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Important Conjectures I

Let µ denote the Möbius function.

Conjecture (Riemann Hypothesis)

For every ϵ > 0 we have

lim
N→∞

1

N
1
2
+ϵ

N∑
n=1

µ(n) = 0. (1)

Conjecture (Sarnak)

If (cn)
∞
n=1 is a bounded deterministic sequence of complex numbers

then

lim
N→∞

1

N

N∑
n=1

cnµ(n) = 0. (2)
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Important Conjectures I

Conjecture (Chowla)

For any k ∈ N, any a1, · · · , ak ∈ N and any
(ϵ0, ϵ1, · · · , ϵk) ∈ {1, 2}k+1 \ (2, 2, · · · , 2) we have

lim
N→∞

1

N

N∑
n=1

µϵ0(n)µϵ1(n + a1) · · ·µϵk (n + ak) = 0. (3)
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Properties (R), (S), and (Chw)

Definition

Suppose that (zn)
∞
n=1 ∈ {−1, 0, 1}.

1 (zn)
∞
n=1 satisfies property (R) if for every ϵ > 0 we have

lim
N→∞

1

N
1
2
+ϵ

N∑
n=1

zn = 0. (4)

2 (zn)
∞
n=1 satisfies property (S) if for every bounded

deterministic sequence of complex numbers (cn)
∞
n=1 we have

lim
N→∞

1

N

N∑
n=1

cnzn = 0. (5)
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Properties (R), (S), and (Chw)

Definition

3 (zn)
∞
n=1 satisfies property (Chw) if for any k ∈ N, any

a1, · · · , ak ∈ N and any
(ϵ0, ϵ1, · · · , ϵk) ∈ {1, 2}k+1 \ (2, 2, · · · , 2) we have

lim
N→∞

1

N

N∑
n=1

z ϵ0n z ϵ1n+a1 · · · z
ϵk
n+ak = 0. (6)

It is well known that property (Chw) implies property (S).
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Property (Chw) does not imply Property (R)

Proposition

Let (xn)
∞
n=1 be a sequence of independent random variables taking

values in {−1, 0, 1}, with E[X ] → 0 as n → ∞. Then the
sequence (Xn(ω))

∞
n=1 satisfies properties (Chw) and (S) for almost

all ω ∈ Ω.

Corollary

Properties (Chw) and (S) do not imply property (R).

Sohail Farhangi On certain aspects of the Möbius randomness principle



Proof Idea

Consider the sequence of independent random variables (Xn)
∞
n=1

given by

P(Xk = 1) =
1

2
(1+

1

log(k + 1)
) and P(Xk = −1) =

1

2
(1− 1

log(k + 1)
)

For ϵ < 1
4
we have

lim
N→∞

1

N
1
2
+ϵ

N∑
n=1

Xn(ω) = ∞ (7)

for almost all ω ∈ Ω.
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The Randomized Chowla and Sarnak Conjectures

are True

Theorem (Abdalaoui, Disertori 2013)

Let (ϵn)
∞
n=1 be an i.i.d. sequence of random variables satisfying

P(ϵn = 1) = P(ϵn = −1) = 1
2
. The function

µrand(n) =

{
ϵn if n is square free

0 else
. (8)

satisfies property (S) almost surely.

In fact, property (Chw) is satisfied almost surely as a consequence
of Karagulyan’s proposition.
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Randomized Riemann Hypothesis

Theorem (Wintner, 1944)

Let (ϵn)
∞
n=1 be an i.i.d. sequence of random variables satisfying

P(ϵn = 1) = P(ϵn = −1) = 1
2
. The function

f (n) =

{∏
p|n ϵp if n is square free

0 else
. (9)

satisfies property (R) almost surely.
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Property (R) does not imply Property (S)

Let us consider the Rudin-Shapiro given by sn = (−1)bn where bn
counts the number of occurrences of ’11’ appearing in the binary
expansion of n ≥ 0. It is well known that√

3

5
<

1√
N

N∑
n=1

sn <
√
6. (10)

The generating function S(X ) =
∑

n≥0 snX
n satisfies

(1 + X )5S(X )2 + (1 + X )4S(X ) + X 3 = 0. (11)

The Rudin-Shapiro sequence is deterministic.

Sohail Farhangi On certain aspects of the Möbius randomness principle



Properties (S) and (R) do not imply Property

(Chw)

Theorem

There exists a sequence (zn)
∞
n=1 ∈ {−1, 0, 1}N satisfying properties

(S) and (R) such that for any k ∈ N, any a1, · · · , ak ∈ N and any
(ϵ0, ϵ1, · · · , ϵk) ∈ {1, 2}k+1 \ (2, 2, · · · , 2) we have

lim
N→∞

1

N

N∑
n=1

z ϵ0n z ϵ1n+a1 · · · z
ϵk
n+ak ̸= 0. (12)
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Proof idea

Let (ϵn)
∞
n=1 be an i.i.d. sequence of random variables satisfying

P(ϵn = 1) = P(ϵn = −1) = 1
2
. (ϵn(ω))

∞
n=1 satisfies property (Chw)

(and hence property (S)) for a.e. ω ∈ Ω. However, the sequence

(zn)
∞
n=1 := ϵ1, ϵ1, ϵ2, ϵ2, · · · , ϵn, ϵn, ϵn+1, ϵn+1, · · · (13)

does not satisfy property (Chw) while still satisfying properties (S)
and (R). In particular, we have created a correlation of (zn)

∞
n=1

with (zn+1)
∞
n=1, so we only need to repeat this procedure countably

many times and use a diagonalization argument.
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Comparing Variants of difference theorems

Theorem (van der Corput)

If (cn)
∞
n=1 is a bounded sequence of complex numbers for which

lim
N→∞

1

N

N∑
n=1

cn+hcn = 0 (14)

for all h ∈ N, then

lim
N→∞

1

N

N∑
n=1

cn = 0. (15)

In fact, for any a, b ∈ N we have

lim
N→∞

1

N

N∑
n=1

can+b = 0. (16)
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Comparing Variants of difference theorems

Theorem (Kátai)

If (cn)
∞
n=1 is a bounded sequence of complex numbers for which

lim
N→∞

1

N

N∑
n=1

cpncqn = 0 (17)

for all distinct primes p and q, then for any bounded multiplicative
function f : N → C we (uniformly) have

lim
N→∞

1

N

N∑
n=1

f (n)cn = 0. (18)
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Comparing Variants of difference theorems

For any irrational α ∈ R the sequence (e2πinα)∞n=1 (or
(e2πi

√
nα)∞n=1) satisfies Kátai’s Orthogonality Criterion but not van

der Corput’s Difference Theorem.

There exists a bounded sequence of complex numbers (cn)
∞
n=1

satisfying van der Corput’s Difference Theorem but not Kátai’s
Orthogonality Criterion. In fact, for any distinct primes p and q we
have

lim
N→∞

1

N

N∑
n=1

cpncqn ̸= 0. (19)
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