

On certain aspects of the Möbius randomness principle

Sarnak Conjecture Seminar
at the Ohio State University

Based on the work of Davit Karagulyan

Sohail Farhangi

April 1, 2022

Important Conjectures I

Let μ denote the Möbius function.

Conjecture (Riemann Hypothesis)

For every $\epsilon > 0$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N^{\frac{1}{2} + \epsilon}} \sum_{n=1}^N \mu(n) = 0. \quad (1)$$

Conjecture (Sarnak)

If $(c_n)_{n=1}^{\infty}$ is a bounded deterministic sequence of complex numbers then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n \mu(n) = 0. \quad (2)$$

Important Conjectures I

Conjecture (Chowla)

For any $k \in \mathbb{N}$, any $a_1, \dots, a_k \in \mathbb{N}$ and any $(\epsilon_0, \epsilon_1, \dots, \epsilon_k) \in \{1, 2\}^{k+1} \setminus (2, 2, \dots, 2)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \mu^{\epsilon_0}(n) \mu^{\epsilon_1}(n + a_1) \cdots \mu^{\epsilon_k}(n + a_k) = 0. \quad (3)$$

Properties (R), (S), and (Chw)

Definition

Suppose that $(z_n)_{n=1}^{\infty} \in \{-1, 0, 1\}$.

- ① $(z_n)_{n=1}^{\infty}$ satisfies property (R) if for every $\epsilon > 0$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N^{\frac{1}{2} + \epsilon}} \sum_{n=1}^N z_n = 0. \quad (4)$$

- ② $(z_n)_{n=1}^{\infty}$ satisfies property (S) if for every bounded deterministic sequence of complex numbers $(c_n)_{n=1}^{\infty}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n z_n = 0. \quad (5)$$

Properties (R), (S), and (Chw)

Definition

3 $(z_n)_{n=1}^{\infty}$ satisfies property (Chw) if for any $k \in \mathbb{N}$, any $a_1, \dots, a_k \in \mathbb{N}$ and any $(\epsilon_0, \epsilon_1, \dots, \epsilon_k) \in \{1, 2\}^{k+1} \setminus (2, 2, \dots, 2)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N z_n^{\epsilon_0} z_{n+a_1}^{\epsilon_1} \cdots z_{n+a_k}^{\epsilon_k} = 0. \quad (6)$$

It is well known that property (Chw) implies property (S).

Property (Chw) does not imply Property (R)

Proposition

Let $(x_n)_{n=1}^{\infty}$ be a sequence of independent random variables taking values in $\{-1, 0, 1\}$, with $\mathbb{E}[X] \rightarrow 0$ as $n \rightarrow \infty$. Then the sequence $(X_n(\omega))_{n=1}^{\infty}$ satisfies properties (Chw) and (S) for almost all $\omega \in \Omega$.

Corollary

Properties (Chw) and (S) do not imply property (R).

Proof Idea

Consider the sequence of independent random variables $(X_n)_{n=1}^{\infty}$ given by

$$\mathbb{P}(X_k = 1) = \frac{1}{2}\left(1 + \frac{1}{\log(k+1)}\right) \text{ and } \mathbb{P}(X_k = -1) = \frac{1}{2}\left(1 - \frac{1}{\log(k+1)}\right)$$

For $\epsilon < \frac{1}{4}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N^{\frac{1}{2} + \epsilon}} \sum_{n=1}^N X_n(\omega) = \infty \tag{7}$$

for almost all $\omega \in \Omega$.

The Randomized Chowla and Sarnak Conjectures are True

Theorem (Abdalaoui, Disertori 2013)

Let $(\epsilon_n)_{n=1}^{\infty}$ be an i.i.d. sequence of random variables satisfying $\mathbb{P}(\epsilon_n = 1) = \mathbb{P}(\epsilon_n = -1) = \frac{1}{2}$. The function

$$\mu_{\text{rand}}(n) = \begin{cases} \epsilon_n & \text{if } n \text{ is square free} \\ 0 & \text{else} \end{cases} \quad (8)$$

satisfies property (S) almost surely.

In fact, property (Chw) is satisfied almost surely as a consequence of Karagulyan's proposition.

Randomized Riemann Hypothesis

Theorem (Wintner, 1944)

Let $(\epsilon_n)_{n=1}^{\infty}$ be an i.i.d. sequence of random variables satisfying $\mathbb{P}(\epsilon_n = 1) = \mathbb{P}(\epsilon_n = -1) = \frac{1}{2}$. The function

$$f(n) = \begin{cases} \prod_{p|n} \epsilon_p & \text{if } n \text{ is square free} \\ 0 & \text{else} \end{cases} \quad (9)$$

satisfies property (R) almost surely.

Property (R) does not imply Property (S)

Let us consider the **Rudin-Shapiro** given by $s_n = (-1)^{b_n}$ where b_n counts the number of occurrences of '11' appearing in the binary expansion of $n \geq 0$. It is well known that

$$\sqrt{\frac{3}{5}} < \frac{1}{\sqrt{N}} \sum_{n=1}^N s_n < \sqrt{6}. \quad (10)$$

The generating function $S(X) = \sum_{n \geq 0} s_n X^n$ satisfies

$$(1 + X)^5 S(X)^2 + (1 + X)^4 S(X) + X^3 = 0. \quad (11)$$

The Rudin-Shapiro sequence is deterministic.

Properties (S) and (R) do not imply Property (Chw)

Theorem

There exists a sequence $(z_n)_{n=1}^{\infty} \in \{-1, 0, 1\}^{\mathbb{N}}$ satisfying properties (S) and (R) such that for any $k \in \mathbb{N}$, any $a_1, \dots, a_k \in \mathbb{N}$ and any $(\epsilon_0, \epsilon_1, \dots, \epsilon_k) \in \{1, 2\}^{k+1} \setminus (2, 2, \dots, 2)$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N z_n^{\epsilon_0} z_{n+a_1}^{\epsilon_1} \cdots z_{n+a_k}^{\epsilon_k} \neq 0. \quad (12)$$

Proof idea

Let $(\epsilon_n)_{n=1}^{\infty}$ be an i.i.d. sequence of random variables satisfying $\mathbb{P}(\epsilon_n = 1) = \mathbb{P}(\epsilon_n = -1) = \frac{1}{2}$. $(\epsilon_n(\omega))_{n=1}^{\infty}$ satisfies property (Chw) (and hence property (S)) for a.e. $\omega \in \Omega$. However, the sequence

$$(z_n)_{n=1}^{\infty} := \epsilon_1, \epsilon_1, \epsilon_2, \epsilon_2, \dots, \epsilon_n, \epsilon_n, \epsilon_{n+1}, \epsilon_{n+1}, \dots \quad (13)$$

does not satisfy property (Chw) while still satisfying properties (S) and (R). In particular, we have created a correlation of $(z_n)_{n=1}^{\infty}$ with $(z_{n+1})_{n=1}^{\infty}$, so we only need to repeat this procedure countably many times and use a diagonalization argument.

Comparing Variants of difference theorems

Theorem (van der Corput)

If $(c_n)_{n=1}^{\infty}$ is a bounded sequence of complex numbers for which

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{n+h} \overline{c_n} = 0 \quad (14)$$

for all $h \in \mathbb{N}$, then

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_n = 0. \quad (15)$$

In fact, for any $a, b \in \mathbb{N}$ we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{an+b} = 0. \quad (16)$$

Comparing Variants of difference theorems

Theorem (Kátai)

If $(c_n)_{n=1}^{\infty}$ is a bounded sequence of complex numbers for which

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{pn} \overline{c_{qn}} = 0 \quad (17)$$

for all distinct primes p and q , then for any bounded multiplicative function $f : \mathbb{N} \rightarrow \mathbb{C}$ we (uniformly) have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(n) c_n = 0. \quad (18)$$

Comparing Variants of difference theorems

For any irrational $\alpha \in \mathbb{R}$ the sequence $(e^{2\pi i n \alpha})_{n=1}^{\infty}$ (or $(e^{2\pi i \sqrt{n} \alpha})_{n=1}^{\infty}$) satisfies Kátai's Orthogonality Criterion but not van der Corput's Difference Theorem.

There exists a bounded sequence of complex numbers $(c_n)_{n=1}^{\infty}$ satisfying van der Corput's Difference Theorem but not Kátai's Orthogonality Criterion. In fact, for any distinct primes p and q we have

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N c_{pn} \overline{c_{qn}} \neq 0. \quad (19)$$