elements are sequences of elements from \mathcal{H} , and $\{(x_{n+h})_{n=1}^\infty\}_{h=1}^\infty$ is a weakly mixing sequence of vectors² in \mathcal{H}' .

²As defined by Berend and Bergelson

A New Variant of van der Corput's Difference Theorem

MvdC4: Let \mathcal{H} be a Hilbert space and let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. If

$$\lim_{K \rightarrow \infty} \sup_{N, H \geq K} \left| \frac{1}{NH} \sum_{\substack{1 \leq h \leq H \\ 1 \leq n \leq N}} \langle x_{n+h}, x_n \rangle \right| = 0,$$

then

$$\lim_{N \rightarrow \infty} \left| \left| \sum_{n=1}^N x_n \right| \right| = 0.$$

A Closer look at MvdC4

Example 1: Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be arbitrary and let $L : [0, 1) \rightarrow [0, \frac{1}{2})$ denote the map $x \mapsto \frac{1}{2}x$. The sequence $(y_n)_{n=1}^{\infty}$ given by $y_{2n} = L(2n\alpha)$ and $y_{2n-1} = L((2n-1)\alpha) + \frac{1}{2}$ for all $n \in \mathbb{N}$ satisfies

- (1) $(y_n)_{n=1}^{\infty}$ is (well) uniformly distributed.
- (2) $(y_n)_{n=1}^{\infty}$ is not totally uniformly distributed (and therefore not 'weakly mixing').
- (3) $(y_{n+h} - y_n)_{(n,h) \in \mathbb{N}^2}$ is uniformly distributed.
- (4) For each $h \in \mathbb{N}$ the sequence $(y_{n+h} - y_n)_{n=1}^{\infty}$ takes on exactly 2 distinct values.

A Closer look at MvdC4

Example 2: Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be arbitrary, and consider the sequence $(z_n)_{n=1}^{\infty} \subseteq \mathbb{T}$ given by $z_n = m\alpha$ for $\binom{m}{2} < n \leq \binom{m+1}{2}$.

$$(z_n)_{n=1}^{\infty} = \alpha, 2\alpha, 2\alpha, 3\alpha, 3\alpha, 3\alpha, 4\alpha, \dots$$

$(z_n)_{n=1}^{\infty}$ is a uniformly distributed sequence, but $(z_{n+h} - z_n)_{(n,h) \in \mathbb{N}^2}$ is not uniformly distributed.

Another New Variant of van der Corput's Difference Theorem

MvdC5: Let \mathcal{H} be a Hilbert space and let $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. We have that

$$\lim_{K \rightarrow \infty} \sup_{N, H \geq K, N_0, H_0 \geq 1} \left| \frac{1}{NH} \sum_{\substack{H_0 \leq h \leq H_0 + H - 1 \\ N_0 \leq n \leq N_0 + N - 1}} \langle f_{n+h}, f_n \rangle \right| = 0,$$

if and only if

$$\lim_{K \rightarrow \infty} \sup_{N \geq K, N_0 \geq 1} \left\| \frac{1}{N} \sum_{n=N_0}^{N_0+N-1} f_n \right\| = 0.$$

The Correct Point of View

Let \mathcal{H} be a Hilbert space, let $(f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be sequences of vectors satisfying

$$\overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \|f_n\|^2 < \infty \text{ and } \overline{\lim}_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \|g_n\|^2 < \infty. \quad (1)$$

Let $(N_q)_{q=1}^{\infty}$ be an increasing sequence of positive integers for which

$$\lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle x_{n+h}, y_n \rangle_{\mathcal{H}}$$

exists whenever $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \in \{(f_n)_{n=1}^{\infty}, (g_n)_{n=1}^{\infty}\}$ and $h \in \mathbb{N}$.

The Correct Point of View

We can now construct a new Hilbert space $\mathcal{H}((f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ from $(f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty$ and $(N_q)_{q=1}^\infty$ as follows. For any

$(x_n)_{n=1}^\infty, (y_n)_{n=1}^\infty \in \{(f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty\}$ and $h \in \mathbb{N}$, we define

$$\langle (x_{n+h})_{n=1}^\infty, (y_n)_{n=1}^\infty \rangle_{\mathcal{H}} = \lim_{q \rightarrow \infty} \frac{1}{N_q} \sum_{n=1}^{N_q} \langle x_{n+h}, y_n \rangle_{\mathcal{H}}.$$

We see that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is a sesquilinear form on $\mathcal{H}' = \text{Span}_{\mathbb{C}}(\{(f_{n+h})_{n=1}^\infty\}_{h=1}^\infty \cup \{(g_{n+h})_{n=1}^\infty\}_{h=1}^\infty)$. Letting $S = \{x \in \mathcal{H}' \mid \langle x, x \rangle_{\mathcal{H}} = 0\}$, we see that \mathcal{H}'/S is a pre-Hilbert space, so we define $\mathcal{H}((f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ to be the completion of \mathcal{H}'/S . We call $\mathcal{H}((f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ the Hilbert space induced by $((f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$. We note that the shift operator U given by $U((x_n)_{n=1}^\infty) = (x_{n+1})_{n=1}^\infty$ induces (by abuse of notation) a unitary operator $U : \mathcal{H} \rightarrow \mathcal{H}$.

van der Corput and Mixing

MvdC1: Let $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequence. Let $(N_q)_{q=1}^{\infty} \subseteq \mathbb{N}$ be such that $\mathcal{H} := \mathcal{H}((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}, (N_q)_{q=1}^{\infty})$ is well defined. If

$$\langle (x_{n+h})_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}} = 0, \text{ for every } h \in \mathbb{N},$$

then $\{(x_{n+h})_{n=1}^{\infty}\}_{h=1}^{\infty} = \{U^h(x_n)_{n=1}^{\infty}\}_{h=1}^{\infty}$ is an orthogonal set in \mathcal{H} . In particular, for any vector $\vec{v} \in \mathcal{H}$, we have

$$\sum_{h=1}^{\infty} |\langle (x_{n+h})_{n=1}^{\infty}, \vec{v} \rangle_{\mathcal{H}}|^2 \leq \|\vec{v}\|_{\mathcal{H}}^2 = \sum_{h=1}^{\infty} |\langle U^h(x_n)_{n=1}^{\infty}, \vec{v} \rangle_{\mathcal{H}}|^2 \leq \|\vec{v}\|_{\mathcal{H}}^2 < \infty.$$

van der Corput and Mixing

MvdC2: Let $(x_n)_{n=1}^\infty, (y_n)_{n=1}^\infty \subseteq \mathcal{H}$ be a bounded sequence. Let $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ be such that $\mathcal{H} := \mathcal{H}((x_n)_{n=1}^\infty, (y_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ is well defined. If

$$\overline{\lim}_{h \rightarrow \infty} |\langle (x_{n+h})_{n=1}^\infty, (x_n)_{n=1}^\infty \rangle_{\mathcal{H}}| = 0,$$

then $\{(x_{n+h})_{n=1}^\infty\}_{h=1}^\infty = \{U^h(x_n)_{n=1}^\infty\}_{h=1}^\infty$ is a strongly mixing sequence in \mathcal{H} . In particular, for any vector $\vec{v} \in \mathcal{H}$, we have

$$\lim_{h \rightarrow \infty} \langle (x_{n+h})_{n=1}^\infty, \vec{v} \rangle_{\mathcal{H}} = \lim_{h \rightarrow \infty} |\langle U^h(x_n)_{n=1}^\infty, \vec{v} \rangle_{\mathcal{H}}| = 0.$$

van der Corput and Mixing

MvdC3: Let $(x_n)_{n=1}^\infty, (y_n)_{n=1}^\infty \subseteq \mathcal{H}$ be a bounded sequence. Let $(N_q)_{q=1}^\infty \subseteq \mathbb{N}$ be such that $\mathcal{H} := \mathcal{H}((x_n)_{n=1}^\infty, (y_n)_{n=1}^\infty, (N_q)_{q=1}^\infty)$ is well defined. If

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H |\langle (x_{n+h})_{n=1}^\infty, (x_n)_{n=1}^\infty \rangle_{\mathcal{H}}| = 0,$$

then $\{(x_{n+h})_{n=1}^\infty\}_{h=1}^\infty = \{U^h(x_n)_{n=1}^\infty\}_{h=1}^\infty$ is a weakly mixing sequence in \mathcal{H} . In particular, for any vector $\vec{v} \in \mathcal{H}$, we have

$$\lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H |\langle (x_{n+h})_{n=1}^\infty, \vec{v} \rangle_{\mathcal{H}}| = \lim_{H \rightarrow \infty} \frac{1}{H} \sum_{h=1}^H |\langle U^h(x_n)_{n=1}^\infty, \vec{v} \rangle_{\mathcal{H}}| = 0.$$

Clap here

