
Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 4/21/2022

Problem 1: Suppose y = f(x) is a continuous and positive function on [a, b]. Let S be
the surface generated when the graph of f(x) is revolved about the x-axis.

(a) Show that S is described parametrically by ~r(u, v) = 〈u, f(u) cos(v), f(u) sin(v)〉, for
a ≤ u ≤ b, 0 ≤ v ≤ 2π.

(b) Find an integral that gives ths surface area of S.

(c) Apply the result of part (b) to the surface S1 generated with f(x) = x3, for 1 ≤ x ≤ 2.

Solution to (a): We see that for each value of u inbetween a and b, if we rotate the
point (u, f(u)) about the x-axis then we generate a circle C of radius f(u) in the plane
x = u as shown in the picture below.

We see that the x-coordinate at every point of the circle C is u. It now suffices to recall
that the parametrization of a circle of radius f(u) in the xy-plane is 〈f(u) cos(v), f(u) sin(v)〉
for 0 ≤ v ≤ 2π, but we have a circle in the plane x = u (which is parallel to the yz-plane),
so we obtain the parametrization ~r(u, v) = 〈u, f(u) cos(v), f(u) sin(v)〉 for a ≤ u ≤ b and
0 ≤ v ≤ 2π as desired.
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Solution to (b): We begin by calculating

∂~r

∂u
× ∂~r

∂v
=

∣∣∣∣∣∣
î ĵ k̂
1 f ′(u) cos(v) f ′(u) sin(v)
0 −f(u) sin(v) f(u) cos(v)

∣∣∣∣∣∣ (1)

= î(f(u)f ′(u) cos2(v) + f(u)f ′(u) sin2(v))

=− ĵ(f(u) cos(v)) + k̂(−f(u) sin(v))

= f(u)f ′(u)̂i− f(u) cos(v)ĵ − f(u) sin(v)k̂, hence

∣∣∣∣∂~r∂u × ∂~r

∂v

∣∣∣∣ =
√

(f(u)f ′(u))2 + (−f(u) cos(v))2 + (−f(u) sin(v))2 (2)

= f(u)
√

(f ′(u))2 + 1.

We now see that

Surface Area(S) =

∫∫
S

1dS =

∫ b

a

∫ 2π

0

f(u)
√

(f ′(u))2 + 1dvdu (3)

= 2π

∫ b

a

f(u)
√

(f ′(u))2 + 1du

Solution to (c): From part (b) we see that

Surface Area(S1) = 2π

∫ 2

1

u3
√

(3u2)2 + 1du = 2π

∫ 2

1

u3
√

9u4 + 1du (4)

w=9u4+1
= 2π

∫ 2

u=1

√
w
dw

36
=

π

18
· 2

3
w

3
2

∣∣∣2
u=1

=
π

27
(9u4 + 1)

3
2

∣∣∣2
1

=
π

27

(
145

3
2 − 10

3
2

)
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Problem 2: Given a sphere of radius R and a length 0 < L ≤ 2R, show that the surface
area of the strips of length L on the sphere depend only on L and not on the location of
the strip.

Figure 1: An example of Problem 2 with L = 0.925 and R = 4.

Hint: Problem 1 can help.

Solution: We begin by recalling that the graph of f(x) =
√
R2 − x2 for −R ≤ x ≤ R is

the upper half of the circle of radius R centered at the origin of the xy-plane. We may
now use Problem 1(b) to see that for any −R ≤ a ≤ R−L the surface area obtained by
revolving f(x) for a ≤ x ≤ a+ L is

2π

∫ a+L

a

√
R2 − u2

√
(
−u√
R2 − u2

)2 + 1du (5)

=2π

∫ a+L

a

√
R2 − u2

√
R2

R2 − u2
du = 2π

∫ a+L

a

Rdu = 2πRL
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Problem 3(Surface Area and Volume of a Torus):

(a) Show that a torus T with radii R > r (See figure) may be described parametrically
by r(K, θ) = 〈(R+ r cos(K)) cos(θ), (R+ r cos(K)) sin(θ), r sin(K)〉, for 0 ≤ K ≤ 2π,
0 ≤ θ ≤ 2π.

(b) Show that the surface area of the torus T is 4π2Rr.
Interestingly, the arclength of the small circle is 2πr and the arclength of the large
circle inside the torus is 2πR, so the surface area of the torus happens to be the
product of the arclengths of the 2 circles from which it is created.

(c) Use part (a) to find a parametrization ~s(K, θ, r) for the solid torus T (T from part
(a) as well as its interior), then use ~s and a change of variables to show that the
volume of T is πr2R.

Solution to (a): The justification that ~r(K, θ) is indeed a parametrization for T is given
by the diagram below.
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Solution to (b): We begin by calculating

∂~r

∂K
× ∂~r

∂θ
=

∣∣∣∣∣∣
î ĵ k̂

−r sin(K) cos(θ) −r sin(K) sin(θ) r cos(K)
−(R + r cos(K)) sin(θ) (R + r cos(K)) cos(θ) 0

∣∣∣∣∣∣ (6)

=î(−r cos(K)(R + r cos(K)) cos(θ)

− ĵ(−r cos(K)(R + r cos(K)) sin(θ))

k̂
(
− r sin(K) cos(θ)(R + r cos(K)) cos(θ)

− r sin(K) sin(θ)(R + r cos(K)) sin(θ)
)

=− r cos(K) cos(θ)(R + r cos(K))̂i

+ r cos(K) sin(θ)(R + r cos(K))ĵ

− r sin(K)(R + r cos(K))k̂, hence
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∣∣∣∣ ∂~r∂K × ∂~r

∂θ

∣∣∣∣ = (R + r cos(K))
√

(r cos(K) cos(θ))2 + (r cos(K) sin(θ))2 + (−r sin(K))2 (7)

=(R + r cos(K))
√
r2 cos2(K) + r2 sin2(K)

=r(R + r cos(K))

We now see that

Surface Area(T ) =

∫∫
T

1dS =

∫ 2π

0

∫ 2π

0

∣∣∣∣ ∂~r∂K × ∂~r

∂θ

∣∣∣∣ dKdθ (8)

=

∫ 2π

0

∫ 2π

0

(rR + r2 cos(K))dKdθ

=

∫ 2π

0

(
rRK + r2 sin(K)

∣∣∣2π
K=0

)
dθ

=

∫ 2π

0

2πrRdθ = 4π2rR .

Solution to (c): We only need to replace the radius r with a new radius 0 ≤ ρ ≤ r in
order to get toroidal shells within the original torus, so we obtain the parametrization

~s(K, θ, ρ) =〈(R + ρ cos(K)) cos(θ), (R + ρ cos(K)) sin(θ), ρ sin(K)〉 (9)

for 0 ≤ K ≤ 2π, 0 ≤ θ ≤ 2π, and 0 ≤ ρ ≤ r.

Now that we have found ~s, we can we can calculate the Jacobian of the transformation
(x, y, z) = ~s(K, θ, r). We see that

J(K, θ, ρ) =

∣∣∣∣∣∣∣∣∣
∂x
∂K

∂y
∂K

∂z
∂K

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂ρ

∂y
∂ρ

∂z
∂ρ

∣∣∣∣∣∣∣∣∣ (10)

=

∣∣∣∣∣∣
−ρ sin(K) cos(θ) −ρ sin(K) sin(θ) ρ cos(K)

−(R + ρ cos(K)) sin(θ) (R + ρ cos(K)) cos(θ) 0
cos(K) cos(θ) cos(K) sin(θ) sin(K)

∣∣∣∣∣∣
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= −ρ sin(K) cos(θ)(R + ρ cos(K)) cos(θ)sin(K)

= − (−ρ sin(K) sin(θ))(−(R + ρ cos(K)) sin(θ))sin(K)

= + ρ cos(K)
(
−(R + ρ cos(K)) sin(θ)cos(K) sin(θ)

= −ρ cos(K)
(
− cos(K) cos(θ)(R + ρ cos(K)) cos(θ)

)
= (R + ρ cos(K))

(
− ρ sin2(K) cos2(θ)− ρ sin2(K) sin2(θ)

= (R + ρ cos(K))
(

+ ρ cos2(K)(− sin2(θ)− cos2(θ))
)

= (R + ρ cos(K))(−ρ sin2(K)− ρ cos2(K)) = −ρ(R + ρ cos(K)).

Recalling that dV = dxdydz = |J(K, θ, ρ)|dKdθdρ, we see that

Volume(T ) =

∫∫∫
T

1dV =

∫ 2π

0

∫ 2π

0

∫ r

0

|J(K, θ, ρ)|dKdθdρ (11)

=

∫ r

0

∫ 2π

0

∫ 2π

0

ρ(R + ρ cos(K))dKdθdρ

=

∫ 2π

0

∫ 2π

0

(
ρR + ρ2 sin(K)

∣∣∣2π
K=0

)
dθdρ

=

∫ r

0

∫ 2π

0

ρRdθdρ = 2π

∫ r

0

ρRdρ

= 2π(
1

2
ρ2R

∣∣∣r
ρ=0

) = πr2R .
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Problem 4: Let z = s(x, y) define the surface S over a region R in the xy-plane, where
z ≥ 0 on R. Show that the downward flux of the vertical vector field ~F = 〈0, 0,−1〉
across S equals the area of R. Interpret the result physically.

Solution: We see that the surface S can be parametrized by ~r(x, y) = 〈x, y, s(x, y)〉 for
(x, y) ∈ R. We now proceed to calculate n̂dS, the vector normal to the surface whose
length is proportional to the differential area at each point.

n̂dS =
∂~r

∂x
× ∂~r

∂y
=

∣∣∣∣∣∣
î ĵ k̂
1 0 sx(x, y)
0 1 sy(x, y)

∣∣∣∣∣∣ (12)

= î(−sx(x, y))− ĵsy(x, y) + k̂(1)

= −sx(x, y)̂i− sy(x, y)ĵ + k̂.

We now see that the downward flux of the vector field ~F is given by

∫∫
S
~F · n̂dS =

∫∫
R

〈0, 0,−1〉 · 〈−sx(x, y),−sy(x, y), 1〉dA (13)

=

∫∫
R

−1dA = −Area(R) .

One way in which to physically interpret this result is the following. If S is modeling the
roof of a house built over the region R, and ~F represents the force of rain drops that are
falling straight down, then the downward flux of the rain on the roof (the force imparted
by the rain onto the roof) of the house depends only on the area of the base of the house,
not the shape of the roof.
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Problem 5: Let S be the upper half of the ellipsoid x2

4 + y2

9 +z2 = 1 and let ~F = 〈z, x, y〉.
Use Stoke’s theorem to evaluate ∫∫

S
(∇× ~F ) · n̂dS. (14)

Figure 2: A view of S and ∂S.

Solution: We see that the boundary ∂S of S is obtained when z = 0, so it is given by
the equation x2

4 + y2

9 = 1. Since ∂S is an ellipse in the xy − plane, we see that it can be
parametrized by ~r(t) = 〈2 cos(t), 3 sin(t), 0〉 for 0 ≤ t ≤ 2π. We observe that

~F (~r(t)) = 〈0, 2 cos(t), 3 sin(t)〉 and ~r ′(t) = 〈−2 sin(t), 3 cos(t), 0〉. (15)

We now use Stoke’s theorem to see that

∫∫
S
(∇× ~F ) · n̂dS =

∫
∂S
~F · d~r =

∫ 2π

0

~F (~r(t)) · ~r ′(t)dt (16)

=

∫ 2π

0

〈0, 2 cos(t), 3 sin(t)〉 · 〈−2 sin(t), 3 cos(t), 0〉dt

=

∫ 2π

0

(0 + 6 cos2(t) + 0)dt
(

cos(2t) = 2 cos2(t)− 1
)

=

∫ 2π

0

(3 cos(2t) + 3)dt =
3

2
sin(2t) + 3t

∣∣∣2π
0

= 6π .
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Problem 6: Let C be the circle x2 + y2 = 12 in the plane z = 0 (as a subset of R3) and
let ~F = 〈(x+ 4)x, y ln(y + 4), ez

2+
√
z〉. Use Stoke’s theorem to evaluate∮

C

~F · d~r. (17)

Solution: It is clear that the line integral in equation (17) is very difficult to evaluate
directly, and the formulation of the problem suggests that the surfaces integral arising
from Stoke’s theorem will be easier to evaluate. To this end, we begin by verifying that
∇× ~F = ~0 whenever ~F is of the form ~F = 〈f1(x), f2(y), f3(z)〉.

∇× ~F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

f1(x) f2(y) f3(z)

∣∣∣∣∣∣ (18)

= î

(
∂f3(z)

∂y
− ∂f2(y)

∂z

)
− ĵ

(
∂f3(z)

∂x
− ∂f1(x)

∂z

)
= + k̂

(
∂f2(y)

∂x
− ∂f1(x)

∂y

)
= 0̂i+ 0ĵ + 0k̂ = ~0.

We may now view C as the boundary ∂S of the upper half of the sphere of radius 2
√

3
S so that we may apply Stoke’s Theorem.

Figure 3: A view of C and S.

∮
C

~F · d~r =

∫∫
S
(∇× ~F )dS =

∫∫
S

0dS = 0 . (19)

Remark: We could have applied the same procedure for the vector field ~F = 〈(x +
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4)x, y ln(y + 4)〉 by identifying it with the vector field ~F = 〈(x + 4)x, y ln(y + 4), 0〉. In
particular, a 2-dimensional circulation integral may become easier by viewing it as a
circulation integral in 3-dimensions and using Stoke’s theorem.
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Problem 7: Let S be the surface of the cube cut from the first octant by the planes
x = 1, y = 1, and z = 1. Let ~F = 〈x2, 2xz, y2〉. Use the divergence theorem to evaluate
the net outward flux of ~F across S.

Solution: We begin by observing that

Div(~F ) =
∂

∂x
(x2) +

∂

∂y
(2xz) +

∂

∂z
(y2) = 2x+ 0 + 0 = 2x. (20)

We may now apply the Diverence theorem to see that

Flux(~F ,S) =

∫∫
S
~F · n̂dS =

∫∫∫
int(S)

Div(~F )dV (21)

=

∫ 1

0

∫ 1

0

∫ 1

0

2xdxdydz =

∫ 1

0

∫ 1

0

(x2
∣∣∣1
x=0

)dydz

=

∫ 1

0

∫ 1

0

1dydz = 1 .

Remark: One of the benefits to calculating the divergence in this problem with the
divergence theorem rather than by direct calculation is that it is easier to evaluate 1
triple integral than a sum of 6 surface integrals.
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Problem 8: Let S be the boundary of the ellipsoid x2

4 + y2 + z2 = 1 and let ~F =

〈x2ey cos(z),−4xey cos(z), 2xey sin(z)〉. Evaluate the outward flux of ~F across S.

Solution: We begin by observing that

Div(~F ) =
∂

∂x
(x2ey cos(z)) +

∂

∂y
(−4xey cos(z)) +

∂

∂z
(2xey sin(z)) (22)

= 2xey cos(z)− 4xey cos(z) + 2xey cos(z) = 0.

We may now apply the Diverence theorem to see that

Flux(~F ,S) =

∫∫
S
~F · n̂dS =

∫∫∫
int(S)

Div(~F )dV (23)

=

∫∫∫
int(S)

0dV = 0 .
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