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Important Conjectures |

Let i denote the Mobius function.

Conjecture (Riemann Hypothesis)

For every e > 0 we have

Conjecture (Sarnak)

If (cn)32, is @ bounded deterministic sequence of complex numbers
then

lim iZc,,u(n) = 0. (2)

N—oo N —
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Important Conjectures |

Conjecture (Chowla)

For any k € N, any a;1,--- ,ax € N and any
(€0, €1, ,ex) € {1,2}KF1N\ (2,2,--+ ,2) we have
T
lim = » p(np*(n+a)-- p*(n+ax) =0. (3)
N—oo N —

v
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Properties (R), (S), and (Chw)

Suppose that (z,)7, € {—1,0,1}.
Q (z,)32, satisfies property (R) if for every € > 0 we have

_ 1
N—oo 3¢ ZZ” - (4)

@ (z,)32, satisfies property (S) if for every bounded
deterministic sequence of complex numbers (c,)7; we have

NI|_r>nOO — Z Cnzp = 0. (5)
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Properties (R), (S), and (Chw)

3 (z,)2, satisfies property (Chw) if for any k € N, any
ai, -+ ,ax € N and any

(€0, €1, ,ex) € {1,2}KF1N\ (2,2, -+ ,2) we have

lim — Zzeoz,”ra1 ceezph =0. (6)

N—oo N

It is well known that property (Chw) implies property (S).
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Property (Chw) does not imply Property (R)

Proposition

Let (x,)°, be a sequence of independent random variables taking
values in {—1,0,1}, with E[X] — 0 as n — oco. Then the
sequence (X,(w))>, satisfies properties (Chw) and (S) for almost
all w e Q.

Properties (Chw) and (S) do not imply property (R).

Sohail Farhangi On certain aspects of the M&bius randomness principle



Proof ldea

Consider the sequence of independent random variables (X,)%
given by

P(Xy=1) = %(H—m) and P(Xy = —1) = %(l_log(kl—i— 1))
For € < 41'1 we have
L
W i ;X"(w) - )

for almost all w € Q.
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The Randomized Chowla and Sarnak Conjectures

are True

Theorem (Abdalaoui, Disertori 2013)

Let (€,)72, be an i.i.d. sequence of random variables satisfying
P(e, = 1) = P(e, = —1) = 3. The function

€, If n is square free
lllrand(n) = : (8)
0 else

satisfies property (S) almost surely.

In fact, property (Chw) is satisfied almost surely as a consequence
of Karagulyan's proposition.
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Randomized Riemann Hypothesis

Theorem (Wintner, 1944)

Let (€,)?2, be an i.i.d. sequence of random variables satisfying
P(e, = 1) = P(e, = —1) = 1. The function

i p
F(n) = Hp|n€P if n is square ree. )
0 else

satisfies property (R) almost surely.
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Property (R) does not imply Property (S)

Let us consider the Rudin-Shapiro given by s, = (—1)" where b,
counts the number of occurrences of '11" appearing in the binary
expansion of n > 0. It is well known that

\/§<ﬁ25n<\/6. (10)

The generating function S(X) = >~ -, 5,X" satisfies

(L+X)°S(X)> + (1 + X)*S(X) + X® = 0. (11)

The Rudin-Shapiro sequence is deterministic.

Sohail Farhangi On certain aspects of the M&bius randomness principle



Properties (S) and (R) do not imply Property

(Chw)

There exists a sequence (z,)°%, € {—1,0, 1} satlsfymg properties
(S) and (R) such that for any k € N, any a;,--- ,ax € N and any
(€0, €1, yex) € {1, 2HF1N\ (2,2,--- [ 2) we have

N

1
lim N Zznozn—i-al o n+ak 7£ 0. (12)

N—o0
n=1

o
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Let (€,)72, be an i.i.d. sequence of random variables satisfying
P(e, = 1) = P(e, = —1) = 3. (eq(w))52, satisfies property (Chw)
(and hence property (S)) for a.e. w € Q. However, the sequence

(o.) PR
(Zn)n:1 = €1,€1,€2,€2,° " ,€p, €Ep, €n-i—la €n+17 e (13)

does not satisfy property (Chw) while still satisfying properties (S)
and (R). In particular, we have created a correlation of (z,)%%;
with (z,41)5° 1, so we only need to repeat this procedure countably
many times and use a diagonalization argument.
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Comparing Variants of difference theorems

Theorem (van der Corput)

If (ca)2, is @ bounded sequence of complex numbers for which

N
W 1y 2 Erenn =0 (14)

for all h € N, then
o Z =0 (15)

In fact, for any a, b € N we have

lim — Z Cants = 0. (16)

N—oo N
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Comparing Variants of difference theorems

Theorem (K3tai)

If (c,)52, is a bounded sequence of complex numbers for which

N
.1 _
Nll_rgo N 2_1 GGy = 0 (17)

for all distinct primes p and q, then for any bounded multiplicative
function f : N — C we (uniformly) have

N
1
Jim ; f(n)c, = 0. (18)
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Comparing Variants of difference theorems

For any irrational o € R the sequence (€2™")>  (or
(e2miVra)> ) satisfies K4tai's Orthogonality Criterion but not van

der Corput’s Difference Theorem.

There exists a bounded sequence of complex numbers (c,)%
satisfying van der Corput’s Difference Theorem but not Katai's
Orthogonality Criterion. In fact, for any distinct primes p and g we
have

N—oo N

N
1
lim = ConCan # 0. (19)
n=1
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