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1. How to use this document

For Students: As with any other skill, mathematics is best learned from actively doing mathematics instead of passively
watching it. This document contains a list of exercises from multivariable calculus, linear algebra, ordinary differential
equations, and introductory partial differential equations. These exercises were used in my recitation sessions at OSU for
Math 2153, 2173, 2177, and 2255. If you are taking any of these courses or a related course, then you should use the problems
in this document as a list of practice problems. After listening to a lecture on a topic and possibly doing the course homework,
you can find similar problems in this document for additional practice. If you solve a problem, then you can click on the
page number of the solution to jump to that page in the document and compare your answer. In order to ensure that you
get the most use out of this document, you should be stuck on a problem (no new ideas generated) for at least 10 minutes
before you decide that you don’t know how to solve the problem and go read the solution instead. This will ensure that you
are actively engaged with the material, and will help you learn more from reading the solution than what you would have
learned from reading it earlier. This point is so important that I will repeat it once more. In order to ensure that you get the
most use out of this document, you should be stuck on a problem (no new ideas generated) for at least 10 minutes before you
decide that you don’t know how to solve the problem and go read the solution instead. This will ensure that you are actively
engaged with the material, and will help you learn more from reading the solution than what you would have learned from
reading it earlier.

For Instructors: Instructors may provide this document to their students as a list of problems for additional practice after
the main homework assignments. Alternatively, instructors may create practice exams to give to their students using the
problems from this document. Since the solutions are also available, it will be easy for the instructor to release solutions
to the practice exams as well. Recitation instructors may present their own solutions to the problems from this list in their
recitations, and make the solutions here available to the students as well for review after class and alternative perspectives
on the same problem.

Copyright: Most of the problems and pictures in this document come from the following list of textbooks.

• Calculus for Scientists and Engineers: Early Transcendentals, By Briggs, Cochran, Gillett and Schulz.
ISBN-13: 978-0-321-78537-4
ISBN-10: 0-321-78537-1

• Math 2177, Custom (third) Edition for OSU, Pearson.
ISBN 10: 0-13-720383-7
ISBN 13: 978-0-13-720383-3

• Elementary Differential Equations, By Boyce and DiPrima.
ISBN: 978-0-470-45832-7

While the solutions and the graphics that they contain are original to the author, the author does not claim to have come
up with any of the problem statements or to have produced any of the images appearing in the problem statements. This
document is to be used for educational purposes only.

Please email me at sohail.farhangi@gmail.com to notify me about any typos or errors that you find in this document.
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2. Problems

2.1. Vectors, Partial Derivatives, Gradient Vectors.

Problem 1.1. A suitcase is pulled 50ft along a horizontal sidewalk with a constant force of 30lb at an angle of 30◦ above the
horizontal. How much work is done?

The solution to Problem 1.1 is on page 43.

Problem 1.2. A constant force of ~F = 〈2, 4, 1〉N moves an object from (0, 0, 1)m to (2, 4, 6)m. How much work is done?

The solution to Problem 1.2 is on page 44.

Problem 1.3. An object on an inclined plane does not slide provided the component of the object’s weight parallel to the
plane |Wpar| is less than or equal to the magnitude of the opposing frictional force |Ff |. The magnitude of the frictional
force, in turn, is proportional to the component of the object’s weight perpendicular to the plane |Wperp|. The constant of
proportionality is the coefficient of static friction µ > 0. Suppose a 100lb block rests on a plane that is tilted at an angle of
θ = 30◦ to the horizontal. What is the smallest possible value of µ?

The solution to Problem 1.3 is on page 45.

Problem 1.4. A cue ball in a billiards video game lies at P(25, 16). We assume that each ball has a diameter of 2.25 screen
units, and pool balls are represented by the point at their center.

a. The cue ball is aimed at an angle of 58◦ above the negative x-axis toward a target ball at A(5, 45). Do the balls
collide?

b. The cue ball is aimed at the point (50, 25) in an attempt to hit a target ball at B(76, 40). Do the balls collide?
c. The cue ball is aimed at an angle θ above the x-axis in the general direction of a target ball at C(75, 30). What range

of angles (for 0 ≤ θ ≤ π
2 ) will result in a collision? Express your answer in degrees.
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The solution to Problem 1.4 is on page 49.

Problem 1.5. Determine whether the lines ~r(t) = 〈1, 3, 2〉+ t〈6,−7, 1〉 and R(s) = 〈10, 6, 14〉+s〈8, 1, 4〉 are parallel or skew,
and find their intersection(s) if any exist.

The solution to Problem 1.5 is on page 56.

Problem 1.6. Find an equation of the plane P through the points R(5, 3, 7), S(0, 1, 0), and T(1, 2, 1).

The solution to Problem 1.6 is on page 94.

Problem 1.7. Match function a-f with the appropriate graph A-F.

a. ~r(t) = 〈t,−t, t〉.
b. ~r(t) = 〈t2, t, t〉.
c. ~r(t) = 〈4 cos(t), 4 sin(t), 2〉.

d. ~r(t) = 〈2t, sin(t), cos(t)〉.
e. ~r(t) = 〈sin(t), cos(t), sin(2t)〉.
f. ~r(t) = 〈sin(t), 2t, cos(t)〉.
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The solution to Problem 1.7 is on page 59.

Problem 1.8. Match surfaces a-f in the figure below with level curves A-F.
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The solution to Problem 1.8 is on page 60.

Problem 1.9. Match functions a-d with surfaces A-D in the figure below.

a. f(x, y) = cos(xy)
b. g(x, y) = ln(x2 + y2)

c. h(x, y) = 1
x−y

d. p(x, y) = 1
1+x2+y2
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The solution to Problem 1.9 is on page 62.

Problem 1.10. Find a function ~r(t) that describes the curve C which is the intersection of the surfaces z = 3x2 + y2 + 1
and z = 5−x2− 3y2. Note that there is not a unique answer to this question since any curve possess infinitely many distinct
paramterizations.

The solution to Problem 1.10 is on page 65.

Problem 1.11. Suppose that ~u(t) and ~v(t) are differentiable vector valued functions satisfying ~u(0) = 〈0, 1, 1〉, ~u ′(0) =
〈0, 7, 1〉, ~v(0) = 〈0, 1, 1〉, and ~v ′(0) = 〈1, 1, 2〉. Evaluate the following expressions.
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a. d
dt

(
~u(t) · ~v(t)

)∣∣∣
t=0

b. d
dt

(
~u(t)× ~v(t)

)∣∣∣
t=0

c. d
dt

(
cos(t)~u(t)

)∣∣∣
t=0

d. d
dt

(
~u(sin(t))

)∣∣∣
t=0

The solution to Problem 1.11 is on page 66.

Problem 1.12. Determine whether the following statements are true or false. If a statement is true, then explain why. If a
statement is false, then provide a counterexample.

(a) If the speed of an object is constant, then its velocity components are constant.

(b) The functions ~r(t) = 〈cos(t), sin(t)〉 and ~R(t) = 〈cos(t2), sin(t2)〉 generate the same set of points for t ≥ 0. (Bonus:
What about for t ≥ π2?)

(c) A velocity vector (vector valued function) of variable magnitude cannot have constant direction.

(d) If the acceleration of an object is ~a(t) = ~0, for all t ≥ 0, then the velocity of the object is constant.
(e) If you double the initial speed of a projectile, its range also double (assume no forces other than gravity).
(f) If you double the initial speed of a projectile, its time of flight also doubles (assume no forces other than gravity).

(g) A trajectory with ~v(t) = ~a(t) 6= ~0, for all t, is possible.

The solution to Problem 1.12 is on page 69.

Problem 1.13. A golfer stands 420ft (140yd) horizontally from the hole and 50ft above the hole (see figure). Assuming the
ball is hit with an initial speed of 120ft/s, at what angle(s) should it be hit to land in the hole? Assume the path of the ball
lies in a plane. You may approximate earth’s gravitational constant by 32ft/s2.

The solution to Problem 1.13 is on page 72.

Problem 1.14. The electric field due to a point charge of strength Q at the origin has a potential function V (x, y, z) = kQ/r,
where r2 = x2 + y2 + z2 is the square of the distance between a variable point P (x, y, z) at the charge, and k > 0 is a physical
constant. The electric field is given by E(x, y, z) = −∇V (x, y, z).

a. Show that

(1) E(x, y, z) = kQ〈 x
r3
,
y

r3
,
z

r3
〉.

b. Show that |E| = kQ/r2. Explain why this relationship is called the inverse square law.

The solution to Problem 1.14 is on page 96.

Problem 1.15. Consider the function F (x, y, z) = exyz.

a. Write F as a composite function f ◦ g, where f is a function of one variable and g is a function of three variables.
b. Calculate ∇F (x, y, z) as well as ∇g(x, y, z). Find a relationship between ∇F (x, y, z) and ∇g(x, y, z).

The solution to Problem 1.15 is on page 98.

Problem 1.16. Consider the function f(x, y) = ln(1 + 4x2 + 3y2) and the point P = ( 3
4 ,−
√

3).
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a. Find the gradient field ∇f(x, y) of f(x, y) and then evaluate it at P .
b. Find the angles θ (with respect to the x-axis) associated with the directions of maximum increase, maximum decrease,

and zero change.
c. Write the directional derivative at P as a function of θ; call this function g(θ).
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient vector at P . Verify that the

maximum value of g equals the magnitude of the gradient vector at P .

The solution to Problem 1.16 is on page 99.

Problem 1.17. Find the gradient field ~F = Oϕ for the potential function

(2) ϕ(x, y) =
√
x2 + y2, for x2 + y2 ≤ 9, (x, y) 6= (0, 0).

Sketch two level curves of ϕ and two vectors of ~F of your choice.

The solution to Problem 1.17 is on page 102.

Problem 1.18. Below is a contour plot of some function z = f(x, y) along with 4 vectors.

Figure 1. Contour plot of z = f(x, y).

Which of the vectors in the above plot could possibly be a gradient vector of the function f(x, y)? Please circle all that apply.

(A) (B) (C) (D) (E) None of the given vectors

The solution to Problem 1.18 is on page 103.

Problem 1.19. Consider the function f(x, y) = x2 + y2 and and the point P = (2, 3).

(a) Find the unit vector that points in direction of maximum decrease of the function f at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of the vector ~u = 〈3, 2〉.

The solution to Problem 1.19 is on page 111.
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Problem 1.20. Imagine a string that is fixed at both ends (for example, a guitar string). When plucked, the string forms a
standing wave. The displacement u of the string varies with position x and with time t. Suppose it is given by u = f(x, t) =
2 sin(πx) sin(π2 t), for 0 ≤ x ≤ 1 and t ≥ 0 (see figure 12). At a fixed point in time, the string forms a wave on [0, 1].
Alternatively, if you focus on a point on the string (fix a value of x), that point oscillates up and down in time.

(a) What is the period of the motion in time?
(b) Find the rate of change of the displacement with respect to time at a constant position (which is the vertical velocity

of a point on the string).
(c) At a fixed time, what point on the string is moving fastest?
(d) At a fixed position on the string, when is the strong moving fastest?
(e) Find the rate of change of the displacement with respect to position at a constant time (which is the slope of the

string).
(f) At a fixed time, where is the slope of the string greatest?

Figure 2. Snapshots of the wave at times t = 1 and t = 3.

The solution to Problem 1.20 is on page 104.

Problem 1.21. Let w = f(x, y, z) = 2x + 3y + 4z, which is defined for all (x, y, z) ∈ R3. Suppose we are interested in the
partial derivative wx on a subset of R3, such as the plane P given by z = 4x− 2y. The point to be made is that the result is
not unique unless we specify which variables are considered independent.

(a) We could proceed as follows. On the plane P , consider x and y as the independent variables, which means z depends
on x and y, so we write w = w(x, y) = f(x, y, z(x, y)). Show that ∂

∂xw(x, y) = 18.
(b) Alternatively, on the plane P , we could consider x and z as the independent variables, which means y depends on x

and z, so we write w = w(x, z) = f(x, y(x, z), z). Show that ∂
∂xw(x, z) = 8.

(c) Make a sketch of the plane z = 4x− 2y and interpret the results of parts (a) and (b) geometrically.

The solution to Problem 1.21 is on page 109.

2.2. Unit Tangent/Normal/Binormal Vectors, Arclength, Curvature, Limits and Differentiability in Higher
Dimensions.

Problem 2.1. Let ~r(t) = 〈t, 2, 2t 〉 for t > 1. Find the unit tangent vector T̂ (t) at all points of the curve ~r(t).

The solution to Problem 2.1 is on page 68.
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Problem 2.2. Determine whether the following statements are true or false. If a statement is true, then explain why. If a
statement is false, then provide a counterexample.

(a) If an object moves on a trajectory with constant speed S over a time interval a ≤ t ≤ b, then the length of the
trajectory is S(b− a).

(b) The curves defined by

(3) ~r(t) = 〈f(t), g(t)〉 and ~R(t) = 〈g(t), f(t)〉

have the same length over the interval [a, b].

(c) The curve ~r(t) = 〈f(t), g(t)〉, for 0 ≤ a ≤ t ≤ b, and the curve ~R(t) = 〈f(t2), g(t2)〉, for
√
a ≤ t ≤

√
b, have the same

length.
(d) The curve ~r(t) = 〈t, t2, 3t2〉, for 1 ≤ t ≤ 4, is parameterized by arclength.

The solution to Problem 2.2 is on page 75.

Problem 2.3. Consider the curve C that is described by the parameterization ~r(t) = 〈tm, tm, t 3
2m〉 where 0 ≤ a ≤ t ≤ b and

m 6= 0.

(a) Find the arclength function s(t). Note that your answer may include a, b, and m in it.

(b) Find the parameterization by arclength for C when a =
√

28
9 , b = 4, and m = 2.

The solution to Problem 2.3 is on page 77.

Problem 2.4. Determine whether the following statements are true or false. If a statement is true, then explain why. If a
statement is false, then provide a counterexample.

(a) The position, unit tangent, and principal unit normal vectors (~r, T̂ , and N̂) at a point lie in the same plane.

(b) The vectors T̂ and N̂ at a point depend on the orientation of a curve.
(c) The curvature at a point depends on the orientation of a curve.

(d) An object with unit speed (|~v| = 1) on a circle of radius R has an acceleration of ~a = 1
R N̂ .

(e) If the speedometer of a car reads a constant 60 mi/hr, the car is not accelerating.
(f) A curve in the xy-plane that is concave up at all points has positive torsion.
(g) A curve with large curvature also has large torsion.

The solution to Problem 2.4 is on page 79.

Problem 2.5. Compute the unit binormal vector B̂ and torsion τ of the curve parameterized by ~r(t) = 〈2 cos(t), 2 sin(t),−t〉, t ∈
R(−∞ < t <∞).

The solution to Problem 2.5 is on page 82.

Problem 2.6. The function ~r(t) = 〈
∫ t
0

cos( 1
2u

2)du,
∫ t
0

sin( 1
2u

2)du〉, t ∈ R whose graph is called a clothoid or Euler Spiral,
has applications in the design of railroad tracks, rollercoasters, and highways.
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(a) A car moves from left to right on a straight highway, approaching a curve at the origin (Figure B). Sudden changes
in curvature at the start of the curve may cause the driver to jerk the steering wheel. Suppose the curve starting at
the origin is a segment of a circle of radius a. Explain why there is a sudden change in the curvature of the road at
the origin.

(b) A better approach is to use a segment of a clothoid as an easement curve, in between the straight highway and a
circle, to avoid sudden changes in curvature (Figure C). Assume the easement curve corresponds to the clothoid ~r(t),
for 0 ≤ t ≤ 1.2. Find the curvature of the easement curve as a function of t and explain why this curve eliminates
the sudden change in curvature at the origin.

(c) Find the radius of a circle connected to the easement curve at point A (that corresponds to t = 1.2 on the curve ~r(t))
so that the curvature of the circle matches the curvature of the easement curve at point A.

The solution to Problem 2.6 is on page 92.

Problem 2.7. Verify that

(4) lim
(x,y)→(0,0)

sin(x) + sin(y)

x+ y
= 1.

The solution to Problem 2.7 is on page 84.

Problem 2.8. Consider the function

(5) f(x, y) =
xy2

x2 + y4
.

(a) Show that if L is a line that passes through the origin, then

(6) lim
(x,y)→(0,0)

(x,y)∈L

f(x, y) = 0.

(b) Show that

(7) lim
(x,y)→(0,0)

f(x, y)

does not exist.
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The solution to Problem 2.8 is on page 86.

Problem 2.9. Consider the function f(x, y) =
√
|xy|.

Figure 3. A graph of z =
√
|xy|.

(a) Is f continuous at (0, 0)?
(b) Show that fx(0, 0) and fy(0, 0) exist by calculating their values.
(c) Determine whether fx and fy are continuous at (0, 0).
(d) Is f differentiable at (0, 0)?

The solution to Problem 2.9 is on page 88.

2.3. Optimization: Second Derivative Test, Lagrange Multipliers.

Problem 3.1. Determine all critical points of the function f(x, y) = x3 − y3 + xy, then classify each of the critical points
as a local maximum, local minimum, or saddle point.

The solution to Problem 3.1 is on page 112.

Problem 3.2. A lidless cardboard box is to be made with a volume of 4 m3. Find the dimensions of the box that require the
least cardboard.

The solution to Problem 3.2 is on page 113.

Problem 3.3. Consider the function f(x, y) = 3 + x4 + 3y4. Show that (0, 0) is a critical point for f(x, y) and show that
the second derivative test is inconclusive at (0, 0). Then describe the behavior of f(x, y) at (0, 0).
Hint: The product of 2 negative numbers is positive.

The solution to Problem 3.3 is on page 117.

Problem 3.4. Show that the second derivative test is inconclusive when applied to the function f(x, y) = x4y2 at the point
(0, 0). Show that f(x, y) has a local minimum at (0, 0) by direct analysis.
Hint: The product of 2 negative numbers is positive.

The solution to problem 3.4 is on page 118.

Problem 3.5. Find the absolute minimum and absolute maximum values of the function f(x, y) = xy over the region
R = {(x, y) | (x− 1)2 + y2 ≤ 1}.

The solution to Problem 3.5 is on page 119.
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Problem 3.6. Find the absolute minimum and maximum value of the function

(8) f(x, y) = 2x2 − 4x+ 3y2 + 2 = 2(x− 1)2 + 3y2

over the region

(9) R := {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1}.

The solution to Problem 3.6 is on page 121.

Problem 3.7. Use the method of Lagrange multipliers to find the absolute maximum and minimum of the function

(10) f(x, y, z) = xyz

subject to the constraint

(11) x2 + 2y2 + 4z2 = 9.

The solution to Problem 3.7 is on page 124.

Problem 3.8. What point on the plane x + y + 4z = 8 is closest to the origin? Give an argument showing that you have
found an absolute minimum of the distance function.

The solution to Problem 3.8 is on page 174.

Problem 3.9. Find the point on the plane x+ y + z = 4 nearest the point P (0, 3, 6). Remember to justify why your answer
is a global minimum and not just a local minimum.

The solution to Problem 3.9 is on page 177.

Problem 3.10. Find the point on the plane 2x + 3y + 6z − 10 = 0 closest to the point (−2, 5, 1) by using the method of
Lagrange Multipliers. Can you justify that your answer is a global minimum and not just a local minimum?

The solution to Problem 3.10 is on page 180.

Problem 3.11. Use Lagrange multipliers to find the dimensions of the right circular cylinder of minimum surface area
(including the circular ends) with a volume of 32π in3.

The solution to problem 3.11 is on page 182.

Problem 3.12. Economists model the output of manufacturing systems using production functions that have many of the
same properties as utility functions. The family of Cobb-Douglas production functions has the form P = f(K,L) = CKaL1−a,
where K represents capital, L represents labor, and C and a are positive real numbers with 0 < a < 1. If the cost of capital
is p dollars per unit, the cost of labor is q dollars per unit, and the total available budget is B, then the constraint takes the
form pK + qL = B. Find the values of K and L that maximize the production function

(12) P = f(K,L) = 10K
1
3L

2
3

subject to

(13) 30K + 60L = 360,
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assuming K ≥ 0 and L ≥ 0.

The solution to Problem 3.12 is on page 183.

Problem 3.13. Given the production function P = f(K,L) = KaL1−a and the budget constraint pK + qL = B, where
a, p, q, and B are given, show that P is maximized when K = aB/p and L = (1 − a)B/q. (Recall that p, q,K,L ≥ 0 and
0 < a < 1 in order for the model to make sense in the real world and for the production function f to be well defined.)

The solution to Problem 3.13 is on page 185.

Problem 3.14. Find the absolute minimum and absolute maximum values of the function

(14) f(x, y) = x2 + 4y2 + 1

over the region

(15) R = {(x, y) : x2 + 4y2 ≤ 1}.

You should know how to solve this type of problem using lagrange multipliers, but you can avoid using lagrange multipliers
(and even avoid parameterization of the boundary) in this particular problem if you think about it carefully.

The solution to Problem 3.14 is on page 187.

Problem 3.15. Show that each of the following functions f(x, y) have exactly 1 critical point that is a local extrema, but not
a global extrema.1

(i) f(x, y) = e3x + y3 − 3yex.
(ii) f(x, y) = x2 + y2(1 + x)3.

Remark: A continuously differentiable single variable function f(x) that has exactly 1 critical point that is a local extrema will
also have that critical point be a global extrema. This problem shows that the same phenomena does not hold for functions of
2 or more variables.

The solution to Problem 3.15 is on page 189.

2.4. Double Integrals, Polar Coordinates.

Problem 4.1. Evaluate

(16)

∫ √π
2

0

∫ 1

0

yx sin(x2)dydx,

(17)

∫ 1

0

∫ √π
2

0

yx sin(x2)dxdy, and

(18)

(∫ √π
2

0

x sin(x2)dx

)(∫ 1

0

ydy

)

Note that all 3 integrals should result in the same value once evaluated. Please show your work for the calculations of each
of the 3 integrals separately.

The solution to Problem 4.1 is on page 191.

Problem 4.2. Suppose that the second partial derivative of f are continuous on R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. Show
that

(19)

∫∫
R

∂2f

∂x∂y
(x, y)dA = f(a, b)− f(a, 0)− f(0, b) + f(0, 0).

Hint: Think about the fundamental theorem of calculus.

The solution to problem 4.2 is on page 193.

1I took item (i) from Tom Vogel of Texas A& M and item (ii) from Henry Wente of University of Toledo.
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Problem 4.3. Let R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

a. Evaluate
∫∫
R

cos(x
√
y)dA.

b. Evaluate
∫∫
R
x3y cos(x2y2)dA.

Hint: Choose a convenient order of integration.

The solution to problem 4.3 is on page 195.

Problem 4.4. Let R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Let F be an antiderivative of f satisfying F (0) = 0, and let G be an
antiderivative of F . Show that if f and F are integrable, and r, s ≥ 1 are real numbers, then

(20)

∫∫
R

x2r−1ys−1f(xrys)dA =
G(1)−G(0)

rs
.

Hint: Pick a convenient order of integration, then apply u-substition. It also helps if you do problem 14.1.60 before doing
this problem.

The solution to problem 4.4 is on page 197.

Problem 4.5. Let R be the region in quadrants 1 and 4 bounded by the semicircle of radius 4 centered at (0, 0). Sketch a
picture of R, then evaluate

(21)

∫∫
R

x2ydA.

The solution to problem 4.5 is on page 199.

Problem 4.6. Let R be the region that is bounded by both branches of y = 1
x , the line y = x+ 3

2 , and the line y = x− 3
2 .

(a) Find the area of R.
(b) Evaluate

(22)

∫∫
R

xydA.

The solution to Problem 4.6 is on page 131.

Problem 4.7. Let R be the region inside of the ellipse x2

18 + y2

36 = 1 for which we also have y ≤ 4
3x.

(a) Find the area of R.
(b) Evaluate

(23)

∫∫
R

xydA.

The solution to Problem 4.7 is on page 134.

Problem 4.8. Find the volume of the solid bounded by the planes x = 0, x = 5, z = y − 1, z = −2y − 1, z = 0, and z = 2.

The solution to Problem 4.8 is on page 139.

Problem 4.9. Let R be the region in the xy-plane that is bounded by the spiral r = θ for 0 ≤ θ ≤ π and the x-axis. Find
the volume of the 3-dimensional solid S that lies above the region R and underneath the surface z = x2 + y2.

The solution to Problem 4.9 is on page 142.

Problem 4.10. The limaçon r = b+ a cos(θ) has an inner loop if b < a and no inner loop if b > a.
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(a) Find the area of the region bounded by the limaçon r = 2 + cos(θ).
(b) Find the area of the region outside the inner loop and inside the outer loop of the limaçon r = 1 + 2 cos(θ).
(c) Find the area of the region inside the inner loop of the limaçon r = 1 + 2 cos(θ).

The solution to Problem 4.10 is on page 143.

Problem 4.11. Let R be the region inside both the cardiod r = 1 + sin(θ) and the cardiod r = 1 + cos(θ). Sketch a picture of
the region R, or create an image of the region R using a graphing program, then use double integration to find the area of R.

The solution to problem 4.11 is on page 145.

Problem 4.12. Evaluate

(24)

∫ 4

0

∫ 2

√
x

x

y5 + 1
dydx

by changing the order of integration.

Hint: Start by drawing a picture of the region of integration.

The solution to problem 4.12 is on page 147.

Problem 4.13. Find the volume of the solid S bounded by the paraboloid z = 8 − x2 − 3y2 and the hyperbolic paraboloid
z = x2 − y2.

Figure 4. A view of the solid S whose volume we are calculating.
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The solution to problem 4.13 is on page 154.

2.5. Triple Integrals, Spherical Coordinates, Cylindrical Coordinates.

Problem 5.1. Write an iterated integral for
∫∫∫

D
f(x, y, z)dV , where D is a sphere of radius 9 centered at (0, 0, 1). Use the

order dV = dzdydx.

Hint: Start by finding the equation of the the surface of the sphere of radius 9 centered at (0, 0, 1).

The solution to Problem 5.1 is on page 156.

Problem 5.2. Sketch by hand or graph with a computer program the region of integration for the integral

(25)

∫ 1

0

∫ √1−z2

0

∫ √1−y2−z2

0

f(x, y, z)dxdydz.

Note: You may also describe the region of integration in writing instead. If you choose to do this, please write complete
sentences and provide a thorough description.

The solution to Problem 5.2 is on page 158.

Problem 5.3. Evaluate

(26)

∫ ln(8)

1

∫ √z
1

∫ ln(2y)

ln(y)

ex+y
2−zdxdydz.

The solution to Problem 5.3 is on page 159.

Problem 5.4. Find the volume of the solid S in the first octant that is bounded by the cone z = 1−
√
x2 + y2 and the plane

x+ y + z = 1.

The solution to Problem 5.4 is on page 160.

Problem 5.5. Use triple integration in Cartesian coordinates to find the volume of the tetrahedron S that has its vertices at
(0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c), where a, b, c > 0.
Hint: One of the faces of the tetrahedron lies on the plane x

a + y
b + z

c = 1.

The solution to Problem 5.5 is on page 164.

Problem 5.6. Evaluate

(27)

∫ 4

1

∫ 4z

z

∫ π2

0

sin(
√
yz)

x
3
2

dydxdz.

Hint: A different order of integration can make the problem easier, even though it is not necessary.
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The solution to Problem 5.6 is on page 165.

Problem 5.7. Find the volume of the solid region S outside the cone ϕ = π
4 and inside the sphere ρ = 4 cos(ϕ).

The solution to Problem 5.7 is on page 168.

Problem 5.8. Find the volume of the solid region S that is bounded by the cylinders r = 1 and r = 2, and the cones ϕ = π
6

and ϕ = π
3 .

The solution to problem 5.8 is on page 171.

Problem 5.9. Rewrite the the triple integral

(28)

∫ 2

0

∫ 9−x2

0

∫ x

0

f(x, y, z)dydzdx

using the order dzdxdy.

The solution to problem 5.9 is on page 202.

Problem 5.10. Find the volume of the solid S that is bounded by the parabolic cylinders z = y2 + 1 and z = 2− x2.
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The solution to problem 5.10 is on page 205.

Problem 5.11. Find the volume of the solid cylinder E whose height is 4 and whose base is the disk {(r, θ) : 0 ≤ r ≤ 2 cos(θ)}.

The solution to Problem 5.11 is on page 240.

Problem 5.12. Find the volume of the solid cardiod of revolution D = {(ρ, ϕ, θ) : 0 ≤ ρ ≤ 1
2 (1− cos(ϕ)), 0 ≤ ϕ ≤ π, 0 ≤ θ ≤

2π}.
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The solution to problem 5.12 is on page 242.

Problem 5.13. Find the volume of S, the cap of a sphere of radius R with thickness h.

The solution to problem 5.13 is on page 243.

2.6. Change of Variables in Double and Triple Integrals.

Problem 6.1. Let R be the region bounded by the lines y− x = 0, y− x = 2, y+ x = 0, y+ x = 2. Use a change of variables
to evaluate

(29)

∫∫
R

√
y2 − x2dA.

The solution to Problem 6.1 is on page 248.

Problem 6.2. Let R be the region in the first quadrant bounded by the hyperbolas xy = 1 and xy = 4 and the lines y = x
and y = 3x. Evaluate

(30)

∫∫
R

y4dA.
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Note that you can also solve this problem in Cartesian coordinates and polar coordinates, not just a change of variables. Try
solving it with all three methods and compare their difficulties!

The solution to Problem 6.2 is on page 149.

Problem 6.3. Find the volume of the solid D that is bounded by the planes y − 2x = 0, y − 2x = 1, z − 3y = 0, z − 3y =
1, z − 4x = 0, and z − 4x = 3.

The solution to Problem 6.3 is on page 250.

Problem 6.4. This problem has parts a.-g. spread out across the following pages. Your solutions to parts a, b, and f should
include (hand drawn or computer generated) pictures.

Consider the Transformation T from the uv-plane to the xy-plane given by T (u, v) = (u2 − v2, 2uv).

a. Show that the lines u = a in the uv-plane map to parabolas in the xy-plane that open in the negative x-direction with
vertices2 on the positive x-axis.3 Compare the images of the lines u = a and u = −a under T .

b. Show that the lines v = b in the uv-plane map to parabolas in the xy-plane that open in the positive x-direction with
vertices on the negative x-axis.4 Compare the images of the lines v = b and v = −b under T .

c. Evaluate J(u, v).
d. Use a change of variables into parabolic coordinates to find the area of the region R in the xy-plane bounded by the

curves x = 4− 1
16y

2 and x = 1
4y

2 − 1. Sketch a picture of the new region of integration as well.

e. Use a change of variables into parabolic coordinates to find the area of the curved rectangle R above the x-axis bounded
by x = 4− 1

16y
2, x = 9− 1

36y
2, x = 1

4y
2 − 1, and x = 1

64y
2 − 16. Sketch a picture of the new region of integration as

well.
f. Describe the effect of the transformation (u, v) 7→ (2uv, u2 − v2) on horizontal and vertical lines in the uv-plane.5

2The vertex of the parabola y = x2 is the point (0, 0) and the vertex of the parabola x = y2 is also (0, 0).
3You have to show that the curve ~r1(v) = (a2 − v2, 2av) represents the same curve as x+ c = dy2 for some negative numbers c and d.
4You have to show that the curve ~r2(u) = (u2 − b2, 2ub) represents the same curve as x+ c = dy2 for some positive numbers c and d.
5Remember that the transformation (x, y) 7→ (y, x) reflects points in the xy-plane across the line y = x. It will also help to use the results of

parts a. and b. of this problem.
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g. Show that the parabolas that are the images of the lines u = a and v = b under T (u, v) = (u2−v2, 2uv) are orthogonal
to eachother.

The solution to Problem 6.4 is on page 253.

Parts (a) and (c) of Problm 8.6 can be done without knowledge about surface integrals and give more practice with change
of variables.

2.7. Line Integrals, Vector Fields, Conservativity, Flux, Circulation.

Problem 7.1. Use a scalar line integral to find the length of the curve

(31) ~r(t) = 〈20 sin(
t

4
), 20 cos(

t

4
),
t

2
〉, for 0 ≤ t ≤ 2.

The solution to problem 7.1 is on page 208.

Problem 7.2. Find the work required to move an object along the line segment from (1, 1, 1) to (8, 4, 2) through the forcefield
~F given by

(32) ~F =
〈x, y, z〉

x2 + y2 + z2
.

The solution to problem 7.2 is on page 209.

Problem 7.3. Determine whether the vector field ~F given by

(33) ~F = 〈y − ex+y, x− ex+y + 1,
1

z
〉

is a conservative vector field. If ~F is conservative, then find a potential function ϕ.

The solution to problem 7.3 is on page 211.

Problem 7.4. Evaluate

(34)

∫
C

〈 4
√
x+ 6 + ln(ln(ln(ee

e

+ 5 + x)))− 1, y3 + 2 + ey
2

〉 · d~r,

where C is the curve that is shown in the picture below.
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The solution to problem 7.4 is on page 212.

Problem 7.5. Consider the vector field ~F = 〈x,−y〉 and the curve C which is the square with vertices (±1,±1) with the
counterclockwise orientation.

Figure 5. The curve C.

(a) Evaluate
∫
C
~F · d~r by finding a parametrization ~r(t) for the curve C.

(b) Evaluate
∫
C
~F · d~r by using the Fundamental Theorem for Line Integrals.

The solution to Problem 7.5 is on page 266.

Problem 7.6. Find the average value of

(35) f(x, y) =
√

4 + 9y2/3

on the curve y = x3/2, for 0 ≤ x ≤ 5.

The solution to Problem 7.6 is on page 269.

Problem 7.7. Consider ∫
C
(x2 + y2)ds,

where C is the line segment from (0, 0) to (5, 5).

(1) Find a parametric description for C in the form ~r(t) = 〈x(t), y(t)〉. (Remember to state the domain of the parameter.)

(2) Evaluate |~r′(t)|.
(3) Convert the line integral to an ordinary integral with respect to the parameter and evaluate it.

The solution to Problem 7.7 is on page 271.

Problem 7.8. Compute

(36)

∫
C
xeyzds,

where C is ~r(t) = 〈t, 2t,−4t〉 for 1 ≤ t ≤ 2.
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The solution to Problem 7.8 is on page 272.

Problem 7.9. Compute

(37)

∫
C

xy

z
ds,

where C is the line segment from (1, 4, 1) to (3, 6, 3).

The solution to Problem 7.9 is on page 273.

Problem 7.10. Let f(x, y) = x and consider the segment of the parabola y = x2 joining O(0, 0) and P (1, 1).

(1) Let C1 be the segment from O to P . Find a parametrization of C1, then evaluate
∫
C1 fds.

(2) Let C2 be the segment from P to O. Find a parametrization of C2, then evaluate
∫
C2 fds.

(3) Compare the results of (1) and (2).

The solution to Problem 7.10 is on page 290.

Problem 7.11. Find the average value of the function f(x, y) = x+ 2y on the line segment from (1, 1) to (2, 5).

The solution to Problem 7.11 is on page 292.

Problem 7.12. Find the average value of the function f(x, y, z) = x over the curve C that is paramterized by

(38) ~r(t) = 〈20 sin(
t

4
), 20 cos(

t

4
),
t

2
〉, 0 ≤ t ≤ 4π.

The solution to Problem 7.12 is on page 293.

Problem 7.13. Compute the circulation of ~F = 〈y − x, x〉 on the curve C which is given by ~r(t) = 〈2 cos(t), 2 sin(t)〉 for
0 ≤ t ≤ 2π.

The solution to Problem 7.13 is on page 274.

Problem 7.14. Let a be a positive number. Consider the vector field ~F = 〈y, x〉 and the curve C given by ~r(t) =

〈a cos(t), a sin(t)〉 for 0 ≤ t ≤ 2π. Compute the flux of ~F across C. (Your answer should be in terms of a.)

The solution to Problem 7.14 is on page 275.

Problem 7.15. Consider the flow field F = 〈y, x〉 shown in the figure below.
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(a) Compute the outward flux across the quarter circle C:r(t) = 〈2 cos(t), 2 sin(t)〉, 0 ≤ t ≤ π
2 .

(b) Compute the outward flux across the quarter circle C:r(t) = 〈2 cos(t), 2 sin(t)〉, π
2 ≤ t ≤ π.

(c) Explain why the flux across the quarter circle in the third quadrant equals the flux computed in part a.
(d) Explain why the flux across the quarter circle in the fourth quadrant equals the flux computed in part b.
(e) What is the outward flux across the full circle?

The solution to Problem 7.15 is on page 276.

Problem 7.16. Consider the rotation field ~F = 〈−y, x〉, and the three paths shown in the figure.
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(1) Compute the work required in the presence of the force field ~F to move an object on the curve C1.

(2) Compute the work required in the presence of the force field ~F to move an object on the curve C2.

(3) Compute the work required in the presence of the force field ~F to move an object on the curve C3.

(4) Does it appear that the line integral
∫
C
~F · ~Tds is independent of the path, where C is any path from (1, 0) to (0, 1)?

The solution to Problem 7.16 is on page 280.

Problem 7.17. Find the work required to move an object along the line segment from (1, 1, 1) to (8, 4, 2) through the force

field ~F given by

~F =
〈x, y, z〉

x2 + y2 + z2
.

The solution to Problem 7.17 is on page 283.

Problem 7.18. Given the force field F = 〈x, y, z〉, find the work required to move an object around the tilted ellipse that is
parameterized by r(t) = 〈4 cos(t), 4 sin(t), 4 cos(t)〉, 0 ≤ t ≤ 2π.

The solution to Problem 7.18 is on page 285.

Problem 7.19. Evaluate the line integral
∫
C
∇φ · d~r for φ(x, y) = xy and C : ~r(t) = 〈cos(t), sin(t)〉, for 0 ≤ t ≤ π in two

ways.

(a) Use a parametric description of C and evaluate the integral directly
(b) Use the Fundamental Theorem for line integrals.

The solution to Problem 7.19 is on page 286.

Problem 7.20. Let ~F be the vector field

~F = 〈f(x, y), g(x, y)〉 = 〈 −y
x2 + y2

,
x

x2 + y2
〉.

It is a rotational vector field with the graph below
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Figure 6. vector field ~F

(1) Find the domain R of ~F .
(2) Is the domain R connected? Is R simply connected?

(3) Show that ∂g
∂x = ∂f

∂y .

(4) Let Ca be the parameterized circle ~r(t) = 〈a cos(t), a sin(t)〉, 0 ≤ t < 2π of radius a > 0. Show that the integral

∫
Ca

~F · d~r = 2π.

(5) Is ~F a conservative vector field on R? If so, please explain. Otherwise, please explain why it doesn’t contradict the
result in (3).

(6) Let R1 be the region R1 = {1 ≤ x ≤ 2, 1 ≤ y ≤ 2}. Is ~F a conservative vector field on R1? Please explain.

The solution to Problem 7.20 is on page 287.

2.8. Surface Integrals, Green’s Theorem, Stoke’s Theorem, Divergence Theorem.

Problem 8.1. An idealized two-dimensional ocean is modeled by the square region R = [−π2 ,
π
2 ]× [−π2 ,

π
2 ]. with boundary C.

Consider the stream function Ψ(x, y) = 4 cos(x) cos(y) defined on R. Some of the level curves of Ψ are shown in the figure
below.
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Figure 7. Some level curves of the stream function Ψ(x, y).

(a) The horizontal (east-west) component of the velocity is u = Ψy and the vertical (north-south) component of the
velocity is v = −Ψx. Sketch a few representative velocity vectors and show that the flow is counterclockwise around
the region.

(b) Is the velocity field source free? Explain.
(c) Is the velocity field irrotational? Explain.
(d) Find the total outward flux across C.
(e) Find the circulation on C assuming counterclockwise orientation.

The solution to Problem 8.1 is on page 214.

Problem 8.2. Consider the radial field ~F (x, y) = 〈x,y〉√
x2+y2

= ~r
|~r| shown below.
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(a) Explain why the conditions of Green’s Theorem do not apply to ~F on a region R containing the origin.
(b) Let R be the unit disk centered at the origin and compute

(39)

∫∫
R

(
∂f

∂x
+
∂g

∂y
)dA.

(c) Evaluate the line integral in the flux form of Green’s Theorem applied to the region R and the vector field ~F .
(d) Do the results of parts (b) and (c) agree? Explain.

The solution to Problem 8.2 is on page 217.

Problem 8.3. Suppose y = f(x) is a continuous and positive function on [a, b]. Let S be the surface generated when the
graph of f(x) is revolved about the x-axis.

(a) Show that S is described parametrically by ~r(u, v) = 〈u, f(u) cos(v), f(u) sin(v)〉, for a ≤ u ≤ b, 0 ≤ v ≤ 2π.
(b) Find an integral that gives ths surface area of S.
(c) Apply the result of part (b) to the surface S1 generated with f(x) = x3, for 1 ≤ x ≤ 2.

The solution to Problem 8.3 is on page 220.

Problem 8.4. Given a sphere of radius R and a length 0 < L ≤ 2R, show that the surface area of the strips of length L on
the sphere depend only on L and not on the location of the strip.
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Figure 8. An example of Problem 8.4 with L = 0.925 and R = 4.

Hint: Problem 8.3 can help.

The solution to Problem 8.4 is on page 222.

Problem 8.5 (Rain on roofs). Let z = s(x, y) define the surface S over a region R in the xy-plane, where z ≥ 0 on R. Show

that the downward flux of the vertical vector field ~F = 〈0, 0,−1〉 across S equals the area of R. Interpret the result physically.

The solution to Problem 8.5 is on page 223.

Problem 8.6 (Surface Area and Volume of a Torus).

(a) Show that a torus T with radii R > r (See figure) may be described parametrically by r(K, θ) = 〈(R+r cos(K)) cos(θ), (R+
r cos(K)) sin(θ), r sin(K)〉, for 0 ≤ K ≤ 2π, 0 ≤ θ ≤ 2π.

(b) Show that the surface area of the torus T is 4π2Rr.
Interestingly, the arclength of the small circle is 2πr and the arclength of the large circle inside the torus is 2πR, so
the surface area of the torus happens to be the product of the arclengths of the 2 circles from which it is created.

(c) Use part (a) to find a parametrization ~s(K, θ, r) for the solid torus T (T from part (a) as well as its interior), then
use ~s and a change of variables to show that the volume of T is πr2R.

The solution to Problem 8.6 is on page 224.

Problem 8.7. Let S be the upper half of the ellipsoid x2

4 + y2

9 + z2 = 1 and let ~F = 〈z, x, y〉. Use Stoke’s theorem to evaluate

(40)

∫∫
S

(∇× ~F ) · n̂dS.
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Figure 9. A view of S and ∂S.

The solution to Problem 8.7 is on page 229.

Problem 8.8. Let C be the circle x2+y2 = 12 in the plane z = 0 (as a subset of R3) and let ~F = 〈(x+4)x, y ln(y+4), ez
2+
√
z〉.

Use Stoke’s theorem to evaluate

(41)

∮
C

~F · d~r.

The solution to Problem 8.8 is on page 230.

Problem 8.9. Let S be the surface of the cube cut from the first octant by the planes x = 1, y = 1, and z = 1. Let
~F = 〈x2, 2xz, y2〉. Use the Divergence theorem to evaluate the net outward flux of ~F across S.

The solution to Problem 8.9 is on page 232.

Problem 8.10. Let S be the boundary of the ellipsoid x2

4 + y2 + z2 = 1 and let ~F = 〈x2ey cos(z),−4xey cos(z), 2xey sin(z)〉.
Evaluate the outward flux of ~F across S.

The solution to Problem 8.10 is on page 233.

2.9. Linear Algebra.

Problem 9.1. Three people play a game in which there are always 2 winners and 1 loser. They have the understanding that
the loser always gives each winner an amount equal to what the winner already has. After 3 games, each has lost once and
each has $24. With how much money did each begin?

The solution to problem 9.1 is on page 234.

Problem 9.2. For the following problems, determine all possiblities for the solution set (from among infinitely many solutions,
a unique solution, or no solution) of the system of linear equations described. After determining the possibilities for the
solution set create concrete examples of systems corresponding to each possibility.

(1) A homogeneous system of 4 equations in 5 unknowns.
(2) A system of 4 equations in 3 unknowns.
(3) A system of 3 equations in 4 unknowns that has x1 = −1, x2 = 0, x3 = 2, x4 = −3 as a solution.
(4) A homogeneous system of 3 equations in 3 unknowns.
(5) A homogeneous system of 3 equations in 3 unknowns that has solution x1 = 1, x2 = 3, x3 = −1.
(6) A system of 2 equations in 3 unknowns.

You are free to make use of the following facts.

(1) Any homogeneous system of equations is consistent.
– This is seen by the fact that the trivial solution (the solution in which all variables are equal to 0) is always a

solution to a homogeneous system of equations.
(2) If a consistent system of equations (a system of equations with at least 1 solution) has more than 1 solution, then it

has infinitely many solutions.
(3) If a consistent system of equations has more variables than equations, then it has infinitely many solutions.

The solution to problem 9.2 is on page 236.
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Problem 9.3. For what value(s) of a does the following system have nontrivial solutions?

(42)
x1 + 2x2 + x3 = 0
−x1 + ax2 + x3 = 0
3x1 + 4x2 − x3 = 0

.

The solution to problem 9.3 is on page 239.

Problem 9.4. Let

(43) A =

 1 −1 −1
2 −1 1
−3 1 −3

 , ~x =

x1x2
x3

 , and ~b =

b1b2
b3

 .
a) Determine conditions on b1, b2, and b3 that are necessary and sufficient for the system of equations A~x = ~b to be

consistent.
b) For each of the following choices of ~b, either show that the system A~x = ~b is inconsistent or exhibit the solution.

i) ~b =

1
1
1

 ii) ~b =

5
2
1

 iii) ~b =

7
3
1

 iv) ~b =

0
1
2


The solution to Problem 9.4 is on page 295.

Problem 9.5. Find the inverse of

(44) A =

1 −2 3
0 2 −5
1 −1 1


The solution to Problem 9.5 is on page 298.

Problem 9.6. Consider the matrices A,D ane E given by

(45) A−1 =

[
3 1
0 2

]
, D =

[
−1 2 3
1 0 2

]
and E =

2 −1
1 1
0 3

 .
Find matrices B and C for which AB = D and CA = E.

The solution to Problem 9.6 is on page 299.

Problem 9.7. Let ~u and ~v be vectors in Rn, and let In denote the (n× n) identity matrix. Let A = In + ~u~vT , and suppose
that ~vT~u 6= −1. Show that

(46) A−1 = In − a~u~vT , where a =
1

1 + ~vT~u
.

This result is known as the Sherman-Woodberry formula.

On page 300 you can find a concrete example of what you are being asked to show in Problem 9.7 when n = 3. After the
example is the solution.

2.10. Complex Numbers.

Problem 10.1. Plot z = −1 − 1√
3
i in the complex plane. Then find the modulus and argument of z, and express z in the

form z = reiθ.

The solution to Problem 10.1 is on page 303.

Problem 10.2. For z = −1 + 4i and w = 5 + 2i evaluate
∣∣ z
2w

∣∣.
The solution to Problem 10.2 is on page 304.
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Problem 10.3. Evaluate i(ei
π
6 − e−iπ6 ).

The solution to Problem 10.3 is on page 305.

Problem 10.4. Let z = −1 + i and w = 1 + i
√

3 be the two complex numbers.
(1) Compute directly z · w and z

w and express the answer in Cartesian form, i.e., the form x + iy, where x and y are real
numbers.
(2) Express z and w in polar form. Compute z · w and z

w in polar forms. Compare your answer with part (1).
(3) Draw the four complex numbers w, z, z · w and z

w in the following coordinate. Explain what multiplication by w and
division by w do to the complex number z in terms of argument and modulus.

The solution to Problem 10.4 is on page 306.

Problem 10.5. (1) Equate the real and imaginary parts of both sides of the identity

ei(a−b) = eiae−ib

to prove that

cos(a− b) = cos(a) cos(b) + sin(a) sin(b);

sin(a− b) = sin(a) cos(b)− cos(a) sin(b).

(2) Equate the real and imaginary parts of both sides of the identity

ei2θ = eiθ · eiθ

to prove that

cos(2θ) = cos2(θ)− sin2(θ), and sin(2θ) = 2 sin(θ) cos(θ)

The solution to Problem 10.5 is on page 309.

Problem 10.6. Find all possible fourth roots of −16. Equivalently, find all possible values of (−16)
1
4 .

The solution to Problem 10.6 is on page 311.

Problem 10.7. Determine A,ω, and ϕ for which

(47) − 3 sin(4t) + 3 cos(4t) = A sin(ωt+ ϕ).

The solution to Problem 10.7 is on page 312.

Problem 10.8. Determine R, δ, and ω0 for which

(48) − 2 cos(πt)− 3 sin(πt) = R cos(ω0t− δ).

The solution to Problem 3 is on page 33.

2.11. Ordinary Differential Equations.

Problem 11.1. Solve the following initial value problem.

(49) y′′ − 3y′ − 18y = 0; y(0) = 0, y′(0) = 4.

Draw the graph of the solution. (You may seek help from graphing website/software. Think about why the graph behave in
that way and how is that related to the solution function.)

The solution to Problem 11.1 is on page 316.

Problem 11.2. Solve the following initial value problem.

(50) y′′ − y′ + 1

4
y = 0; y(0) = 1, y′(0) = 2.

Draw the graph of the solution. (You may seek help from graphing website/software. Think about why the graph behave in
that way and how is that related to the solution function.)

The solution to Problem 11.2 is on page 319.
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Problem 11.3. Solve the following initial value problem.

(51) y′′ + 6y′ + 10y = 0; y(0) = 0, y′(0) = 6.

Draw the graph of the solution. (You may seek help from graphing website/software. Think about why the graph behave in
that way and how is that related to the solution function.)

The solution to Problem 11.3 is on page 321.

Problem 11.4. Let a be a real number.

(a) Find the general solution to equation (52) in terms of a.

(52) y′′ − (a+ 2)y′ + 2ay = 0.

(b) Solve the initial value problem given in (53).

(53) y′′ − 25y′ + 46y; y(0) = 0, y′(0) = 21.

The solution to Problem 11.4 is on page 318.

Problem 11.5. Solve the following initial value problem.

(54) t2y′′ + 6ty′ + 6y = 0; y(1) = 0, y′(1) = −4.

Draw the graph of the solution. (You may seek help from graphing website/software. Think about why the graph behave in
that way and how is that related to the solution function.)

The solution to Problem 11.5 is on page 323.

Problem 11.6. Find the general solution of the equation

(55) y′′y′ = 1.

The solution to Problem 11.6 is on page 326.

Problem 11.7. Solve the differential equation

(56) y′′ = e−y
′
.

The solution to Problem 11.7 is on page 327.

Problem 11.8. For the following differential equations use the method of undetermined coefficients in order to find the
general form of the solution.

(57) y′′ + y = cos(2t) + t3.

(58) y′′ + 4y = cos(2t).

(59) 2y′′ − 8y′ + 8y = 4e2t.

(60) y′′ − y = 25te−t sin(3t).

(61) y(4) − 3y′′ + 2y = 6te2t.

The solution to Problem 11.8 is on page 328.

Problem 11.9. Find a particular solution of the following equation.

(62) y′′ − y′ − 6y = sin(t) + 3 cos(t).

The solution to Problem 11.9 is on page 332.

Problem 11.10. Find a particular solution of the following equation.

(63) y′′ + y = cos(2t) + t3.
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The solution to Problem 11.10 is on page 333.

Problem 11.11. Find a particular solution of the following equation.

(64) y′′ + 4y = cos(2t).

The solution to Problem 11.11 is on page 335.

Problem 11.12. Find a particular solution to equation (65).

(65) y′′ + 4y = t sin(2t).

The solution to Problem 11.12 is on page 337.

Problem 11.13. Find the general solution of the following equation and solve the given initial value problem.

(66) y′′ + y = 4 sin(2t); y(0) = 1, y′(0) = 0.

Draw the graph of the solution and determine the period of the function. (You may seek help from graphing website/software.
Think about why the graph behave in that way and how is that related to the solution function.)

The solution to Problem 11.13 is on page 339.

Problem 11.14. Use the method of undetermined coefficients to find the general solution to the differential equation

(67) y′′ + 3y′ = 2t4 + t2e−3t + sin(3t).

The solution to Problem 11.14 is on page 341.

Problem 11.15. Solve the initial value problem

(68) y′ +
2

t
y =

cos(t)

t2
, y(π) = 0, t > 0.

The solution to Problem 11.15 is on page 346.

Problem 11.16. Show that if a and λ are positive constants and b is any real number, then every solution of the equation

(69) y′ + ay = be−λt

has the property that y → 0 as t→∞.

The solution to Problem 11.16 is on page 347.

Problem 11.17. Solve the initial value problem

(70) y′ =
3x2 − ex

2y − 5
, y(0) = 1.

The solution to Problem 11.17 is on page 349.

Problem 11.18. Part a: Verify that y1(t) = 1− t and y2(t) = − t
2

4 are both solutions of the initial value problem

(71) y′ =
−t+

√
t2 + 4y

2
, y(2) = −1.

Where are these solutions valid?

Part b: Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Theorem
2.4.2 of the 10th edition of ’Elementary Differential Equations’ by W.E. Boyce and R.C. DiPrima.

Part c: Show that y(t) = ct+ c2, where c is an arbitrary constant, satisfies the differential equation in part (a) for t ≥ −2c.
If c = −1, then the initial condition is also satisfied and the solution y = y1(t) is obtained. Show that no other choice of c
gives a second solution. Note that no choice of c gives the solution y = y2(t).

The solution to Problem 11.18 is on page 351.
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Problem 11.19. Solve the differential equation

(72)
dy

dx
=
x2 + xy + y2

x2
.

The solution to Problem 11.19 is on page 353.

Problem 11.20. Find and classify (stable, unstable, semistable) the equilibrium points of the differential equation

(73)
dy

dt
= y(1− y2), −∞ < y0 <∞.

The solution to Problem 11.20 is on page 355.

Problem 11.21. Find and classify (stable, unstable semistable) the equilibrium points of the differential equation

(74)
dy

dt
= y2(4− y2), −∞ < y0 <∞.

The solution to Problem 11.21 is on page 358.

Problem 11.22. Find and classify (stable, unstable semistable) the equilibrium points of the differential equation

(75)
dy

dt
= y2(1− y)2, −∞ < y0 <∞.

The solution to Problem 11.22 is on page 361.

Problem 11.23. Solve the following initial value problem and find an interval on which the solution is valid.

(76) (2x− y) + (2y − x)y′ = 0, y(1) = 3.

The solution to Problem 11.23 is on page 364.

Problem 11.24. Find the general solution of the differential equation

(77) 1 +

(
x

y
− sin(y)

)
y′ = 0.

The solution to Problem 11.24 is on page 366.

Problem 11.25. Use Euler’s method to approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3,
and 0.4 with h = 0.1.

(78) y′ = 0.5− t+ 2y, y(0) = 1.

The solution to Problem 11.25 is on page 368.

Problem 11.26. A homebuyer takes out a mortgage of $100, 000 with an interest rate of 9%. What monthly payment is
required to pay off the loan in 30 years? In 20 years? What is the total amount paid during the term of the loan in each of
these cases?

The solution to Problem 11.26 is on page 369.

Problem 11.27. Consider the differential equation

(79) y′′ − (2α− 1)y′ + α(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (1221) tend to zero as t → ∞. Also find all values of α (if
any) for which all nonzero solutions become unbounded as t→∞.

The solution to Problem 11.27 is on page 373.
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Problem 11.28. Consider the differential equation

(80) y′′ + (3− α)y′ − 2(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (1212) tend to zero as t → ∞. Also find all values of α (if
any) for which all nonzero solutions become unbounded as t→∞.

The solution to Problem 11.28 is on page 374.

Problem 11.29. As will be shown in Section 16.4, the equation y′′ + py′ + qy = f(t), where p and q are constants and f
is a specified function, is used to model both the mechanical oscillators and electrical circuits. Depending on the values of p
and q, the solutions to this equation display a wide variety of behavior.
Consider the equation

y′′ + 9y = 8 sin(t).

(a). Verify that the following equations have the given general solutions

y = c1 sin(3t) + c2 cos(3t) + sin t.

(b). Solve the initial value problem with the given initial conditions y(0) = 0, y′(0) = 2.
(c). Graph the solutions to the initial value problem, for t ≥ 0.

The solution to Problem 11.29 is on page 375.

Problem 11.30. Find the Wronskian of the differential equation

(81) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0

without solving the equation.

The solution to Problem 11.30 is on page 377.

Problem 11.31. Given that y1(t) = t is a solution to equation (81), use the Wronskian W (t) to find another independent
solution y2(t). (Compare with problem 11.35)

The solution to Problem 11.31 is on page 378.

Problem 11.32. Solve the initial value problem

(82) y′′ − 2y′ + 5y = 0, y(
π

2
) = 0, y′(

π

2
) = 2,

then sketch the graph of the solution and describe the behavior as t→∞.

The solution to Problem 11.32 is on page 379.

Problem 11.33. Solve the differential equation

(83) t2y′′ − ty′ + 5y = 0, t > 0.

The solution to Problem 11.33 is on page 381.

Problem 11.34. Given a ∈ R, solve the differential equation

(84) y′′ + 2ay′ + a2y = 0.

Hint: It helps to consider the Wronskian.

The solution to Problem 11.34 is on page 383.

Page 37



Sohail Farhangi Problems and Solutions Compilation

Problem 11.35. Given that y1(t) = t is a solution to the differential equation

(85) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0, t > 0,

use the method of reduction of order to find a second solution. (Compare with Problem 11.31)

The solution to Problem 11.35 is on page 385.

Problem 11.36. Use the method of variation of parameters to find the general solution to the differential equation

(86) (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1,

given that y1(t) = et and y2(t) = t are solutions to the corresponding homogeneous equation.

The solution to Problem 11.36 is on page 386.

Problem 11.37. Use the method of reduction of order to find the general solution to the differential equation

(87) (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1,

given that y1(t) = et is a solution to the corresponding homogeneous equation.

The solution to Problem 11.37 is on page 388.

Problem 11.38. A spring–mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the
motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity.
If the system is driven by an external force of (3 cos(3t) − 2 sin(3t)) N, determine the steady state response. Express your
answer in the form R cos(ωt− δ).

The solution to Problem 11.38 is on page 390.

Problem 11.39. Find the Laplace transform of the function f : [0,∞) → [0, 1) that is defined by f(t) = t when 0 ≤ t < 1
and f(t+ 1) = f(t).

The solution to Problem 11.39 is on page 393.

Problem 11.40. Solve the initial value problem

(88) y′′ + 4y = sin(t)− u2π(t) sin(t− 2π); y(0) = 0, y′(0) = 0.
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The solution to Problem 11.40 is on page 397.

Problem 11.41. Solve the initial value problem

(89) y(4) + 5y′′ + 4y = 1− u2π(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0.

Hint: It may help to do Problem 11.40 first.

The solution to Problem 11.41 is on page 400.

Problem 11.42. Solve the initial value problem

(90) y′′ + 3y′ + 2y = δ(t− 5) + u10(t); y(0) = 0, y′(0) = 0.

The solution to Problem 11.42 is on page 403.

Problem 11.43. Solve the initial value problem

(91) y′′ + 3y′ + 2y = cos(αt); y(0) = 1, y′(0) = 0

by using the Laplace transform and convolution integrals.

The solution to Problem 11.43 is on page 406.

Problem 11.44. Show that W (5, sin2(t), cos(2t)) = 0. Can this also be shown without directly computing the Wronskian?

The solution to Problem 11.44 is on page 409.

Problem 11.45. Find the general solution to the differential equation

(92) y′′′ + y′ = sec(t).

The solution to Problem 11.45 is on page 411.

Problem 11.46. Let y = φ(x) be a solution to the initial value problem

(93) y′′ + x2y′ + sin(x)y = 0; y(0) = a0, y
′(0) = a1.

Find φ′′(0), φ′′′(0), and φ(4)(0).

The solution to Problem 11.46 is on page 413.

Problem 11.47. Solve the differential equation

(94) y′ + (x+ 1)y = x+ 1

by finding a series solution and by using an integrating factor, then compare your answers.

The solution to Problem 11.47 is on page 415.

Problem 11.48. Determine a lower bound for the radii of convergence r1 and r2 of the series solution to the differential
equation

(95) (1 + x3)y′′ + 4xy′ + y = 0,

centered at x1 = 0 and x2 = 2. Then find the series solution to equation (95) centered at x2 = 2.

The solution to Problem 11.48 is on page 418.
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2.12. Partial Differential Equations, Fourier Series, Eigenvalues of ODEs.

Problem 12.1. Consider the partial differential equation

(96)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

Show that for a solution u(r, θ) = R(r)Θ(θ) having separated variables, we must have

(97) r2R′′(r) + rR′(r)− λR(r) = 0, and

(98) Θ′′(θ) + λΘ(θ) = 0,

where λ is some constant.

The solution to Problem 12.1 is on page 422.

Problem 12.2. Consider the partial differential equation

(99)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ
+
∂2u

∂z2
= 0.

Show that for a solution u(r, θ, z) = R(r)Θ(θ)Z(z) having separated variables, we must have

(100) Θ′′(θ) + µΘ(θ) = 0,

(101) Z ′′(z) + λZ(z) = 0, and

(102) r2R′′(r) + rR′(r)− (r2λ+ µ)R(r) = 0,

where µ and λ are constants.

The solution to Problem 12.2 is on page 40.

Problem 12.3. Find the values of λ (eigenvalues) for which the following problem has a nontrivial solution. Also determine
the corresponding nontrivial solutions (eigenfunctions).

(103) y′′ + λy = 0; 0 < x < π, y(0)− y′(0) = 0, y(π) = 0.

The solution to Problem 12.3 is on page 426.

Problem 12.4. Find the values of λ for which the initial value problem given by

(104) y′′ − 2y′ + λy = 0; 0 < x < π

(105) y(0) = y(π) = 0

has nontrivial solutions. Then, for each such λ, find the nontrivial solutions.

The solution to Problem 12.4 is on page 430.

Problem 12.5. Find the fourier series of the function

(106) f(x) =

{
1 if − 2 < x < 0

x if 0 < x < 2
,

over the interval [−2, 2].
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The solution to Problem 12.5 is on page 433.

Problem 12.6. Find the Fourier sine series for

(107) f(x) = ex, 0 < x < 1.

The solution to Problem 12.6 is on page 436.

Problem 12.7. Find the Fourier cosine series for

(108) f(x) = 1 + x, 0 < x < π.

The solution to Problem 12.7 is on page 438.

Problem 12.8. Determine the function to which the Fourier series of

(109) f(x) = |x|, −π < x < π

converges pointwise.

The solution to Problem 12.8 is on page 440.

Problem 12.9. Determine the function to which the Fourier series of

(110) f(x) =

{
0 if − π < x < 0,

x2 if 0 < x < π

converges pointwise.

The solution to Problem 12.9 is on page 442.

Problem 12.10. Find the solution u(x, t) to the heat flow problem

(111)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0,
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(112) µ(0, t) = µ(L, t) = 0, t > 0

(113) u(x, 0) = f(x), 0 < x < L,

with β = 5, L = π, and the initial value function

(114) f(x) = 1− cos(2x).

The solution to Problem 12.10 is on page 444.

Problem 12.11. Formally solve the vibrating string problem

(115)
∂2u

∂t2
= α

∂2u

∂x2
, 0 < x < L, t > 0,

(116) u(0, t) = u(L, t) = 0, t > 0,

(117) u(x, 0) = f(x), 0 ≤ x ≤ L,

(118)
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L,

with α = 4, L = π, and the initial value functions

(119) f(x) =

∞∑
n=1

1

n2
sin(nx),

(120) g(x) =

∞∑
n=1

(−1)n+1

n
sin(nx).

The solution to Problem 12.11 is on page 447.
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Problem 1.1: A suitcase is pulled 50ft along a horizontal sidewalk with a
constant force of 30lb at an angle of 30◦ above the horizontal. How much work
is done?

Solution: For this problem it suffices to use the formula for work that is shown
in the diagram below.

The only thing that we need to be careful of is to remember that the standard
unit of measure for work is Joules (J) which is given by J = kg·m/s2 = N·m,
where N represents Newtons. To this end, we recall that 1lb≈4.4482N and
1ft≈0.3048m. It follows that the total amount of work done is given by

(121) Work = 30lb · 50ft · cos(30◦) ≈ 30 · 4.4482N · 50 · 0.3048m ·
√

3

2
≈ 761.2506J .
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Problem 1.2: A constant force of ~F = 〈2, 4, 1〉N moves an object from
(0, 0, 1)m to (2, 4, 6)m. How much work is done?

Solution: For this problem it helps to use the formula

(122) Work = |~F | · |~d | cos(θ) = ~F · ~d,
where ~F is a constant force that is applied to an object that moves in a straight
line with a final displacement of ~d. We now see that

(123) ~d = 〈2, 4, 6〉m− 〈0, 0, 1〉m = 〈2, 4, 5〉m

(124) →Work = 〈2, 4, 1〉N︸ ︷︷ ︸
~F

· 〈2, 4, 5〉m︸ ︷︷ ︸
~d

= 25J .
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Problem 1.3: An object on an inclined plane does not slide provided the
component of the object’s weight parallel to the plane |Wpar| is less than or
equal to the magnitude of the opposing frictional force |Ff |. The magnitude
of the frictional force, in turn, is proportional to the component of the object’s
weight perpendicular to the plane |Wperp|. The constant of proportionality is
the coefficient of static friction µ > 0. Suppose a 100lb block rests on a plane
that is tilted at an angle of θ = 30◦ to the horizontal. What is the smallest
possible value of µ?

We will present 2 solutions to this problem. The first solution is a direct
approach but is computationally intensive. The second solution requires a little
more ingenuity but is shorter. For the sake of generality, in both solutions we
will solve the problem for a general angle θ and weight w and only plug in
θ = 30◦ and w = 100 at the very end.
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Solution 1: We see that W = Wpar + Wperp is an decomposition of the
force of gravity W into a sum of two orthogonal components. Since we know
that W = 〈0,−w〉lb we only need to find Wpar and it will then be easy to
obtain Wperp through subtraction. To find Wpar we calculate the orthogonal
projection of W onto û, the direction of the ramp as shown in the diagram
below.

We now see that

(125) Wpar = ProjûW =
W · û
|û|2

û = (W · û)û

(126) = (〈0,−w〉 · 〈cos(θ),− sin(θ)〉)〈cos(θ),− sin(θ)〉

(127) = 〈w sin(θ) cos(θ),−w sin(θ)2〉

(128) Wperp = W −Wpar = 〈0,−w〉 − 〈w sin(θ) cos(θ),−w sin(θ)2〉

(129) = 〈−w sin(θ) cos(θ), w(−1+sin2 θ)〉 = 〈−w sin(θ) cos(θ),−w cos2(θ)〉
Page 46



Sohail Farhangi Problems and Solutions Compilation

We now recall that we are searching for µ for which

(130) |Wpar| = |Ff| = |µWperp| = µ|Wperp| → µ =
|Wpar|
|Wperp|

To this end, we see that6

(131) |Wpar| =
√

(w sin(θ) cos(θ))2 + (−w sin(θ)2)2

= w sin(θ)
√

cos2(θ) + sin2(θ) = w sin(θ), and

(132) |Wperp| =
√

(−w sin(θ) cos(θ))2 + (−w cos2(θ))2

= w cos(θ)
√

sin2(θ) + cos2(θ) = w cos(θ), hence

(133) µ =
|Wpar|
|Wperp|

=
w sin(θ)

w cos(θ)
= tan(θ) = tan(30◦) =

1√
3
.

Solution 2: First, let us verify that the two angles labeled with θ in the given
diagram are indeed the same angle. We begin by labeling points on the original
diagram as shown in the new diagram below in order to obtain the subsequent
calculations.

6Recall that sin(θ), cos(θ) ≥ 0 when 0 ≤ θ ≤ 90◦, so we don’t need to write | sin(θ)| or | cos(θ)| in this case.
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(134) ∠ACB = 90◦ − ∠BAC = 90◦ − θ and

(135) ∠CED = 90◦ − ∠DCE = 90◦ − ∠ACB = 90◦ − (90◦ − θ) = θ,

so the given diagram was indeed correctly labeled. We now recall that we are
searching for µ for which

(136) |Wpar| = |Ff| = |µWperp| = µ|Wperp| → µ =
|Wpar|
|Wperp|

After taking a look at our labeled diagram we see that

(137)
|Wpar|
|Wperp|

= tan(θ) = tan(30◦) =
1√
3
.
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Problem 1.4: A cue ball in a billiards video game lies at P(25, 16). We
assume that each ball has a diameter of 2.25 screen units, and pool balls are
represented by the point at their center.

a. The cue ball is aimed at an angle of 58◦ above the negative x-axis toward
a target ball at A(5, 45). Do the balls collide?

b. The cue ball is aimed at the point (50, 25) in an attempt to hit a target
ball at B(76, 40). Do the balls collide?

c. The cue ball is aimed at an angle θ above the x-axis in the general direction
of a target ball at C(75, 30). What range of angles (for 0 ≤ θ ≤ π

2) will
result in a collision? Express your answer in degrees.

Solution to a: Since the diameter of each ball is 2.25 units, the balls collide
if at some point in time their centers are at most 2.25 units away from each
other. Therefore we can solve this problem by calculating the distance between
the point A and the straight line that is the trajectory of the cue ball. To this
end we observe that the cue ball is aimed at an angle of 180◦ − 58◦ = 122◦

above the positive x-axis, so we can parametrize the trajectory of the cue ball
(even though we really only need the direction of the trajectory) by
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(138) ~r(t) = 〈25, 16〉 + t 〈cos(122◦), sin(122◦)〉︸ ︷︷ ︸
û, the direction of the trajectory

= 〈25 + t cos(122◦), 16 + t sin(122◦)〉.

Now let A′ be the point on ~r(t) that is closest to A, which happens to be the
orthogonal projection of A onto ~r(t) as shown in the diagram below.

We have now reduced to problem down to whether or not |
−−→
A′A| is larger than

2.25 or not. Since
−−→
A′A =

−→
PA−

−−→
PA′, we first observe that
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(139)
−→
PA = 〈5, 45〉︸ ︷︷ ︸

A

−〈25, 16〉︸ ︷︷ ︸
P

= 〈−20, 29〉,

and we will now proceed to find
−−→
PA′. We see that

−−→
PA′ is the orthogonal

projection of
−→
PA onto ~r(t), but û points in the same direction as ~r(t), so

−−→
PA′

is also the orthogonal projection of
−→
PA onto û, hence

(140)
−−→
PA′ = (

−→
PA · û)û

(141) =
(
〈−20, 29〉 · 〈cos(122◦), sin(122◦)〉

)
〈cos(122◦), sin(122◦)〉

(142) ≈ 〈−18.65, 29.84〉.

Putting everything together we see that

(143) |
−−→
A′A| = |

−→
PA−

−−→
PA′| ≈ |〈−20, 29〉 − 〈−18.65, 29.84〉|

(144) = |〈−1.35,−0.84〉| = 1.59 < 2.25,

so the balls do collide.

Solution to b: We use the same strategy that we used in part a. The
only difference is that we will use slightly different computations to obtain a
parametrization of (or more importantly, the direction of) the path of the cue
ball since we were given a point on its trajectory rather than the angle that the
trajectory makes with the x-axis.
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We see that

(145) ~r(t) = 〈25, 16〉 + t (〈50, 25〉 − 〈25, 16〉)︸ ︷︷ ︸
Points in the direction of ~r(t)

(146) = 〈25, 16〉 + t 〈25, 9〉︸ ︷︷ ︸
~v

= 〈25 + 25t, 16 + 9t〉

Since
−−→
BB′ =

−−→
PB −

−−→
PB′, we first observe that

(147)
−−→
PB = 〈76, 40〉︸ ︷︷ ︸

B

−〈25, 16〉︸ ︷︷ ︸
P

= 〈51, 24〉,

and we will now proceed to find
−−→
PB′. Since

−−→
PB′ is the orthogonal projection

of
−−→
PB onto ~r(t) we see as in part a that

−−→
PB′ is also the orthogonal projection

of
−−→
PB onto ~v, so

(148)
−−→
PB′ =

−−→
PB · ~v
|~v|2

~v =
〈51, 24〉 · 〈25, 9〉
|〈25, 9〉|2

〈25, 9〉
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(149) = 〈37275

706
,

13419

706
〉 ≈ 〈52.80, 19.01〉

Putting everything together we see that

(150) |
−−→
BB′| = |

−−→
PB −

−−→
PB′| ≈ |〈51, 24〉 − 〈52.80, 19.01〉|

(151) |〈−1.80, 4.99〉| ≈ 5.30 > 2.25,

so the balls do not collide.

Remark: While we did not use the parametrizations ~r(t) in either of parts a
or b to calculate the relevant orthogonal projections, it is worth noting that an
alternative solution to these problems is to use single variable calculus to find
the minimum value of the function dA(t) = d((5, 45), ~r(t)) for part a and the
function dB(t) = d((76, 40), ~r(t)) for part b.

Solution to c: Let the points C1 and C2 be such that |
−−→
CC1| = |

−−→
CC2| = 2.25

and each of
−−→
CC1 and

−−→
CC2 are orthogonal to

−→
PC.

−−→
PC1 and

−−→
PC2 represent the

trajectories in which the cue ball just barely touches the ball at C, so we want
to determine the angles θ1 and θ2 as shown in the diagram below.
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To this end we begin by observing that

(152)
−→
PC = 〈75, 30〉︸ ︷︷ ︸

C

−〈25, 16〉︸ ︷︷ ︸
P

= 〈50, 14〉.

Recalling that for a given vector ~w := 〈x, y〉 the vectors 〈−y, x〉 and 〈y,−x〉
are orthogonal to ~w, we see that

(153)
−−→
PC1 =

−→
PC + 2.25 · 〈14,−50〉

|〈14,−50〉|
≈ 〈50.61, 11.83〉, and

(154)
−−→
PC2 =

−→
PC + 2.25 · 〈−14, 50〉

|〈−14, 50〉|
≈ 〈49.39, 16.17〉.

We now see that

(155) θ1 = tan−1(
11.83

50.61
) ≈ 13.16◦, andθ2 = tan−1(

16.17

49.39
) ≈ 18.13◦,

so the balls will collide if 13.16◦ ≤ θ ≤ 18.13◦
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Remark: An alternative approach to solving this problem is to first find a
parametrization ~rθ(t) of the trajectory of the cue ball when it makes an angle
of 0 ≤ θ ≤ π

2 with the positive x-axis using the techniques from part a. Then
for each such θ we use single variable calculus find m(θ), the minimum value
of dC,θ(t) = d((75, 30), ~rθ(t)) as t varies (and θ is still fixed). To finish the
problem we find the values of θ for which m(θ) = 2.25.
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Problem 1.5: Determine whether the lines ~r(t) = 〈1, 3, 2〉 + t〈6,−7, 1〉 and
R(s) = 〈10, 6, 14〉+s〈8, 1, 4〉 are parallel or skew, and find their intersection(s)
if any exist.

Solution: Let us first determine whether or not the lines paramterized by ~r(t)

and ~R(s) are parallel since that requires the least computations. We see that
the line paramterized by ~r(t) has the same direction as the vector 〈6,−7, 1〉 and

the line parameterized by ~R(s) has the same direction as the vector 〈8, 1, 4〉.
It is clear that there is no constant c for which

(156) 〈6,−7, 1〉 = c〈8, 1, 4〉 = 〈8c, c, 4c〉
since we cannot simulataneously have c = −7 and 4c = 1, so the lines in ques-
tion are not parallel. Now let us search for the intersection(s) of the lines in
questions while recalling that the lines will be skew if there are no intersec-
tions (since we have already shown that they are not parallel). To do this, we

want to find all t, s ∈ R for which ~r(t) = ~R(s), which results in the following
computations:

(157) 〈1, 3, 2〉 + t〈6,−7, 1〉︸ ︷︷ ︸
~r(t)

= 〈10, 6, 14〉 + s〈8, 1, 4〉︸ ︷︷ ︸
~R(s)

(158) ⇔ 〈1 + 6t, 3− 7t, 2 + t〉 = 〈10 + 8s, 6 + s, 14 + 4s〉

(159) ⇔
1 + 6t = 10 + 8s
3− 7t = 6 + s

2 + t = 14 + 4s

(160) →s = −3− 7t

(161) → 2 + t = 14 + 4s = 14 + 4(−3− 7t) = 2− 28t

(162) → t = 0 →s = −3.

However, since
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(163) 1 + 6 · 0 6= 10 + 8 · (−3),

we see that there are no s, t ∈ R for which ~r(t) = ~R(s), so the lines in question
are skew.
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Problem 1.7 Match function a-f with the appropriate graph A-F.

a. ~r(t) = 〈t,−t, t〉.
b. ~r(t) = 〈t2, t, t〉.
c. ~r(t) = 〈4 cos(t), 4 sin(t), 2〉.

d. ~r(t) = 〈2t, sin(t), cos(t)〉.
e. ~r(t) = 〈sin(t), cos(t), sin(2t)〉.
f. ~r(t) = 〈sin(t), 2t, cos(t)〉.
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Solution:

a ↔ E It is clear that ~r(t) is the paramterization of a straight line and (E) is the
only graph of a straight line in the available options.

b ↔ D We see that ~r(t) is a parabola if we make a plane with the line y = z
taking the place of (what is normally) the x-axis and the line y = z = 0
taking the place of (what is normally) the y-axis and (D) is the only graph
of a parabola.

c ↔ F We see that the z-coordinate of ~r(t) is constant so the graph of ~r(t) lies
in a horizontal plane and (F ) is the only such graph.

d ↔ C We see that when the x-coordinate of ~r(t) is ignored the result is a param-
terization of the unit circle in the yz-plane, so if the graph of ~r(t) is
“smushed down to the yz-plane” then the result will be the unit circle.
Furthermore, it is clear that the x-coordinate of ~r(t) is unbounded and
(C) is the only graph that satisfies the previous two properties.

e ↔ A We see that all three components of ~r(t) are bounded and that none of
the components are constant and (A) is the only graph that satisfies these
properties.

f ↔ B We see that when the y-coordinate of ~r(t) is ignored the result is a pa-
rameterization of the unit circle in the xz-plane, so if the graph of ~r(t) is
“smushed down to the xz-plane” then the result will be the unit circle.
Furthermore, it is clear that the y-coordinate of ~r(t) is unbounded and
(B) is the only graph that satisfies the previous two properties.

Page 59



Sohail Farhangi Problems and Solutions Compilation

Problem 1.8: Match surfaces a-f in the figure below with level curves A-F.

a⇔(B): We see that the figure in a is similar to the cylinder generated by the
curve z = y2 in the yz-plane with the line z = y = 0, so the level sets will
consist of lines that are parallel to the x-axis, which allows us to match a with
(B).

b⇔(E): Since b is a hyperbolic paraboloid we know that its level sets are lines
(for the level set of z = 0) and hyperbolas (for level sets of z = z0 6= 0), which
allows us to match b with (E).
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c⇔(C): The level sets of c are easily seen to be one or two (depending on the
height of the level set) ellipse-like shapes whose major axes (by analogy, not
literally) are parallel to the y-axis, which allows us to match c with (C).

d⇔(D): Since d is a cone we know that all of its level sets are circles, which
allows us to match d with (D).

e⇔(A): The level sets of e are easily seen to be one or two (depending on the
height of the level set) ellipse-like shapes whose major axes (by analogy, not
literally) are parallel to the x-axis, which allows us to match e with (A).

f⇔(F): Since f is an elliptic paraboloid we know that all of its level sets are
ellipses, which allws us to match f with (A). Problem 1.9: Match functions
a-d with surfaces A-D in the figure below.

a. f (x, y) = cos(xy)
b. g(x, y) = ln(x2 + y2)

c. h(x, y) = 1
x−y

d. p(x, y) = 1
1+x2+y2
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a⇔(A): We see that 1 = cos(0 · y) = cos(x · 0) for all x, y ∈ R, so f takes
on the value 1 on the x-axis as well as the y-axis, which is enough to match a
with (A). Alternatively, we may examine the behavior of f along some other
line y = mx, i.e., examine f (x,mx) = cos(mx2). One of the easiest such lines
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to examine is y = x, and we see that f (x, x) = cos(x2) oscillates indefinitely,
which is again enough information to yield the desired result.

b⇔(D): We begin by examining the level sets of g(x, y). We see that ln(x2 +
y2) = c ⇔ x2 + y2 = ec, so the level sets of g(x, y) are circles centered at the
origin. We also observe that g(0, 0) is undefined and that g(x, y) increases as
x2 + y2 increases, so we deduce that b is matched with (D).

c⇔(B): We begin by examining the level sets of h(x, y). We see that 1
x−y =

c⇔ x− y = 1
c , so the level sets of h(x, y) are lines parallel to the line x = y,

i.e., lines that make an angle of 45◦ with the positive x-axis. Furthermore, we
see that if x− y = c1 with c1 > 0 then h(x, y) > 0, if x− y = 0 then h(x, y)
is undefined, and if x− y = c2 with c2 < 0 then h(x, y) < 0, which is enough
information to match c with (B).

d⇔(C): We begin by examining the level sets of p(x, y). We see that 1
1+x2+y2 =

c⇔ x2 +y2 = 1
c−1, so the level sets of p(x, y) are circles centered at the origin.

We observe that p(x, y) is defined for all x, y ∈ R and that p(x, y) decreases
as x2 + y2 increases, so we deduce that d is matched with (C).
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Problem 1.10: Find a function ~r(t) that describes the curve C which is the
intersection of the surfaces z = 3x2 + y2 + 1 and z = 5− x2 − 3y2. Note that
there is not a unique answer to this question since any curve possess infinitely
many distinct paramterizations.
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Solution: Writing ~r(t) = 〈x(t), y(t), z(t)〉, we see that we only need to deter-
mine x(t) and y(t) since it will then be very easy to determine z(t) using the
defining equations of the surfaces in play. For the sake of readability we will
write x, y, z instead of x(t), y(t), z(t) for calculations in this problem. We see
that

(164) 3x2 + y2 + 1 = z = 5− x2 − 3y2 → 4x2 + 4y2 = 4→ x2 + y2 = 1.

It follows that 〈x(t), y(t)〉 traces out the unit circle, so we may set x(t) = cos(t)
and y(t) = sin(t) for 0 ≤ t ≤ 2π. We now see that

(165) z = 3x2 + y2 + 1 = 3 cos2(t) + sin2(t) + 1 = 2 cos2(t) + 2 = cos(2t) + 3.

Putting everything together we see that we may take

(166) ~r(t) = 〈cos(t), sin(t), cos(2t) + 3〉, 0 ≤ t ≤ 2π .
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Problem 1.11: Suppose that ~u(t) and ~v(t) are differentiable vector valued
functions satisfying ~u(0) = 〈0, 1, 1〉, ~u ′(0) = 〈0, 7, 1〉, ~v(0) = 〈0, 1, 1〉, and
~v ′(0) = 〈1, 1, 2〉. Evaluate the following expressions.

a. d
dt

(
~u(t) · ~v(t)

)∣∣∣
t=0

b. d
dt

(
~u(t)× ~v(t)

)∣∣∣
t=0

c. d
dt

(
cos(t)~u(t)

)∣∣∣
t=0

d. d
dt

(
~u(sin(t))

)∣∣∣
t=0

Solution to a: Recalling that the product rule for dot products looks exactly
the same as the ordinary product rule for scalar valued functions we see that

(167)
d

dt

(
~u(t) · ~v(t)

)∣∣∣
t=0

=
( d
dt
~u(t)

)
· ~v(t) + ~u(t) ·

( d
dt
~v(t)

)∣∣∣
t=0

(168) = ~u ′(0) · ~v(0) + ~u(0) · ~v ′(0) = 〈0, 7, 1〉 · 〈0, 1, 1〉 + 〈0, 1, 1〉 · 〈1, 1, 2〉

(169) = (0 + 7 + 1) + (0 + 1 + 2) = 11 .

Solution to b: Recalling that the product rule for cross products looks exactly
the same as the ordinary product rule for scalar valued functions we see that

(170)
d

dt

(
~u(t)× ~v(t)

)∣∣∣
t=0

=
( d
dt
~u(t)

)
× ~v(t) + ~u(t)×

( d
dt
~v(t)

)∣∣∣
t=0

(171) = ~u ′(0)×~v(0)+~u(0)×~v ′(0) = 〈0, 7, 1〉×〈0, 1, 1〉+〈0, 1, 1〉×〈1, 1, 2〉

(172) = 〈6, 0, 0〉 + 〈1, 1,−1〉 = 〈7, 1,−1〉 .

Solution to c: Recalling that the product rule for a scalar valued function
with a vector valued function looks exactly the same as the ordinary product
rule for scalar valued functions we see that

(173)
d

dt

(
f (t)~u(t)

)∣∣∣
t=0

=
( d
dt
f (t)

)
~u(t) + f (t)

( d
dt
~u(t)

)∣∣∣
t=0

, so
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(174)
d

dt

(
cos(t)~u(t)

)∣∣∣
t=0

=
( d
dt

cos(t)
)
~u(t) + cos(t)

( d
dt
~u(t)

)∣∣∣
t=0

(175) = − sin(0)~u(0) + cos(0)~u ′(0) = ~u ′(0) = 〈0, 7, 1〉 .

Solution to d: Recalling that the chain rule for a vector valued function
composed with a scalar valued function looks exactly the same as the ordinary
chain rule for scalar valued functions we see that

(176)
d

dt
(~u ◦ f )(t)

∣∣∣
t=0

=

((
(
d

dt
~u) ◦ f

)
· d
dt
f

)
(t)
∣∣∣
t=0

, so

(177)
d

dt

(
~u(sin(t))

)∣∣∣
t=0

=
d

dt
(~u ◦ sin)(t)

∣∣∣
t=0

=

((
(
d

dt
~u) ◦ sin

)
· d
dt

sin

)
(t)
∣∣∣
t=0

(178) = ~u ′(sin(0)) · cos(0) = ~u ′(0) = 〈0, 7, 1〉 .
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Problem 2.1: Let ~r(t) = 〈t, 2, 2
t〉 for t > 1. Find the unit tangent vector

T̂ (t) at all points of the curve ~r(t).

Solution: Recalling that T̂ (t) = ~r ′(t)
|~r ′(t)| we see that

(179) ~r ′(t) = 〈1, 0,− 2

t2
〉

(180) ⇒ |~r ′(t)| =
√

12 + 02 + (− 2

t2
)2 =

√
t4 + 4

t4
=

√
t4 + 4

t2

(181) T̂ (t) =
~r ′(t)

|~r ′(t)|
=

t2√
t4 + 4

〈1, 0,− 2

t2
〉 = 〈 t2√

t4 + 4
, 0,

−2√
t4 + 4

〉 .
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Problem 1.12: Determine whether the following statements are true or false.
If a statement is true, then explain why. If a statement is false, then provide a
counterexample.

(a) If the speed of an object is constant, then its velocity components are
constant.

(b) The functions ~r(t) = 〈cos(t), sin(t)〉 and ~R(t) = 〈cos(t2), sin(t2)〉 generate
the same set of points for t ≥ 0. (Bonus: What about for t ≥ π2?)

(c) A velocity vector (vector valued function) of variable magnitude cannot
have constant direction.

(d) If the acceleration of an object is ~a(t) = ~0, for all t ≥ 0, then the velocity
of the object is constant.

(e) If you double the initial speed of a projectile, its range also double (assume
no forces other than gravity).

(f) If you double the initial speed of a projectile, its time of flight also doubles
(assume no forces other than gravity).

(g) A trajectory with ~v(t) = ~a(t) 6= ~0, for all t, is possible.

Solution to (a): False . An object with a velocity of ~v(t) = 〈cos(t), sin(t)〉
has constant speed since |~v(t)| = 1, but it is clear that neither of the velocity
components are constant.

Solution to (b): True . We see that ~R(t) = ~r(t2), and since t ≥ 0, we also

see that ~r(t) = ~R(
√
t). Since the map t 7→ t2 is a bijection of [0,∞) to itself,

(as is the map t 7→
√
t), we see that ~r(t) and ~R(t) = ~r(t2) generate the same

set of points for t ≥ 0. Note that the previous reasoning was very general and
didn’t make use of what ~r(t) and ~R(t) were, but only the fact that they are

related by the equation ~R(t) = ~r(t2). For the bonus, the answer is still True .

This time we just observe62 that ~r(t) and ~R(t) both trace out the unit circle,
even if we only use t ≥ π2 instead of t ≥ 0. In fact, we see that even for t ≥ π2,
both ~r(t) and ~R(t) generate every point on the unit circle and infinite number
of times. The reason that we had to change our method of proof for the bonus
is that the map t 7→ t2 send [π2,∞) onto [π4,∞) and not [π2,∞).
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Solution to (c): False . The velocity function of ~v(t) = 〈t2, t2, t2〉 has con-
stant direction since the direction is always that of 〈1, 1, 1〉, but the magnitude
is given by |~v(t)| = t2

√
3.

Solution to (d): True . The velocity ~v(t) is given by

(182) ~v(t) = ~v0 +

∫ t

0

~a(u)du = ~v0 +

∫ t

0

〈0, 0〉du = ~v0 + 〈0, 0〉 = ~v0.

Solution to (e): False . Let us examine the most general situation so that
we can also answer part (f). We may assume that our projectile starts at (0, 0)
by choosing an appropriate reference frame, so ~r0 = 〈0, 0〉. We let ~v0 = 〈v1, v2〉
and note that the acceleration of our object is given by ~a(t) = 〈0,−g〉 since
no forces other than gravity are acting on our system. We see that the velocity
~v(t) is given by

(183)

~v(t) = ~v0 +

∫ t

0

~a(u)du = ~v0 +

∫ t

0

〈0,−g〉du = ~v0 + 〈0,−gt〉 = 〈v1, v2 − gt〉.

We now see that the trajectory ~r(t) is given by

(184) ~r(t) = ~r0 +

∫ t

0

~v(u)du =

∫ t

0

〈v1, v2 − gu〉du = 〈v1t, v2t−
g

2
t2g〉.

The object stops moving once it hits the floor, which happens when v2t− g
2t

2 =

0, which happens when t = 2v2
g since t = 0 corresponds to the fact that our

object started on the floor. We now see that if ~v0
′ = 2~v0 = 〈2v1, 2v2〉, then the

new time of flight will be t′ =
2v′2
g = 2·2v2

g = 4v2
g , which is twice the previous time

of flight, so part (f) is true. We now see that the original range is v1t = 2v1v2
g ,

while the new range is v′1t
′ = 2v1

4v2
g = 8v1v2

g , so the range quadruples instead of
doubling.

Solution to (f): True . See the explanation to part (e).
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Solution to (g): True . The trajectory given by ~r(t) = 〈et, et〉 satisfies
~v(t) = ~r ′(t) = 〈et, et〉 and ~a(t) = ~v ′(t) = 〈et, et〉, so we even have that
~r(t) = ~v(t) = ~a(t) for all t!
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Problem 1.13: A golfer stands 420ft (140yd) horizontally from the hole and
50ft above the hole (see figure). Assuming the ball is hit with an initial speed of
120ft/s, at what angle(s) should it be hit to land in the hole? Assume the path
of the ball lies in a plane. You may approximate earth’s gravitational constant
by 32ft/s2.

Solution: We can model the situation in the xy-plane by placing the golfer
at (0, 0) and observing that he is aiming the ball at (420,−50). Let ~v0 be the
initial velocity with which the golder hits the ball and note that |~v0| = 120,
so ~v0 = 〈120 cos(θ), 120 sin(θ)〉, where θ is the angle that ~v0 makes with the
positive x-axis. Since the only force acting on the golf ball after the initial shot is
gravity, we see that the acceleration of the golf ball is given by ~a(t) ≈ 〈0,−32〉.
It follows that the velocity of the golf ball is given by

(185) ~v(t) = ~v0 +

∫ t

0

~a(u)du = ~v0 +

∫ t

0

〈0,−32〉du = ~v0 + 〈0,−32t〉

(186) = 〈120 cos(θ), 120 sin(θ)− 32t〉.
Recalling that the ball starts at (0, 0) with the golfer, we let ~r(t) denote the
trajectory of the ball and note that ~r0 = ~r(0) = (0, 0), so ~r(t) is given by

(187) ~r(t) = ~r0 +

∫ t

0

~v(u)du =

∫ t

0

〈120 cos(θ), 120 sin(θ)− 32u〉du

(188)
∗
= 〈120t cos(θ), 120t sin(θ)− 16t2〉.
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To perform the calculation at equation (∗), we recall that θ is the initial angle
at which the golf ball is hit, so θ does not change, so we treat θ as a constant
(like 2 or π) when performing the integrations. Since we want the ball to pass
through (420,−50) at some point in time, we obtain the following system of
equations that we will proceed to solve.

(189) ~r(t) = (420,−50)⇔ 120t cos(θ) = 420
120t sin(θ)− 16t2 = −50

(190) ⇔
cos(θ) = 7

2t

sin(θ) = 8t2−25
60t

(191) → 1 = sin2(θ) + cos2(θ) =
49

4t2
+

64t4 − 400t2 + 625

3600t2

(192) → 3600t2 = 49 · 900 + 64t4 − 400t2 + 625

(193) → 0 = 64t4 − 4000t2 + 44725 = 64(t2)2 − 4000(t2) + 44725

(194) → t2 =
4000±

√
40002 − 4 · 64 · 44725

2 · 64
=

125

4
± 15
√

79

8

(195) → t ∈ {±

√
125

4
± 15
√

79

8
}

= {

√
125

4
+

15
√

79

8
,−

√
125

4
+

15
√

79

8
,

√
125

4
− 15
√

79

8
,−

√
125

4
− 15
√

79

8
}.

Due to the real world context of our problem, we only consider the positive
values of t, of which there are only 2. Similarly, the real world context of our
problem tells us that 0 ≤ θ ≤ π

2 , so we may safely use the cos−1 and sin−1 to
calculate θ without worrying about adjustments by π and such. We see that

when t =
√

125
4 + 15

√
79

8 we have

(196) θ = cos−1(
7

6t
) ≈ 1.401 ≈ 80.3◦ ,
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and when t =
√

125
4 −

15
√

79
8 we have

(197) θ = cos−1(
7

6t
) ≈ 1.260 ≈ 72.2◦ .
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Problem 2.2: Determine whether the following statements are true or false.
If a statement is true, then explain why. If a statement is false, then provide a
counterexample.

(a) If an object moves on a trajectory with constant speed S over a time
interval a ≤ t ≤ b, then the length of the trajectory is S(b− a).

(b) The curves defined by

(198) ~r(t) = 〈f (t), g(t)〉 and ~R(t) = 〈g(t), f (t)〉
have the same length over the interval [a, b].

(c) The curve ~r(t) = 〈f (t), g(t)〉, for 0 ≤ a ≤ t ≤ b, and the curve ~R(t) =
〈f (t2), g(t2)〉, for

√
a ≤ t ≤

√
b, have the same length.

(d) The curve ~r(t) = 〈t, t2, 3t2〉, for 1 ≤ t ≤ 4, is parameterized by arclength.

Solution to (a): True . It is acceptable to say that this is intuitively obvious.
For a more technical explanation, we observe that for a trajectory paramterized
by ~r(t), a ≤ t ≤ b, we have S = |~v(t)| = |~r ′(t)|. We now see that the length
L of the trajectory is given by

(199) L =

∫ b

a

|~r ′(t)|dt =

∫ b

a

Sdt = St
∣∣∣b
a

= S(b− a).

Solution to (b): True . We see that the graph of one of ~r(t) or ~R(t) can
be obtained from the other by a reflection over the line y = x, and reflections
preserve arclength, so the two curves have the same arclength.7 We can also
verify this algebraically by letting Lr and LR denote the arclengths of ~r(t) and
~R(t) respectively and observing that

(200) Lr =

∫ b

a

|~r ′(t)|dt =

∫ b

a

√
(f ′(t))2 + (g′(t))2dt

(201) =

∫ b

a

√
(g′(t))2 + (f ′(t))2dt =

∫ b

a

|~R ′(t)|dt = LR.

7Technically it is not sufficient to only examine the graphs. ~r(t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ 2π and ~R(t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ 4π both have

the unit circle as their graph, but ~R has twice as much arclength as ~r since it traverses the unit circle twice instead of once.

Page 75



Sohail Farhangi Problems and Solutions Compilation

Solution to (c): True . Intuitively, ~r(t) and ~R(t) = ~r(t2) trace out the
same curve when we use the given intervals, but at different speeds, so the total
arclength of both curves is the same. We may also verify that the arclengths
are the same through direct calculation. To this end, let Lr and LR denote the
arclengths of ~r(t) and ~R(t) respectively and observe that

(202) LR =

∫ √b
√
a

|~R ′(t)|dt =

∫ √b
√
a

√
(2tf ′(t2))2 + (2tg′(t2))2dt

(203) =

∫ √b
√
a

√
(f ′(t2))2 + (g′(t2))2(2tdt)

u=t2
=

∫ b

a

√
(f ′(u))2 + (g′(u))2du

(204) =

∫ b

a

|~r ′(t)|dt = Lr.

Solution to (d): False . We note that ~r ′(t) = 〈1, 2t, 6t〉, so |~r ′(t)| =√
1 + 40t2. The parameterization ~r(t) is a paramterization by arclength if and

only if |~r ′(t)| = 1 for every 1 ≤ t ≤ 4, and this is clearly not the case.
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Problem 2.3 Consider the curve C that is described by the parameterization

~r(t) = 〈tm, tm, t3
2m〉 where 0 ≤ a ≤ t ≤ b and m 6= 0.

(a) Find the arclength function s(t). Note that your answer may include a, b,
and m in it.

(b) Find the parameterization by arclength for C when a =
√

28
9 , b = 4, and

m = 2.

Solution to (a): Firstly, we observe that

(205) ~r ′(t) = 〈mtm−1,mtm−1,
3

2
mt

3
2m−1〉, so

(206)

|~r ′(t)| =
√

(mtm−1)2 + (mtm−1)2 + (3
2mt

3
2m−1)2

=
√

(2m2t2m−2 + 9
4m

2t3m−2

= |m|tm−1
√

2 + 9
4t
m.

It follows that for a ≤ t ≤ b we have

(207) s(t) =

∫ t

a

|~r ′(u)|du =

∫ t

a

|m|um−1

√
2 +

9

4
umdu

(208) =
|m|
m

∫ t

a

√
2 +

9

4
um(mum−1du)

v=um
=
|m|
m

∫ t

u=a

√
2 +

9

4
vdv

(209) =
|m|
m
· 8

27
(2 +

9

4
v)

3
2

∣∣∣t
u=a

=
8|m|
27m

(2 +
9

4
um)

3
2

∣∣∣t
a

(210)
8|m|
27m

(
(2 +

9

4
tm)

3
2 − (2 +

9

4
am)

3
2

)
.

Solution to (b): We begin by plugging a =
√

28
9 , b = 4, and m = 2 into our

answer from part (a) to see that

(211) s(t) =
8

27
(2 +

9

4
t2)

3
2 − 8.
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To obtain the parameterization by arclength, we have to switch from finding
arclength as a function of time to finding time as a function of arclength. To
this end we see that

(212)

s= 8
27(2 + 9

4t
2)

3
2 − 8⇔

s + 8 = 8
27(2 + 9

4t
2)

3
2 ⇔

27
8 s + 27 = (2 + 9

4t
2)

3
2 ⇔

(27
8 s + 27)

2
3 = 2 + 9

4t
2 ⇔

(27
8 s + 27)

2
3 − 2 = 9

4t
2 ⇔

4
9(27

8 s + 27)
2
3 − 8

9 = t2 ⇔√
(s + 8)

2
3 − 8

9 = t.

It follows that the parameterization by arclength ~r(s), 0 ≤ s ≤ s(b), is given
by

(213) ~r(s) = ~r(t(s)) = 〈t(s)m, t(s)m, t(s)
3
2m〉

(214) =

〈
((s + 8)

2
3 − 8

9
)
m
2 , ((s + 8)

2
3 − 8

9
)
m
2 , ((s + 8)

2
3 − 8

9
)

3m
4 ,

〉
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Problem 2.4: Determine whether the following statements are true or false.
If a statement is true, then explain why. If a statement is false, then provide a
counterexample.

(a) The position, unit tangent, and principal unit normal vectors (~r, T̂ , and

N̂) at a point lie in the same plane.

(b) The vectors T̂ and N̂ at a point depend on the orientation of a curve.
(c) The curvature at a point depends on the orientation of a curve.
(d) An object with unit speed (|~v| = 1) on a circle of radius R has an accel-

eration of ~a = 1
RN̂ .

(e) If the speedometer of a car reads a constant 60 mi/hr, the car is not
accelerating.

(f) A curve in the xy-plane that is concave up at all points has positive torsion.
(g) A curve with large curvature also has large torsion.

Solution to (a): False . To see a concrete counterexample, we simply con-

sider ~r(t) = 〈cos(t), sin(t), 1〉. Since T̂ (t) = ~r ′(t) = 〈− sin(t), cos(t), 0〉, we

see that N̂ = 〈− cos(t),− sin(t), 0〉. Since T̂ (t) and N̂(t) are always in the xy-
plane, but ~r(t) is never in the xy-plane, we see that we have indeed produced
a counterexample.

In fact, we can generalize the idea behind the previous counterexample. If
~r2(t) = ~r1(t) + ~v0 for some constant vector ~v0, then T̂1 = T̂2 and N̂1 = N̂2,

so if ~r1(t0), T̂1(t0), N̂1(t0) are coplanar for some t0, then we can take ~v0 to

be any vector that is outside of the plane P of T̂1(t0) and N̂1(t0) so that

~r2(t0) = ~r1(t0) + ~v0 will be outside of P . Since P is still the plane of T̂2(t0)

and N̂2(t0), we see that ~r2(t0), T̂2(t0), and N̂2(t0) are not coplanar. What we

have essentially done is use the fact that T̂ and N̂ don’t change as a result of a
translation, so we can use a translation to ensure that ~r(t0), T̂ (t0), and N̂(t0)
are not coplanar at a given point t0 regardless of the initial curve ~r(t).

Solution to (b): True . Consider the curves y = x2 and x = y2. The unit
tangent vector to y = x2 at the point (0, 0) is either (1, 0) or (−1, 0) depending
on the parameterization that is used. Similarly, the unit tange vector to x = y2

at (0, 0) is either (0, 1) or (0,−1) depending on the parameterization that is
used. We see that the cure x = y2 is the curve y = x2 rotated 90◦ clockwise,
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and that this will result in the unit tangent vector at (0, 0) being rotated by
90◦ as well (if the correct parameterization of x = y2 and y = x2 are used).

Solution to (c): False . The curvature measures the rate at which the unit

tangent vector T̂ changes direction. If you alter a curves orientation via transla-
tions and rotations, then the translations do not affect the unit tangent vectors,
but the rotations will rotate all of the unit tangent vectors as well. Since the
same rotation is being applied to all of the unit tangent vectors, the rate at
which their directions change will remain the same.

Solution to (d): True . We present two verifications of this claim. For the
first verification, we use the tangential and normal components of acceleration.
In particular, we recall that

(215) ~a(t) =
d2s

dt2
T̂ + κ

(
ds

dt

)2

N̂ .

Since ds
dt = |~v(t)| = 1, we see that d2s

dt2
= 0. Since a circle of radius R has

curvature κ = 1
R , we see that ~a(t) = κN̂ = 1

RN̂(t).

Our next verification will be a direct calculation of ~a(t). Since the acceleration
does not depend on where the circle is cetered, we may assume that we are
working with a circle centered at (0, 0) in the xy-plane. Since |~v(t)| = 1, we are
working with a paramaterization by arclength of our circle of radius R, which
is given by

(216) ~r(t) = 〈R cos(
t

R
), R sin(

t

R
)〉, 0 ≤ t ≤ 2πR.

We see that
(217)

T̂ (t) = ~v(t) = 〈− sin(
t

R
), cos(

t

R
)〉 and ~a(t) = 〈− 1

R
cos(

t

R
),− 1

R
sin(

t

R
)〉.

Since |T̂ ′(t)| = |~a(t)| = 1
R , we see that

(218) N̂(t) =
T̂ ′(t)

|T̂ ′(t)|
= 〈− cos(

t

R
),− sin(

t

R
)〉,

so we do indeed have that ~a(t) = 1
RN̂(t).
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Solution to (e): False . While the speed of the car is not changing, the
car could still be changing its direction of motion, which would mean that the
car is accelerating. This is easily seen to be the case if the cars trajectory
is modeled by ~r(t) = 〈60 cos(t), 60 sin(t)〉 since ~v(t) = 〈−60 sin(t), 60 cos(t)〉
satisfies |~v(t)| = 60 and ~a(t) = 〈−60 cos(t),−60 sin(t)〉 6= ~0.

Solution to (f): False . The torsion at a point ~r(t0) measures the rate at

which the curve ~r(t) twists out of the plane determined by T̂ (t0) and N̂(t0). If
the curve ~r(t) is contained in the xy-plane (regardless of whether it is concave

up or even convex) then T̂ (t0) and N̂(t0) will be contained in the xy-plane as
well for every t0, so the torision will always be 0 since the curve does not twist
out of the xy-plane at all.

Solution to (g): False . We recall that a circle in the xy-plane (or any other
plane) of radius r has a curvature of κ = 1

r . We already saw in part (f) that
any such circle has 0 torsion at all points, regardless of the radius r. As r gets
closer to 0, κ grows larger without bound, but the torsion is always 0.
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Problem 2.5: Compute the unit binormal vector B̂ and torsion τ of the curve
parameterized by ~r(t) = 〈2 cos(t), 2 sin(t),−t〉, t ∈ R(−∞ < t <∞).

Solution: Since B̂ = T̂ × N̂ and τ = −dB̂
ds · N̂ = − 1

|~v(t)|
dB̂
dt · N̂ , we see that

we should begin by calculating T̂ (t) and N̂(t). To this end, we see that

(219) ~r ′(t) = 〈−2 sin(t), 2 cos(t),−1〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(220) → |~r ′(t)| =
√

(−2 sin(t))2 + (2 cos(t))2 + (−1)2 =
√

5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(221) → T̂ (t) =
~r ′(t)

|~r ′(t)|
= 〈− 2√

5
sin(t),

2√
5

cos(t),− 1√
5
〉.

Recalling that N̂(t) = T̂ ′(t)
|T̂ ′(t)|, we see that

(222) T̂ ′(t) = 〈− 2√
5

cos(t),− 2√
5

sin(t), 0〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(223) → |T̂ ′(t)| =

√
(− 2√

5
cos(t))2 + (− 2√

5
sin(t))2 + 02 =

2√
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(224) → N̂(t) =
〈− 2√

5
cos(t),− 2√

5
sin(t), 0〉

2√
5

= 〈− cos(t),− sin(t), 0〉.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(225) B̂(t) = T̂ (t)× N̂(t) =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

− 2√
5

sin(t) 2√
5

cos(t) − 1√
5

− cos(t) − sin(t) 0

∣∣∣∣∣∣∣∣∣
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(226) = î(
2√
5

cos(t) · 0− (− sin(t)) · (− 1√
5

))

−ĵ((− 2√
5

sin(t)) · 0− (− cos(t)) · (− 1√
5

))

+ k̂((− 2√
5

sin(t)) · (− sin(t))− (− cos(t)) · 2√
5

cos(t))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(227) = − 1√
5

sin(t)̂i +
1√
5

cos(t)ĵ +
2√
5

(sin2(t) + cos2(t))k̂

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(228) = 〈− 1√
5

sin(t),
1√
5

cos(t),
2√
5
〉 .

Recalling that |~v(t)| = |~r ′(t)| we see that

(229) τ = τ (t) = − 1

|~v(t)|
dB̂

dt
· N̂

(230) = − 1√
5
〈− 1√

5
cos(t),− 1√

5
sin(t), 0〉 · 〈− cos(t),− sin(t), 0〉 = −1

5
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Problem 2.7: Verify that

(231) lim
(x,y)→(0,0)

sin(x) + sin(y)

x + y
= 1.

Solution: We begin by reviewing one of the sum to product trigonometric
identities. Observe that

(232) sin(x) + sin(y) = sin(
x + y

2
+
x− y

2
) + sin(

x + y

2
− x− y

2
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(233) = sin(
x + y

2
) cos(

x− y
2

) + sin(
x− y

2
) cos(

x + y

2
)

+ sin(
x + y

2
) cos(−x− y

2
) + sin(−x− y

2
) cos(

x + y

2
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(234) = sin(
x + y

2
) cos(

x− y
2

) + sin(
x− y

2
) cos(

x + y

2
)

+ sin(
x + y

2
) cos(+

x− y
2

)− sin(
x− y

2
) cos(

x + y

2
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(235) = 2 sin(
x + y

2
) cos(

x− y
2

) .

Recalling that

(236) lim
x→0

sin(x)

x
= 1,

we let z = x+y
2 and see that

(237) lim
(x,y)→(0,0)

sin(x) + sin(y)

x + y
= lim

(x,y)→(0,0)

2 sin(x+y
2 ) cos(x−y2 )

x + y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(238)

(
lim

(x,y)→(0,0)

sin(x+y
2 )

x+y
2

)(
lim

(x,y)→(0,0)
cos(

x− y
2

)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(239)

(
lim
z→0

sin(z)

z

)(
lim

(x,y)→(0,0)
cos(

x− y
2

)

)
= (1)(cos(

0− 0

2
)) = 1.
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Problem 2.8: Consider the function

(240) f (x, y) =
xy2

x2 + y4
.

(a) Show that if L is a line that passes through the origin, then

(241) lim
(x,y)→(0,0)

(x,y)∈L

f (x, y) = 0.

(b) Show that

(242) lim
(x,y)→(0,0)

f (x, y)

does not exist.

Solution to (a): Firstly, we see that if L is a line of the form y = mx for
some m ∈ R, then

(243) lim
(x,y)→(0,0)

(x,y)∈L

f (x, y) = lim
x→0

f (x,mx) = lim
x→0

x(mx)2

x2 + (mx)4

(244) = lim
x→0

m2x3

x2 + m4x4
= lim

x→0

m2x

1 + m4x2
= 0.

The only line L left to consider is the line through the origin with infinite slope,
which is just the line x = 0. In this case we see that

(245) lim
(x,y)→(0,0)

(x,y)∈L

f (x, y) = lim
y→0

f (0, y) = lim
y→0

0 · y2

02 + y4
= 0.

Solution to (b): In order to show that the limit in equation (242) does not
exist we need to use the 2 path test. Based on part (a), we see that our second
path needs cannot be a line. Thankfully, we only need to find a path P that
results in any nonzero value when the limit is taken along P . If we try the
parabolic path y = x2, then we again get a value of 0 for the limit, but if we
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try the path x = y2 then we get a value of 1
2! In fact, we see that for m ∈ R

and the path Pm given by x = my2 we have

(246) lim
(x,y)→(0,0)

(x,y)∈Pm

f (x, y) = lim
y→0

f (my2, y) = lim
y→0

(my2)y2

(my2)2 + y4

(247) = lim
y→0

my4

m2y4 + y4
= lim

y→0

m

m2 + 1
.

Since the range of the function g(m) = m
m2+1

is [−1, 1], we see that the limit
can take on any value between −1 and 1 if the correct path is chosen. While we
only need 2 paths that result in different values to apply the 2 path test, it is
amusing to see that we have found infinitely many paths that result in infinitely
many different values.
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Problem 2.9: Consider the function f (x, y) =
√
|xy|.

Figure 10. A graph of z =
√
|xy|.

(a) Is f continuous at (0, 0)?
(b) Show that fx(0, 0) and fy(0, 0) exist by calculating their values.
(c) Determine whether fx and fy are continuous at (0, 0).
(d) Is f differentiable at (0, 0)?

Solution to (a): Yes. We will show that f (x, y) is continuous on all of
R2. The function f1(x, y) = xy is a continuous function since it is a poly-
nomial function. The function f2(x) = |x| is also a continuous function, and
the composition of continuous functions is again continuous, so we see that
f3(x, y) := f2(f1(x, y)) = |xy| is a continuous function. Since |xy| only takes
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on nonnegative values and the function f4(x) =
√
x is continuous on the domain

[0,∞), we see that f (x, y) = f4(f3(x, y)) is indeed a continuous function.

Solution to (b): We see that

(248) fy(0, 0) = lim
y→0

f (0, y)− f (0, 0)

y − 0
= lim

y→0

√
|0 · y| −

√
|0 · 0|

y
= 0, and

(249) fx(0, 0) = lim
x→0

f (x, 0)− f (0, 0)

x− 0
= lim

x→0

√
|x · 0| −

√
|0 · 0|

x
= 0. and

Solution to (c): We will show that neither of fx and fy are continuous at

(0, 0). We note that for all x, y > 0 we have f (x, y) =
√
|xy| =

√
xy. It

follows that for x, y > 0 we have

(250) fx(x, y) =
∂

∂x
((xy)

1
2) =

1

2
(xy)−

1
2 · y =

1

2

√
y

x
, and

(251) fy(x, y) =
∂

∂y
((xy)

1
2) =

1

2
(xy)−

1
2 · x =

1

2

√
x

y
. and

We now use the 2 path test to show that neither function is continuous. Let us
consider the path Pm given by y = mx with m,x > 0 so that the path lies in
the first quadrant. We see that

(252) lim
(x,y)→(0,0)

(x,y)∈Pm

fx(x, y) = lim
x→0+

fx(x,mx) = lim
x→0+

1

2

√
mx

x
=
m

2
, and

(253) lim
(x,y)→(0,0)

(x,y)∈Pm

fy(x, y) = lim
x→0+

fy(x,mx) = lim
x→0+

1

2

√
x

mx
=

1

2m
. and

We see that the paths P1 and P2 result in the values of 1
2 and 1 respectively

for the value of fx(x, y) as (x, y) approaches (0, 0), so fx is not continuous at
(0, 0). Similarly, we see that the paths P1 and P2 result in the values of 1

2 and
1
4 respectively for the value of fy(x, y) as (x, y) approaches (0, 0), so fy is not
continuous at (0, 0).
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Solution to (d): No. We begin by examining the directional derivative in
the direction of the vector û = 〈 1√

2
, 1√

2
〉 at (0, 0). We see that

(254) Dûf (0, 0) = lim
t→0

f ((0, 0) + tû)− f (0, 0)

t
= lim

t→0

f ( t√
2
, t√

2
)− 0

t

(255) = lim
t→0

√
|t22 |
t

= lim
t→0

1√
2

=
1√
2
.

If f was differentiable at (0, 0), then we would have

(256) Dûf (0, 0) = ∇f (0, 0) · û = 〈fx(0, 0), fy(0, 0)〉 · 〈 1√
2
,

1√
2
〉 = 0.

Since this is not the case, we see that f is not differentiable at (0, 0).
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Problem 2.6: The function ~r(t) = 〈
∫ t

0 cos(1
2u

2)du,
∫ t

0 sin(1
2u

2)du〉, t ∈ R
whose graph is called a clothoid or Euler Spiral, has applications in the
design of railroad tracks, rollercoasters, and highways.
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(a) A car moves from left to right on a straight highway, approaching a curve
at the origin (Figure B). Sudden changes in curvature at the start of the
curve may cause the driver to jerk the steering wheel. Suppose the curve
starting at the origin is a segment of a circle of radius a. Explain why
there is a sudden change in the curvature of the road at the origin.

(b) A better approach is to use a segment of a clothoid as an easement curve,
in between the straight highway and a circle, to avoid sudden changes
in curvature (Figure C). Assume the easement curve corresponds to the
clothoid ~r(t), for 0 ≤ t ≤ 1.2. Find the curvature of the easement curve
as a function of t and explain why this curve eliminates the sudden change
in curvature at the origin.

(c) Find the radius of a circle connected to the easement curve at point A
(that corresponds to t = 1.2 on the curve ~r(t)) so that the curvature of
the circle matches the curvature of the easement curve at point A.

Solution to (a): We recall that straight lines have a curvature of 0 at every
point and circles of radius a has a curvature of 1

a at every point.8 Since 1
a 6= 0

we see that there is a change in curvature when the line segment converts into a

circular arc. Since the curvature κ is given by κ = |dT̂ds |, we recall that curvature
tells us how quickly our path is changing direction. The driver on the curve in
this part will notice that change in curvature as a jerk in their driving since the
direction in which they are driving will change sharply instead of smoothly.

Solution to (b): Since κ =
∣∣∣dT̂ds ∣∣∣ = 1

|~v(t)|

∣∣∣dT̂dt ∣∣∣, we begin by calculating T̂ (t).

To this end, we see that

(257) ~r ′(t) = 〈 d
dt

∫ t

0

cos(
1

2
u2)du,

d

dt

∫ t

0

sin(
1

2
u2)du〉 = 〈cos(

1

2
t2), sin(

1

2
t2)〉.

(258) |~v(t)| = |~r ′(t)| =
√

cos2(
1

2
t2) + sin2(

1

2
t2) = 1.

Conveniently, we see that the parameterization for the clothoid that we were
given happened to be a parameterization by arclength, so we may interchange
s and t in this situation. We now see that

8We see that this is one of many instances in math in which it is useful to imagine that a line is just a circle of infinite radius.
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(259) κ(t) = κ(s) =

∣∣∣∣∣T̂ (s)

ds

∣∣∣∣∣ = |〈−t sin(
1

2
t2), t cos(

1

2
t2)〉|

(260) =

√
(−t sin(

1

2
t2))2 + (t cos(

1

2
t2)2 =

√
t2(cos2(

1

2
t2) + sin2(

1

2
t2)) = t .

Since κ(0) = 0, we see that the clothoid and the linesegment have the same
curvature at the point of transition, so the driver will not notice any jerking
when switching from one part of the highway to the next.

Solution to (c): We were reminded in part (a) that a circle of radius r has
a curvature of κ = 1

r . It is clear from the preceding formula that r = 1
κ, so

the radius of a circle can also be determined using only its curvature. We see

that κ(1.2) = 1.2 = 6
5, so we want to use a circle with radius r = 1

6
5

=
5

6
in

order for the curvature of the circle to align with the curvature of the clothoid
at t = 1.2 to ensure another smooth transition.
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Problem 1.6: Find an equation of the plane P through the points R(5, 3, 7),
S(0, 1, 0), and T(1, 2, 1).

Solution: It will be relatively easy to find the equation of the plane P if we
first find a vector ~n that is normal to P . To find such a ~n it suffices to take the
cross product of any two nonparallel vectors lying in P . To this end, we see
that

(261)
−→
SR = 〈5, 3, 7〉 − 〈0, 1, 0〉 = 〈5, 2, 7〉, and

(262)
−→
ST = 〈1, 2, 1〉 − 〈0, 1, 0〉 = 〈1, 1, 1〉

are two nonparallel vectors lying in P . We now take

(263) ~n =
−→
SR×

−→
ST =

∣∣∣∣∣∣
î ĵ k̂
5 2 7
1 1 1

∣∣∣∣∣∣
(264) î(2 · 1− 1 · 7)− ĵ(5 · 1− 1 · 7) + k̂(5 · 1− 1 · 2)

(265) = −5î + 2ĵ + 3k̂ = 〈−5, 2, 3〉.
To derive the equation of the plane P we recall that ~n is perpendicular to any
vector that lies in P . It follows that if (x, y, z) is an arbitrary point in P , then
since (0, 1, 0) is also a point in P the vector

(266) ~v := 〈x, y, z〉 − 〈0, 1, 0〉 = 〈x, y − 1, z〉
is a vector contained in P , so we have

(267) 0 = ~n · ~v = 〈−5, 2, 3〉 · 〈x, y − 1, z〉 = −5x + 2y − 2 + 3z

(268) → 2 = −5x + 2y + 3z .

Remark: We can easily check our answer by verifying that R, S, and T all
satisfy equation (268). Furthermore, we see that if we replace ~n by c~n for
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any nonzero constant c, then c~n will still be normal to P , which will result in
seemingly different equations for P such as

(269) − 2 = 5x− 2y − 3z

when c = −1. In particular the order of the cross product in equation (263)
and the order of the subtraction in equations (261) and (262) don’t matter since
the end result will at worst alter ~n by a negative sign.
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3. Solutions

Problem 1.14: The electric field due to a point charge of strength Q at the
origin has a potential function V (x, y, z) = kQ/r, where r2 = x2 + y2 + z2

is the square of the distance between a variable point P (x, y, z) at the charge,
and k > 0 is a physical constant. The electric field is given by E(x, y, z) =
−∇V (x, y, z).

(a) Show that

(270) E(x, y, z) = kQ〈 x
r3
,
y

r3
,
z

r3
〉.

(b) Show that |E| = kQ/r2. Explain why this relationship is called the inverse
square law.

Solution to (a): We note that since r represents a distance, r is a nonnegative
number, so

(271) r = (x2 + y2 + z2)
1
2 ( and not− (x2 + y2 + z2)

1
2).

It follows that

(272) V (x, y, z) = kQ(x2 + y2 + z2)−
1
2 →

(273)

Vx(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2) ∂
∂x(x2 + y2 + z2)

=−kQx(x2 + y2 + z2)−
3
2 =−kQxr−3

Vy(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2) ∂∂y(x2 + y2 + z2)

=−kQy(x2 + y2 + z2)−
3
2 =−kQyr−3

Vz(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2) ∂∂z(x

2 + y2 + z2)

=−kQz(x2 + y2 + z2)−
3
2 =−kQzr−3

It is now clear that

(274) E(x, y, z) = −∇V (x, y, z) = −〈Vx, Vy, Vz〉
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(275) = −〈−kQxr−3,−kQyr−3,−kQzr−3〉 = kQ〈 x
r3
,
y

r3
,
z

r3
〉.

Solution to (b): We see that

(276)

|E| = |kQ〈 x
r3
,
y

r3
,
z

r3
〉| = kQ|〈 x

r3
,
y

r3
,
z

r3
〉| = kQ

(
(
x

r3
)2 + (

y

r3
)2 + (

z

r3
)2
)1

2

(277) = kQ

(
x2 + y2 + z2

r6

)1
2

= kQ

(
r2

r6

)1
2

= kQ

(
1

r4

)1
2

=
kQ

r2
.

The fact that |E| = kQ
r2 is known as the inverse square law because the magni-

tude of the electric field E is proportional to the inverse of the square (or the
square of the inverse) of the distance r.
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Problem 1.15: Consider the function F (x, y, z) = exyz.

(a) Write F as a composite function f ◦g, where f is a function of one variable
and g is a function of three variables.

(b) Calculate ∇F (x, y, z) as well as ∇g(x, y, z). Find a relationship between
∇F (x, y, z) and ∇g(x, y, z).

Solution to (a): Letting f (t) = et and g(x, y, z) = xyz, we see that
F (x, y, z) = f (g(x, y, z), so F = f ◦ g.

Solution to (b): We see that

(278)

Fx(x, y, z) = exyz ∂∂x(xyz) = yzexyz

Fy(x, y, z) = exyz ∂∂y(xyz) = xzexyz

Fz(x, y, z) = exyz ∂∂z(xyz) =xyexyz

(279) → ∇F (x, y, z) = 〈Fx(x, y, z), Fy(x, y, z), Fz(x, y, a)〉

(280) = yzexyz, xzexyz, xyexyz〉 = exyz〈yz, xz, xy〉, and

(281)

gx(x, y, z) = yz

gy(x, y, z) = xz

gz(x, y, z) =xy

(282) → ∇g(x, y, z) = 〈gx(x, y, z), gy(x, y, z), gz(x, y, z)〉 = 〈yz, xz, xy〉.

We now see that

(283) ∇F (x, y, z) = f (g(x, y, z))∇g(x, y, z) = F (x, y, z)∇g(x, y, z).

However, this is purely a coincidence. We will see later on that if if F, f, and g
are functions for which F = f ◦ g, then

(284) ∇F (x, y, z) = f ′(g(x, y, z))∇g(x, y, z) .
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Problem 1.16: Consider the function f (x, y) = ln(1 + 4x2 + 3y2) and the
point P = (3

4,−
√

3).

(a) Find the gradient field ∇f (x, y) of f (x, y) and then evaluate it at P .
(b) Find the angles θ (with respect to the x-axis) associated with the directions

of maximum increase, maximum decrease, and zero change.
(c) Write the directional derivative at P as a function of θ; call this function

g(θ).
(d) Find the value of θ that maximizes g(θ) and find the maximum value.
(e) Verify that the value of θ that maximizes g corresponds to the direction

of the gradient vector at P . Verify that the maximum value of g equals
the magnitude of the gradient vector at P .

Solution to (a): We see that

(285)
fx(x, y) = 1

1+4x2+3y2
∂
∂x(1 + 4x2 + 3y2) = 8x

1+4x2+3y2

fy(x, y) = 1
1+4x2+3y2

∂
∂y(1 + 4x2 + 3y2) = 6y

1+4x2+3y2

(286) → ∇f (x, y) = 〈 8x

1 + 4x2 + 3y2
,

6y

1 + 4x2 + 3y2
〉.

(287) ∇f (
3

4
,−
√

3) = 〈 6

1 + 9
4 + 9

,
−6
√

3

1 + 9
4 + 9

〉 = 〈24

49
,
−24
√

3

49
〉 .

Solution to (b): We recall that ∇f (P ) points in the direction of maximum
increase from P . Since ∇f (P ) is in the fourth quadrant, we see that

(288) θmax = tan−1(
−24
√

3
49
24
49

) = tan−1(−
√

3) = −π
3
.

is the angle associated with the direction of maximum increase. Since −∇f (P )
points in the direction of maximum decrease from P , we see that θmin = θmax +
π = 2π

3 is the angle associated with the direction of maximum decrease. Since
the directions of no change are orthogonal to ∇f (P ) (and to −∇f (P )), we see
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that θ1 = θmax + π
2 = 5π

6 and θ2 = θmax − π
2 = −π

6 are the angles associated to
the directions of zero change.

Solution to (c): We recall that ~u(θ) = 〈cos(θ), sin(θ)〉 is the unit vector
associated with the angle θ. We also recall that for any unit vector ~u, we have
that

(289) d~uf (a, b) = ∇f (a, b) · ~u, so

(290) g(θ) = d~u(θ)f (P ) = ∇f (P ) · ~u(θ) = 〈24

49
,
−24
√

3

49
〉 · 〈cos(θ), sin(θ)〉

(291) =
24

49
cos(θ)− 24

√
3

49
sin(θ) .

Solution to (d): We see that

(292) g′(θ) = −24

49
sin(θ)− 24

√
3

49
cos(θ)→

(293) g′(θ) = 0⇔ −24

49
sin(θ) =

24
√

3

49
cos(θ)⇔ tan(θ) = −

√
3⇔

(294) θ = −π
3
,

2π

3
We see that

(295) g′′(θ) = −24

49
cos(θ) +

24
√

3

49
sin(θ)

(296) → g′′(−π
3

) = −24

49
cos(−π

3
) +

24
√

3

49
sin(−π

3
) = −48

89
< 0.

The second derivative test shows us that g(θ) has a local maximum at θ = −π
3 .

(297) g(−π
3

) =
24

49
cos(−π

3
)− 24

√
3

49
sin(−π

3
) =

48

49
.
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we see that g attains its maximum value of 48
49 on [0, 2π] at θ = −π

3 .

Solution to (e): From parts b and d we have already seen that the value of
θ that maximizes g(θ) is the same as the angle θ associated with the direction
of maximum increase. To finish, we just note that

(298) |∇f (
3

4
,−
√

3)| = |〈24

49
,
−24
√

3

49
〉| = 24

49
|〈1,−

√
3〉|

(299) =
24

49

√
12 + (−

√
3)2 =

48

49
.
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Problem 1.17: Find the gradient field ~F = Oϕ for the potential function

(300) ϕ(x, y) =
√
x2 + y2, for x2 + y2 ≤ 9, (x, y) 6= (0, 0).

Sketch two level curves of ϕ and two vectors of ~F of your choice.

Solution: Firstly, we see that

(301) ~F = Oϕ = 〈ϕx, ϕy〉 = 〈 x√
x2 + y2

,
y√

x2 + y2
〉.

Next, we recall that the level curves of φ are the curves of the form φ(x, y) = c
for some constant c. We see that

(302) φ(x, y) = c⇔
√
x2 + y2 = c⇔ x2 + y2 = c2,

so the level curves of φ are circles centered at the origin. We recall that at a
given point (x, y) the vector Oϕ(x, y) is perpendicular to the level curve that
passes through (x, y), and we also observe that for any (x, y) we have

(303) |Oϕ(x, y)| =
√

(
x√

x2 + y2
)2 + (

y√
x2 + y2

)2 = 1,

so we obtain the sketch below of some vectors from the gradient field and some
level curves.
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Problem 1.18: Below is a contour plot of some function z = f (x, y) along
with 4 vectors.

Figure 11. Contour plot of z = f(x, y).

Which of the vectors in the above plot could possibly be a gradient vector of
the function f (x, y)? Please circle all that apply.

(A) (B) (C) (D) (E) None of the given vectors

Explanation: The gradient vector of a function f (x, y) is normal to the level
curves (the curves of the form f (x, y) = c, with c a constant) and points in
the direction of maximum increase. We see that vector A is normal to a level
curve of f , but points in the direction of decrease and is therefore not a gradient
vector. We see that vectors B and C are tangent to a level curve, not normal
to the level curve, so neither of them can be a gradient vector. We see that
vector D is normal to a level curve of f and points in the direction of increase,
so D could be a gradient vector of f .
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Problem 1.20: Imagine a string that is fixed at both ends (for example, a
guitar string). When plucked, the string forms a standing wave. The displace-
ment u of the string varies with position x and with time t. Suppose it is given
by u = f (x, t) = 2 sin(πx) sin(π2t), for 0 ≤ x ≤ 1 and t ≥ 0 (see figure 12).
At a fixed point in time, the string forms a wave on [0, 1]. Alternatively, if you
focus on a point on the string (fix a value of x), that point oscillates up and
down in time.

(a) What is the period of the motion in time?
(b) Find the rate of change of the displacement with respect to time at a

constant position (which is the vertical velocity of a point on the string).
(c) At a fixed time, what point on the string is moving fastest?
(d) At a fixed position on the string, when is the strong moving fastest?
(e) Find the rate of change of the displacement with respect to position at a

constant time (which is the slope of the string).
(f) At a fixed time, where is the slope of the string greatest?

Figure 12. Snapshots of the wave at times t = 1 and t = 3.

Solution to (a): We begin by recalling that the period of sin (as well as
cos, tan, csc, sec, and cot) is 2π, i.e., sin(y) = sin(y + 2π) for all y ∈ R. We
now want to find the smallest p > 0 such that
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(304) sin(
π

2
(t + p)) = sin(

π

2
t),

which will happen if

(305)
π

2
t +

π

2
p =

π

2
t + 2π ⇒ p = 4 .

Solution to (b): If we fix a position of x = x0, then v(x0, t), the rate of
change of displacement with respect to time is given by the t partial derivative
of f . We now observe that

(306) v(x0, t) = ft(x0, t) =
∂

∂t
2 sin(πx0) sin(

π

2
t)
∗
=2 sin(πx0)

∂

∂t
sin(

π

2
t)

(307) = 2 sin(πx0)
(π

2
cos(

π

2
t)
)

= π sin(πx0) cos(
π

2
t) ,

where equation * follows from the fact that 2 sin(πx0) is a constant.

Solution to (c): Since speed is just the absolute value of velocity, it suffices
to optimize the velocity function v(x, t). In the end, the largest possible speed
is going to either be the largest possible velocity, or the absolute value of the
smallest possible velocity. Since we are fixing a time t = t0, we seek to optimize
the function h(x) := v(x, t0) with respect to x, which is essentially a single
variable calculus optimization problem. Consequently, we begin by finding the
the critical point of h(x) in the interval [0, 1]. We now see that

0 =
d

dx
h(x) =

∂

∂x
v(x, t0) =

∂

∂x
π sin(πx) cos(

π

2
t0)(308)

∗
=π cos(

π

2
t0)

∂

∂x
sin(πx) = π cos(

π

2
t0)
(
π cos(πx)

)
= π2 cos(

π

2
t0) cos(πx)

⇒ 0 = cos(
π

2
t0) cos(πx),(309)

where equation * follows from the fact that π cos(π2t0) is a constant. We now
observe that if cos(π2t0) = 0, then v(x, t0) = 0 for all x ∈ [0, 1], so in this
situation every point on the string is the fastest moving point since every point
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is moving (or not moving since the velocity is 0) at the same speed. Having
fully resolved the situation when cos(π2t0) = 0, we proceed to the remaining
situation in which cos(π2t0) 6= 0, in which case we are allowed to divide both
sides of the right hand equation in (309) by cos(π2t0) to see that 0 = cos(πx).
Recalling that cos(y) = 0 if and only if y = π

2 + nπ for some integer n, we see
that x ∈ {· · · − 3

2,−
1
2,

1
2,

3
2, · · · }. Recalling that x ∈ [0, 1] we see that x = 1

2
is the only critical point. Since the end points of the domain of x are 0 and 1,
we observe that v(0, t0) = v(1, t0) = 0 (which should not be a surprise since
the end points of our string are not moving) and that v(1

2, t0) = 2 cos(π2t0).
Lastly, to put together the results of our preceding two cases we recall that
cos(π2t0) = 0 if and only if π

2t0 = π
2 + nπ for some integer n, which happens if

and only if t = 2n+ 1. Since t ≥ 0, we see that this happens if and only if t is
a positive odd integer. In conclusion, the fastest moving point on the string at
time t = t0 is

(310)

{
x = 1

2 if t is not an odd integer

all x ∈ [0, 1] else
.

Solution to (d): As in part (c) we begin by optimizing the velocity function
v(x, t). Since we are fixing a position x = x0, we seek to optimize the function
q(t) := v(x0, t) with respect to t, which is essentially a single variable calculus
optimization problem. Consequently, we begin by finding the the critical point
of q(t) over [0,∞). We now see that

0 =
d

dt
q(t) =

∂

∂t
v(x0, t) =

∂

∂t
π sin(πx0) cos(

π

2
t)
∗
=π sin(πx0)

∂

∂t
cos(

π

2
t)(311)

= π sin(πx0)
(
− π

2
sin(

π

2
t)
)

= −π
2

2
sin(πx0) sin(

π

2
t)

⇒ 0 = sin(πx0) sin(
π

2
t),(312)

where equation * follows from the fact that π sin(πx0) is a constant. We now
observe that if sin(πx0) = 0 for some x0 ∈ [0, 1], then x0 = 0, 1. Noting that
v(0, t) = v(1, t) = 0 for all t ≥ 0 (which makes sense since the endpoints of
the string are fixed) we see that any time t ≥ 0 results in the fastest veloc-
ity if x0 = 0, 1. We now proceed to the situation in which x0 ∈ (0, 1), so
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sin(πx0) 6= 0 and we can divide the right hand equation in (312) by sin(πx0)
to see that 0 = sin(π2t). Recalling that sin(y) = 0 if and only if y = nπ for
some integer n, we see that t ∈ {· · · − 4,−2, 0, 2, 4, · · · }. Recalling that t ≥ 0
we see that {0, 2, 4, · · · } are all of the critical points, and this set of critical
points coincidentally (luckily) includes the endpoint 0 of our region. Observing
that v(x0, 2n) = π sin(πx0) cos(nπ) = (−1)nπ sin(πx0), so the largest speed is
π| sin(πx0)|. In conclusion, the fastest speed of the point x = x0 on the string
is attained at

(313)

{
Every t ≥ 0 if x0 = 0, 1

{0, 2, 4, · · · } else
.

Interestingly, we note that if t ∈ {0, 2, 4, · · · } then the string is back at equi-
librium (every point has 0 displacement) and if t ∈ {1, 3, 5, · · · } then the
string is in an extreme state in which every point has its maximum possible
displacement.

Solution to (e): If we fix a time t = t0, then s(x, t0), the rate of change
of the displacement with respect to position (slope of the string) at a constant
time is given by the x partial derivative of f . We now observe that

(314) s(x, t0) =
∂

∂x
f (x, t0) =

∂

∂x
2 sin(πx) sin(

π

2
t0)
∗
=2 sin(

π

2
t0)

∂

∂x
sin(πx)

(315) = 2 sin(
π

2
t0)
(
π cos(πx)

)
= 2π cos(πx) sin(

π

2
t0) .

Solution to (f): As in parts (c) and (d) we begin by optimizing the slope
function s(x, t). Since we are fixing a time t = t0, we seek to optimize the
function r(x) := s(x, t0) with respect to x, which is essentially a single vari-
able calculus optimization problem. Consequently, we begin by finding the the
critical point of r(x) over [0, 1]. We now see that

(316)

0 =
d

dx
r(x) =

∂

∂x
s(x, t0) =

∂

∂x
2π cos(πx) sin(

π

2
t0)
∗
=2π sin(

π

2
t0)

∂

∂x
cos(πx)
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(317)

= 2π sin(
π

2
t0)
(
−π sin(πx)

)
= −2π sin(πx) sin(

π

2
t0)⇒ 0 = sin(πx) sin(

π

2
t0),

where equation * follows from the fact that 2π sin(π2t0) is a constant. As we
saw in part (d), sin(π2t0) = 0 for t0 ≥ 0 if and only if t0 ∈ {0, 2, 4, · · · }, and in
this situation we see that s(x, t0) = 0 for all x, so every x attains the greatest
slope. We now consider the situation in which t0 /∈ {0, 2, 4, · · · } and divide the
right hand equation of 317 by sin(π2t0) to see that 0 = sin(πx). As before, we
deduce that x ∈ [0, 1] must be an integer, so x = 0, 1. Observing that

(318) s(0, t0) = 2π cos(0) sin(
π

2
t0) = 2π sin(

π

2
t0) and

(319) s(1, t0) = 2π cos(π) sin(
π

2
t0) = −2π sin(

π

2
t0), a

we see that the largest slope in this case is 2π| sin(π2t0)|, which occurs at 0 if
sin(π2t0) > 0 and at 1 if sin(π2t0) < 0. In conclusion, the greatest slope of a
point on the string at time t = t0 is attained at

(320)


Every x ∈ [0, 1] if t0 ∈ {0, 2, 4, · · · }
x = 0 if t0 ∈ (2n, 2n + 1) for some integer n

x = 1 if t0 ∈ (2n + 1, 2n + 2) for some integer n

.
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Problem 1.21: Let w = f (x, y, z) = 2x + 3y + 4z, which is defined for
all (x, y, z) ∈ R3. Suppose we are interested in the partial derivative wx on a
subset of R3, such as the plane P given by z = 4x− 2y. The point to be made
is that the result is not unique unless we specify which variables are considered
independent.

(a) We could proceed as follows. On the plane P , consider x and y as the
independent variables, which means z depends on x and y, so we write
w = w(x, y) = f (x, y, z(x, y)). Show that ∂

∂xw(x, y) = 18.
(b) Alternatively, on the plane P , we could consider x and z as the in-

dependent variables, which means y depends on x and z, so we write
w = w(x, z) = f (x, y(x, z), z). Show that ∂

∂xw(x, z) = 8.
(c) Make a sketch of the plane z = 4x− 2y and interpret the results of parts

(a) and (b) geometrically.

Solution to (a): Since z = 4x−2y, we are lucky enough to see that z(x, y) =
4x− 2y without even having to manipulate the original equation. We now see
that

(321) w = w(x, y) = f (x, y, z(x, y)) = 2x + 3y + 4(4x− 2y) = 18x− 5y

(322) ⇒ ∂

∂x
w(x, y) = 18.

Solution to (b): Firstly, we observe that

(323) z = 4x− 2y ⇒ 2y = 4x− z ⇒ y = y(x, z) = 2x− 1

2
z.

We now see that

(324) w = w(x, z) = f (x, y(x, z), z) = 2x + 3(2x− 1

2
z) + 4z = 8x +

5

2
z

(325) ⇒ ∂

∂x
w(x, z) = 8.
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Solution to (c): In our graph of z = 4x−2y we have also included graphs of
the lines (0 = 4x− 2y, z = 0) and (z = 4x, y = 0), which are the lines residing
within z = 4x− 2y when you set y = 0 and z = 0 respectively. We do this to
analyze what happens when calculating ∂w

∂x (0, 0, 0) (to have a concrete example)
using the methods of parts (a) and (b).

We see that fixing z = 0 in part (a) to obtain w(x, y) simply gives us the values
of w over the line (0 = 4x− 2y, z = 0). Similarly, fixing y = 0 in part (b) to
obtain w(x, y) simply gives us the values of w over the line (z = 4x, y = 0).
We now see that in part (a) we calculated the directional derivative of w in
the direction of the line (0 = 4x− 2y, z = 0) and in part (b) we calculated the
directional derivative of w in the direction of the line (z = 4x, y = 0). Said dif-
ferently, part (a) showed us that D〈 1√

5
, 2√

5
,0〉w(x, y, z) = 18 and part (b) showed

us that D〈 1√
17
,0, 4√

17
〉w(x, y, z) = 8.
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Problem 1.19: Consider the function f (x, y) = x2 + y2 and and the point
P = (2, 3).

(a) Find the unit vector that points in direction of maximum decrease of the
function f at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of
the vector ~u = 〈3, 2〉.

Solution to (a): We see that ∇f (x, y) = 〈fx(x, y), fy(x, y)〉 = 〈2x, 2y〉.
We see that −∇f (2, 3) = 〈−4,−6〉 is a vector that points in the direction of
maximum decrease of f at the point P . Since |〈−4,−6〉| =

√
52 = 2

√
13, we

see that

(326)
〈−4,−6〉
|〈−4,−6〉|

=
1

2
√

13
〈−4,−6〉 = 〈 −2√

13
,
−3√

13
〉

is the direction of maximum decrease of f at the point P .

Solution to (b): We see that |~u| =
√

13, so

(327) ~w =
~u

|~u|
= 〈 3√

13
,

2√
13
〉

is the unit vector that points in the same direction as ~u, so

(328) d~wf (2, 3) = ∇f (2, 3) · ~w = 〈4, 6〉 · 〈 3√
13
,

2√
13
〉 =

24√
13
.
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Problem 3.1: Determine all critical points of the function f (x, y) = x3−y3+
xy, then classify each of the critical points as a local maximum, local minimum,
or saddle point.

Solution: To find the criticial points of f , we simply have to find all (x, y)
for which both partial derivatives of f are 0.

(329)
fx(x, y) = 0
fy(x, y) = 0

⇔ 3x2 + y = 0
−3y2 + x = 0

⇔ −3x2 = y
3y2 = x

(330) → x = 3(−3x2)2 = 27x4 → x = 0,
1

3
→ (x, y) = (0, 0), (

1

3
,−1

3
) .

We now proceed to calculate all of the second derivatives of f as well as the
discriminant function so that we can apply the second derivative test.

(331)
fxx(x, y) = 6x
fyy(x, y) = −6y
fxy(x, y) = 1

(332) → D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2 = −36xy − 1.

Since D(0, 0) = −1 < 0, we see that (0, 0) is a saddle point .

Since D(1
3,−

1
3) = 3 > 0 and fxx(

1
3,−

1
3) = 2 > 0 we see that

(
1

3
,−1

3
) is a local minimum .
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Problem 3.2: A lidless cardboard box is to be made with a volume of 4 m3.
Find the dimensions of the box that require the least cardboard.

Solution: If the box has a width of w, a length of ` and a height of h, then
the volume V is given by V = wh`. We also see from figure 1 that the amount
of cardboard it takes to make such a box is 2hw + 2h` + wl.

Figure 13.

It follows that we are trying to optimize the function

(333) f (w, h, `) = 2hw + 2h` + w`

subject to the constraint

(334) wh` = 4.

Noting that
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(335) h =
4

w`
,

we now want to optimize the function

(336) g(w, `) = f (w, h, `) = f (w,
4

w`
, `) = 2

4

w`
w+2

4

w`
`+w` =

8

`
+

8

w
+w`

over the first quadrant of R2. We see that

(337)
∂g

∂w
= − 8

w2
+ ` and

∂g

∂`
= − 8

`2
+ w, so

(338)
∂g
∂w(w, `) = 0
∂g
∂`(w, `) = 0

⇔
− 8
w2 + ` = 0

− 8
`2

+ w = 0
⇔ 8 = w`2 = w2`

∗→ w = `

(339) → 8 = w3 → (w, h, `) = (2, 1, 2) .

To verify that g(w, `) at the very least attain a local minimum value at (w, `) =
(2, 2) we will use the second derivative test. Technically, this step is not needed
as discussed in the remark after the proof. We note that

(340)
∂2g

∂w2
(w, `) =

∂

∂w

∂g

∂w
(w, `) =

∂

∂w
(− 8

w2
+ `) =

16

w3
,

(341)
∂2g

∂`2
(w, `) =

∂

∂`

∂g

∂`
(w, `) =

∂

∂`
(− 8

`2
+ w) =

16

`3
, and

(342)
∂2g

∂w∂`
(w, `) =

∂

∂w

∂g

∂`
(w, `) =

∂

∂w
(− 8

`2
+ w) = 1, so

(343) D(w, `) =
∂2g

∂w2
(w, `)

∂2g

∂`2
(w, `)− (

∂2g

∂w∂`
(w, `))2

=
16

w3
· 16

`3
− 12 =

256

w3`3
− 1.

Since
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(344) D(2, 2) =
256

8 · 8
− 1 = 3 > 0 and

∂2g

∂w2
(2, 2) =

16

23
= 2 > 0,

the second derivative test tells us that g(w, `) attains a local minimum at
the critical point (2, 2). We will now verify that (2, 2) is actually the global
minimum of g(w, `) over the first quadrant of R2. Consider the closed and
bounded region region R = [1

2, 64]2.

A picture of R.

We note that (2, 2) ∈ R, and that (2, 2) is the only critical point of g(w, `)
in R (because g(w, `) only had 1 critial point anyways). We also see that
g(w, `) ≥ 16 > 12 = g(2, 2) for (w, `) on the boundary of R (this can easily be
checked on each of the 4 sides of the boundary of R separately). By the extreme
value theorem, we see that g attains its absolute minimum over R at the point
(2, 2). Since g(w, `) ≥ 16 > 12 for (w, `) that are in the first quadrant of R2

but outside of R (this fact is left as a challenge to the reader), we see that
g(w, `) does indeed attain its global minimum over the first quadrant of R2 at
(2, 2).
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Remark: We never actually needed to use the second derivative test to verify
that the global minimum occurred at (2, 2). The second derivative test was only
useful for telling us that (2, 2) was a local minimum, but we never used the fact
that (2, 2) was a local minimum in order to conclude that it was actually a
global minimum. I only wrote that into the solutions since I permitted you to
finish the problem by checking that it is a local minimum instead of a global
minimum. Instructors of sophomore level calculus classes usually allow for this
simplification.
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Problem 3.3: Consider the function f (x, y) = 3 + x4 + 3y4. Show that
(0, 0) is a critical point for f (x, y) and show that the second derivative test is
inconclusive at (0, 0). Then describe the behavior of f (x, y) at (0, 0).
H int: The product of 2 negative numbers is positive.

Solution: We see that

(345)
∂f

∂x
(x, y) = 4x3 and

∂f

∂y
(x, y) = 12y3, so

(346)
∂f
∂x(x, y) = 0

∂f
∂y (x, y) = 0

⇔
4x3 = 0

12y3 = 0
⇔ (x, y) = (0, 0).

It follows that (0, 0) is the only critical point of f in all of R2. We also note
that

(347)

∂2f
∂x2 (x, y) = ∂

∂x
∂f
∂x(x, y) = ∂

∂x(4x3) = 12x2,

∂2f
∂y2 (x, y) = ∂

∂y
∂f
∂y (x, y) = ∂

∂y(12y3) = 36y2, and

∂2f
∂x∂y(x, y) = ∂

∂x
∂f
∂y (x, y) = ∂

∂x(12y3) = 0, so

(348)
D(x, y) = ∂2f

∂x2 (x, y)∂
2f
∂y2 (x, y)− ( ∂2f

∂x∂y(x, y))2

= 12x2 · 36y2 − 02 = 432x2y2

.

Since D(0, 0) = 0, we see that the second derivative test is inconclusive. How-
ever, we are still able to describe the behavior of f (x, y) at (0, 0). Note that
x4 ≥ 0 for all x ∈ R, and 3y4 ≥ 0 for all y ∈ R. Furthermore, x4 = 0 if and
only if x = 0, and 3y4 = 0 if and only if y = 0. It follows that x4 + 3y4 ≥ 0
for all (x, y) ∈ R2, and x4 + 3y4 = 0 if and only if (x, y) = (0, 0). From this
we are able to see that f (x, y) = 3 + x4 + 3y4 attains an absolute minimum at
(0, 0).
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Problem 3.4: Show that the second derivative test is inconclusive when
applied to the function f (x, y) = x4y2 at the point (0, 0). Show that f (x, y)
has a local minimum at (0, 0) by direct analysis.
H int: The product of 2 negative numbers is positive.

Solution: We will first verify that (0, 0) is a critical point. We see that

(349)
∂f

∂x
(x, y) = 4x3y2 and

∂f

∂y
(x, y) = 2x4y, so

(350)
∂f
∂x(x, y) = 0

∂f
∂y (x, y) = 0

⇔
4x3y2 = 0

2x4y = 0
⇔ x = 0 or y = 0.

It follows that the critical points of f are precisely those points which are on
either the x-axis or the y-axis, and (0, 0) is certainly such a point. Next, we
notice that

(351)

∂2f
∂x2 (x, y) = ∂

∂x
∂f
∂x(x, y) = ∂

∂x(4x3y2) = 12x2y2,

∂2f
∂y2 (x, y) = ∂

∂y
∂f
∂y (x, y) = ∂

∂y(2x4y) = 2x4, and

∂2f
∂x∂y(x, y) = ∂

∂x
∂f
∂y (x, y) = ∂

∂x(2x4y) = 8x3y, so

(352)
D(x, y) = ∂2f

∂x2 (x, y)∂
2f
∂y2 (x, y)− ( ∂2f

∂x∂y(x, y))2

= 12x2y2 · 2x4 − (8x3y)2 = −40x6y2.

Since D(x, y) = 0 whenever x = 0 or y = 0, we see that the second derivative
test is inconclusive for every critical point of f (which includes (0,0)). However,
we are still able to describe the behavior of f (x, y) at any of its critical points
by using a direct analysis. Note that x4y2 ≥ 0 for all (x, y) ∈ R2 (use the hint
if this is not obvious to you), and that x4y2 = 0 whenever x = 0 or y = 0. It
follows that f attains its absolute minimum at any of its critical points.
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Problem 3.5: Find the absolute minimum and absolute maximum values of
the function f (x, y) = xy over the region R = {(x, y) | (x− 1)2 + y2 ≤ 1}.

Solution: Since R is a closed and bounded region, and f is a continuous
function, the Extreme Value Theorem tells us that f will attain its absolute
minimum and absolute maximum values over the region R. Furthermore, we
know that the extreme values of f will either be attained on the boundary of
R, or at a critical point of f in the interior of R.

We will begin by finding all critical points in the interior ofR. Since fx(x, y) = y
and fy(x, y) = x, we immediately see that (0, 0) is the only critical point of f ,
and it is on the boundary (not interior) of the region R, but it is still a candidate
for where f can attain one of its extreme values. We note that f (0, 0) = 0.

We will now proceed to find the absolute minimum and absolute maximum
values of f on the boundary of R. Since the boundary of R is given by ∂R =
{(x, y) | (x − 1)2 + y2 = 1}, we will use the method of Lagrange Multipliers
to optimize the function f (x, y) = xy subject to the constraint g(x, y) =
(x− 1)2 + y2 − 1 = 0. We note that

(353) ∇f (x, y) = 〈y, x〉 and ∇g(x, y) = 〈2x− 2, 2y〉,

so the method of Lagrange Multipliers results in the following system of equa-
tions for us to solve:

(354)
g(x, y) = 0
∇f (x, y) = λ∇g(x, y)

⇔
(x− 1)2 + y2 = 1

y = λ(2x− 2)
x = λ2y

(355) → λx(2x− 2) = xy = λ2y2 → 0 = 2λ(y2 − x2 + x).

By the zero-product property, we see that we must have λ = 0 or y2−x2+x = 0,
so we will consider both cases separately.

Case 1: For our first case let us assume that λ = 0. In this case we see that
the last 2 equations from (354) tell us that x = y = 0, since g(0, 0) = 0, we see
that we reobtain the critical point (x, y) = (0, 0).
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Case 2: For our next case let us assume that y2−x2 +x = 0, so y2 = x2−x.
We see that

(356) 1 = y2 + (x− 1)2 = x2 − x + (x− 1)2 = 2x2 − 3x + 1

(357) → 2x2 − 3x = 0→ x = 0,
3

2
→ (x, y) = (0, 0), (

3

2
,

√
3

2
), (

3

2
,−
√

3

2
).

Making a table of our critical points and corresponding values of f , we see that

(x, y) f (x, y)

(0, 0) 0

(3
2,
√

3
2 ) 3

√
3

4

(3
2,−

√
3

2 ) −3
√

3
4

so f attains its absolute maximum value of 3
√

3
4 at the point (3

2,
√

3
2 ) and f

attains its absolute minimum value of −3
√

3
4 at the point (3

2,−
√

3
2 ).
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Problem 3.6: Find the absolute minimum and maximum value of the func-
tion

(358) f (x, y) = 2x2 − 4x + 3y2 + 2

over the region

(359) R := {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1}.
Hint: There is an easy solution to this problem that doesn’t use calculus if
you write f (x, y) in a more convenient form.

Solution: Note that the interior of R is given by

(360) R◦ = {(x, y) ∈ R2 | (x− 1)2 + y2 < 1}

and the boundary of R is given by

(361) ∂R = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1}.

We will first find all critical points in the interior of R. We note that

(362)
∂f

∂x
= 4x− 4 and

∂f

∂y
= 6y, so
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(363)
∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x− 4 = 0

6y = 0
⇔ (x, y) = (1, 0).

We see that (1, 0) is the only critical point of f in all of R2. Since (1, 0) ∈ R,
we have to take this critical point into consideration when searching for our
absolute minimum and maximum values. Now that we have addressed the
interior of R, we will proceed to address the boundary of R. We note that ∂R
can be parameterized by ~r(t), where

(364) ~r(t) = (1 + cos(t), sin(t)), 0 ≤ t ≤ 2π,

so on ∂R we have

(365) f (x, y) = f (~r(t)) = f (1 + cos(t), sin(t))

= 2(1 + cos(t)− 1)2 + 3 sin2(t) = 2 cos2(t) + 3 sin2(t) = 2 + sin2(t).

We may now use the (single variable) first derivative test to optimize f (~r(t)) =
2+sin2(t) on the interval [0, 2π], but we may also directly notice that the maxi-
mum is attained for t ∈ {π2 ,

3π
2 } which corresponds to (x, y) ∈ {(1, 1), (1,−1)}

and the minimum is attained for t ∈ {0, π, 2π} which corresponds to (x, y) ∈
{(0, 0), (2, 0)}. We now evaluate f at all of the critical points that we have
found so far to determine the absolute minimum and maximum values. Noting
that

(x,y) f(x,y)

(1,0) 0

(1,1) 3

(1,-1) 3

(0,0) 2

(2,0) 2

so f (x, y) attains a minimum value of 0 at (1, 0), and f (x, y) attains a maximum
value of 3 at any of {(1, 1), (1,−1)}.
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Remark: In this problem, one may also try to address the boundary of R by
noting that (x− 1)2 = 1− y2 on the boundary, so f (x, y) = 2(x− 1)2 + 3y2 =
2 + y2 on the boundary.
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Problem 3.7: Use the method of Lagrange multipliers to find the absolute
maximum and minimum of the function

(366) f (x, y, z) = xyz

subject to the constraint

(367) x2 + 2y2 + 4z2 = 9.

Solution: We will present two different solutions to this problem. The method
of setting up the system of equations from the method of Lagrange multipliers
is the same in both solutions, but the method of solving the resulting system
will be different.

We see that the region defined by the constraint is a closed and bounded
region with no boundary, so the method of Lagrange multipliers will give us the
complete list of critical points that we need to check in order to determine the
absolute minimum and absolute maximum values of f subject to the constraint.

We see that

(368) x2 + 2y2 + 4z2 = 9⇔ x2 + 2y2 + 4z2 − 9 = 0,

so we may take our constraint function to be g(x, y, z) = x2 + 2y2 + 4z2 − 9.
We see that
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(369) ~∇f (x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉 = 〈yz, xz, xy〉, and

(370) ~∇g(x, y, z) = 〈gx(x, y, z), gy(x, y, z), gz(x, y, z) = 〈2x, 4y, 8z〉.

We now want to find all (x, y, z, λ) (although we don’t really care about the
value of λ) such that

(371)
g(x, y, z) = 0

~∇f (x, y, z) = λ~∇g(x, y, z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(372) ⇔ x2 + 2y2 + 4z2 − 9 = 0
〈yz, xz, xy〉 = λ〈2x, 4y, 8z〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(373) ⇔

x2 + 2y2 + 4z2 − 9 = 0
yz = 2λx
xz = 4λy
xy = 8λz

Finish 1: We will now use the method of cross multiplication to solve the
system of equations in (373). This method will be computationally intensive,
but is ’standard’ and does not require any ’tricky insights’. By cross multiplying
the second and third equations in (373) we see that

(374) 4λy2z = 2λx2z → 0 = 4λy2z − 2λx2z = 2λz(2y2 − x2),

so by the zero product property we see that either λ = 0, z = 0, or 2y2−x2 = 0.
We will handle each case separately.

Case 1 (λ = 0): By plugging λ = 0 back into (373) we see that
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(375)

x2 + 2y2 + 4z2 − 9 = 0
yz = 0
xz = 0
xy = 0

.

Using the zero product property once again on the second, third, and fourth
equations of (375), we see that 2 of x, y, and z must be 0. In conjunction with
the first equation of (373) (the constraint equation) we see that (x, y, z, λ) ∈
{(0, 0,±3

2, 0), (0,± 3√
2
, 0, 0), (±3, 0, 0, 0)} are the solutions that we obtain from

this case.

Case 2 (z = 0): By plugging z = 0 back into (373) we see that

(376)

x2 + 2y2 − 9 = 0
0 = 2λx
0 = 4λy
xy = 0

.

Since we are done with case 1, we may also assume that λ 6= 0. It now
follows from the second and third equations in (376) that x = y = 0, but this
contradicts the first equation in (376), so we obtain no additional solutions in
this case.

Case 3 (2y2 − x2 = 0): In this case we see that x2 = 2y2 so x = ±
√

2y,
which means that we have 2 subcases to handle. For our first subcase, we plug
x =
√

2y back into (373) to obtain

(377)

2y2 + 2y2 + 4z2 − 9 = 0

yz = 2
√

2λy√
2yz = 4λy√
2y2 = 8λz

.

By cross-multiplying the third and fourth equations in (377) we see that

(378) 8
√

2λyz2 = 4
√

2λy3 → 0 = 8
√

2λyz2 − 4
√

2λy3 = 4
√

2λy(2z2 − y2).
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Since we are no longer in case 1, we may assume that λ 6= 0, so either y = 0
or 2z2 − y2 = 0. If y = 0, then x =

√
2y = 0, and we reobtain the solution

(x, y, z) = (0, 0, 3
2). If 2z2 − y2 = 0, then y2 = 2z2. Plugging this back into

the first equation of (377) yields

(379) 12z2 = 9→ z = ±
√

3

2
,

so we obtain the solutions

(380) (x, y, z) ∈ {(
√

3,

√
3√
2
,

√
3

2
), (−
√

3,−
√

3√
2
,

√
3

2
),

(−
√

3,−
√

3√
2
,−
√

3

2
), (
√

3,

√
3√
2
,−
√

3

2
)}.

For our second subcase we let x = −
√

2y and a similar calculation yields the
additional solutions

(381) (x, y, z) ∈ {(−
√

3,

√
3√
2
,

√
3

2
), (
√

3,−
√

3√
2
,

√
3

2
),

(
√

3,−
√

3√
2
,−
√

3

2
), (−
√

3,

√
3√
2
,−
√

3

2
)}.

Now that we have found all solutions to the system of equations in (373), we
see that
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(x,y,z) f(x,y,z) (x,y,z) f(x,y,z)

(0,0,3
2) 0 (

√
3,
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2

(0, 3√
2
,0) 0 (

√
3,−

√
3√
2
,
√

3
2 ) −3

√
3

2
√

2

(3,0,0) 0 (
√

3,−
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(0,0,−3
2) 0 (−

√
3,
√

3√
2
,
√

3
2 ) −3

√
3

2
√

2

(0,− 3√
2
,0) 0 (−

√
3,
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(-3,0,0) 0 (−
√

3,−
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2

(
√

3,
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2
(−
√

3,−
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2

In conclusion, we see that the absolute minimum value of f (x, y, z) subject to

g(x, y, z) = 0 is −3
√

3
2
√

2
and the absolute maximum value of f (x, y, z) subject

to g(x, y, z) = 0 is 3
√

3
2
√

2
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Finish 2: We will now use the symmetry that appears in the system of equa-
tions in (373) in order to solve the system more quickly. Observe that

(382)

x2 + 2y2 + 4z2 − 9 = 0
yz = 2λx
xz = 4λy
xy = 8λz

→

x2 + 2y2 + 4z2 − 9 = 0
xyz = 2λx2

xyz = 4λy2

xyz = 8λz2

(383) → λx2 = 2λy2 = 4λz2.

We now have 2 cases to consider based on whether or not λ = 0.

Case 1 (λ = 0): In this case, we plug λ = 0 into the system of equations
appearing in the left hand portion of (382) (the original system of equations
that we started with) to see that
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(384)

x2 + 2y2 + 4z2 − 9 = 0
yz = 0
xz = 0
xy = 0

→ (x, y, z) ∈ {(x, 0, 0), (0, y, 0), (0, 0, z)}.

(385) → (x, y, z) ∈ {(±3, 0, 0), (0,± 3√
2
, 0), (0, 0,±3

2
)}.

Case 2 (λ 6= 0): In this case, we see that we can divide the equations appearing
in (383) by λ and plug to result back into our constraint equation to obtain

(386) x2 = 2y2 = 4z2 → 9 = x2 + 2y2 + 4z2 = 3x2 → x = ±
√

3, and

(387) (x, y, z) ∈ {(x, x√
2
,
x

2
), (x,− x√

2
,
x

2
), (x,

x√
2
,−x

2
), (x,− x√

2
,−x

2
)}.

Putting together all of our results from cases 1 and 2, we once again find all
solutions to the system of equations in (382) as

(x,y,z) f(x,y,z) (x,y,z) f(x,y,z)

(0,0,3
2) 0 (

√
3,
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2

(0, 3√
2
,0) 0 (

√
3,−

√
3√
2
,
√

3
2 ) −3

√
3

2
√

2

(3,0,0) 0 (
√

3,−
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(0,0,−3
2) 0 (−

√
3,
√

3√
2
,
√

3
2 ) −3

√
3

2
√

2

(0,− 3√
2
,0) 0 (−

√
3,
√

3√
2
,−
√

3
2 ) 3

√
3

2
√

2

(-3,0,0) 0 (−
√

3,−
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2

(
√

3,
√

3√
2
,
√

3
2 ) 3

√
3

2
√

2
(−
√

3,−
√

3√
2
,−
√

3
2 ) −3

√
3

2
√

2
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In conclusion, we see that the absolute minimum value of f (x, y, z) subject to

g(x, y, z) = 0 is −3
√

3
2
√

2
and the absolute maximum value of f (x, y, z) subject

to g(x, y, z) = 0 is 3
√

3
2
√

2
.
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Problem 4.6: Let R be the region that is bounded by both branches of y = 1
x,

the line y = x + 3
2, and the line y = x− 3

2.

(a) Find the area of R.
(b) Evaluate

(388)

∫∫
R

xydA.

Solution to (a): We first sketch a picture of the region R.

We now solve for the intersection points of the curves y = 1
x and y = x + 3

2 to
see that

(389)
y = 1

x
y = x + 3

2

→ 1

x
= x +

3

2
→ x2 +

3

2
x− 1 = 0

(390) → x = −2,
1

2
→ (x, y) = (−2,−1

2
), (

1

2
, 2).

Similarly, we solve for the intersection points of the curves y = 1
x and y = x− 3

2
to see that

(391)
y = 1

x
y = x− 3

2

→ 1

x
= x− 3

2
→ x2 − 3

2
x− 1 = 0
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(392) → x = −1

2
, 2→ (x, y) = (−1

2
,−2), (2,

1

2
).

We now see that the area of R is

(393)

∫∫
R

1dA =

∫∫
R

1dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(394) =

∫ −1
2

−2

∫ x+3
2

1
x

1dydx +

∫ 1
2

−1
2

∫ x+3
2

x−3
2

1dydx +

∫ 2

1
2

∫ 1
x

x−3
2

1dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(395) =

∫ −1
2

−2

(
y
∣∣∣x+3

2

y= 1
x

)
dx +

∫ 1
2

−1
2

(
y
∣∣∣x+3

2

y=x−3
2

)
dx +

∫ 2

1
2

(
y
∣∣∣ 1
x

y=x−3
2

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(396) =

∫ −1
2

−2

(
x +

3

2
− 1

x

)
dx +

∫ 1
2

−1
2

3dx +

∫ 2

1
2

(
1

x
− x +

3

2

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(397)

(
1

2
x2 +

3

2
x− ln |x|

) ∣∣∣−1
2

−2
+ 3x

∣∣∣1
2

−1
2

+

(
ln |x| − 1

2
x2 +

3

2
x

) ∣∣∣2
1
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(398) = (1 + 2 ln(2)− 5

8
) + 3 + (1 + 2 ln(2)− 5

8
) =

15

4
+ 4 ln(2) .

Solution to (b): Using our diagram from part (a) we see that

(399)

∫∫
R

xydA =

∫∫
R

xydydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(400) =

∫ −1
2

−2

∫ x+3
2

1
x

xydydx +

∫ 1
2

−1
2

∫ x+3
2

x−3
2

xydydx +

∫ 2

1
2

∫ 1
x

x−3
2

xydydx
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(401) =

∫ −1
2

−2

(
1

2
xy2
∣∣∣x+3

2

y= 1
x

)
dx +

∫ 1
2

−1
2

(
1

2
xy2
∣∣∣x+3

2

y=x−3
2

)
dx

+

∫ 2

1
2

(
1

2
xy2
∣∣∣ 1
x

y=x−3
2

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(402) =

∫ −1
2

−2

(
1

2
x(x +

3

2
)2 − 1

2
x(

1

x
)2

)
dx

+

∫ 1
2

−1
2

(
1

2
x(x +

3

2
)2 − 1

2
x(x− 3

2
)2

)
dx +

∫ 2

1
2

(
1

2
x(

1

x
)2 − 1

2
x(x− 3

2
)2

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(403) =
1

2

∫ −1
2

−2

(
x3 + 3x2 +

9

4
x− 1

x

)
dx +

∫ 1
2

−1
2

3x2dx

+
1

2

∫ 2

1
2

(
1

x
− x3 + 3x2 − 9

4
x

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(404) =
1

2

(
1

4
x4 + x3 +

9

8
x2 − ln |x|

) ∣∣∣−1
2

−2
+ x3

∣∣∣1
2

−1
2

+
1

2

(
ln |x| − 1

4
x4 + x3 − 9

8
x2

) ∣∣∣2
1
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(405) = 2 ln(2)− 5

64
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Problem 4.7: Let R be the region inside of the ellipse x2

18 + y2

36 = 1 for which
we also have y ≤ 4

3x.

(a) Find the area of R.
(b) Evaluate

(406)

∫∫
R

xydA.

Solution to (a): We first sketch a picture of the region R.

We now solve for the intersection points of the curves x2

18 + y2

36 = 1 and y = 4
3x.

We see that

(407)
x2

18 + y2

36 = 1
y = 4

3x
→ x2

18
+

16
9 x

2

36
= 1

(408) → x = ±9
√

2√
17
→ (x, y) = (−9

√
2√

17
,−12

√
2√

17
), (

9
√

2√
17
,

12
√

2√
17

).

We now see that the area of R is

(409)

∫∫
R

1dA =

∫∫
R

1dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(410) =

∫ 9
√

2√
17

−9
√

2√
17

∫ 4
3x

−
√

36−2x2
1dydx +

∫ 3
√

2

9
√

2√
17

∫ √36−2x2

−
√

36−2x2
1dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(411) =

∫ 9
√

2√
17

−9
√

2√
17

y
∣∣∣4

3x

y=−
√

36−2x2
dx +

∫ 3
√

2

9
√

2√
17

y
∣∣∣√36−2x2

y=−
√

36−2x2
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(412) =

∫ 9
√

2√
17

−9
√

2√
17

(
4

3
x +

√
36− 2x2

)
dx +

∫ 3
√

2

9
√

2√
17

2
√

36− 2x2dx

Since

(413)

∫ √
1− x2 =

1

2
x
√

1− x2 +
1

2
sin−1(x) +C, (substitute x = sin(θ))

we see that

(414)

∫ √
36− 2x2dx =

∫
6

√
1− (

x

3
√

2
)2dx

y= x
3
√

2
=

∫
18
√

2
√

1− y2dy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(415) = 9
√

2y
√

1− y2 + 9
√

2 sin−1(y) =
1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
).

Applying this result to equation (412), we see that

(416)

∫ 9
√

2√
17

−9
√

2√
17

(
4

3
x +

√
36− 2x2

)
dx +

∫ 3
√

2

9
√

2√
17

2
√

36− 2x2dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(417) =

(
2

3
x2 +

1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
)

) ∣∣∣9
√

2√
17

−9
√

2√
17

+

(
x
√

36− 2x2 + 18
√

2 sin−1(
x

3
√

2
)

) ∣∣∣3√2

9
√

2√
17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(418) 2

(
1

2
x
√

36− 2x2 + 9
√

2 sin−1(
x

3
√

2
)

) ∣∣∣
9
√

2√
17

+ x
√

36− 2x2
∣∣∣3√2

9
√

2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣3√2

9
√

2√
17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(419) x
√

36− 2x2
∣∣∣

9
√

2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣

9
√

2√
17

+ x
√

36− 2x2
∣∣∣
3
√

2

− x
√

36− 2x2
∣∣∣

9
√

2√
17

+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
3
√

2
− 18
√

2 sin−1(
x

3
√

2
)
∣∣∣

9
√

2√
17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(420) = x
√

36− 2x2
∣∣∣
3
√

2
+ 18
√

2 sin−1(
x

3
√

2
)
∣∣∣
3
√

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(421) = 0 + 18
√

2 sin−1(1) = 9
√

2π .

Remark: For the ellipse y2

36 + x2

18 = 1 we see that the major radius is 6 and

the minor radius is 3
√

2, so the area of the ellipse is 6 · 3
√

2 · π = 18
√

2π. We
now see that our region R has half the area of the ellipse containing it. In fact,
we can prove this directly with symmetry and no calculus at all! We just have
to remember that when we reflect the point (x, y) across the origin we get the
point (−x,−y), and that reflection across the origin (or reflection across any
other point) preserves area as shown in the picture below.
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Solution to (b): Using our diagram from part (a) we see that

(422)

∫∫
R

xydA =

∫∫
R

xydydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(423) =

∫ 9
√

2√
17

−9
√

2√
17

∫ 4
3x

−
√

36−2x2
xydydx +

∫ 3
√

2

9
√

2√
17

∫ √36−2x2

−
√

36−2x2
xydydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(424) =

∫ 9
√

2√
17

−9
√

2√
17

(
1

2
xy2

) ∣∣∣4
3x

y=−
√

36−2x2
dx +

∫ 3
√

2

9
√

2√
17

(
1

2
xy2

) ∣∣∣√36−2x2

y=−
√

36−2x2
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(425) =

∫ 9
√

2√
17

−9
√

2√
17

(
1

2
x(

4

3
x)2 − 1

2
x(−

√
36− 2x2)2

)
dx

+

∫ 3
√

2

9
√

2√
17

(
1

2
x(
√

36− 2x2)2 − 1

2
x(−

√
36− 2x2)2

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(426) =

∫ 9
√

2√
17

−9
√

2√
17

(
16

9
x3 − 18x + x3

)
dx = 0 .

Remark: We see that both integrals appearing in equation (423) are 0. It
turns out that this can also be shown directly with symmetry instead of eval-
uating the integrals! Firstly, we recall that (x, y) turns into (−x,−y) when
reflected across the origin and that reflection across the origin preserves area.
We also note that xy = (−x)(−y), so we can rewrite our double integral as a
double integral that takes place over the right (or left) half of the ellipse instead
of the region R. We then notice that x(−y) = −(xy), so the integrals over the
top right and lower right quarters of the ellipse cancel each other out to yield 0
as shown in the picture below.
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Problem 4.8: Find the volume of the solid bounded by the planes x = 0, x =
5, z = y − 1, z = −2y − 1, z = 0, and z = 2.

Solution: Let us first examine our solid from a few different angles.
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Due to the third and fourth pictures, we will choose to view the ’base’ of our
solid in the xz-plane so that it is simply the rectangle R = {(x, z) ∈ R2 | 0 ≤
x ≤ 5, 0 ≤ z ≤ 2}. We could also come to this decision simply by examining
the x and z bounds without drawing any diagrams. We then see that the
’heights’ of our solid are along the y-axis. Solving for y in terms of x and z we
see that y = z+ 1 and y = −z+1

2 are the surfaces bounding the ’heights’ of our
solid. By examining the values of y for some (x, z) ∈ R (such as (0, 0)), we
see that y = z + 1 is the upper bound for our heights and y = z+1

2 is the lower
bound for our heights. We now see that the volume V of our solid is given by
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(427) V =

∫∫
R

(ytop − ybottom) dA =

∫∫
R

(
z + 1− (−z + 1

2
)

)
dA

(428) =

∫ 5

0

∫ 2

0

3
z + 1

2
dzdx =

∫ 5

0

(
3

4
z2 +

3

2
z

) ∣∣∣2
z=0
dx =

∫ 5

0

6dx = 30 .
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Problem 4.9: Let R be the region in the xy-plane that is bounded by the
spiral r = θ for 0 ≤ θ ≤ π and the x-axis. Find the volume of the 3-dimensional
solid S that lies above the region R and underneath the surface z = x2 + y2.

Solution: Below is a picture of the region R, which is the base of our solid S.

(429) Volume(S) =

∫∫
R

(ztop − zbot.)dA =

∫∫
R

(x2 + y2)− 0︸ ︷︷ ︸
r2

dA︸︷︷︸
rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(430) =

∫ π

0

∫ θ

0

r3drdθ =

∫ π

0

1

4
r4
∣∣∣θ
r=0
dθ =

∫ π

0

1

4
θ4dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(431) =
1

20
θ5
∣∣∣π
0

=
π5

20
.
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Problem 4.10: The limaçon r = b + a cos(θ) has an inner loop if b < a and
no inner loop if b > a.

Figure 14. From page 139 of the course textbook.

(a) Find the area of the region bounded by the limaçon r = 2 + cos(θ).
(b) Find the area of the region outside the inner loop and inside the outer loop

of the limaçon r = 1 + 2 cos(θ).
(c) Find the area of the region inside the inner loop of the limaçon r =

1 + 2 cos(θ).

Solution to (a): Letting R denote the interior of the limaçon r = 2 + cos(θ),
we see that

(432) Area(R) =

∫∫
R

1dA =

∫∫
R

rdrdθ =

∫ 2π

0

∫ 2+cos(θ)

0

rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(433) =

∫ 2π

0

1

2
r2
∣∣∣2+cos(θ)

r=0
dθ =

∫ 2π

0

1

2
(2 + cos(θ))2dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(434) =

∫ 2π

0

(2+2 cos(θ)+
1

2
cos2(θ))dθ =

∫ 2π

0

(2+2 cos(θ)+
1

4
cos(2θ)+

1

4
)dθ
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(435) (
9

4
θ + 2 sin(θ) +

1

8
sin(2θ))

∣∣∣2π
0

=
9

2
π .

Solution to (c): Let R denote the region inside of the inner loop of the
limaçon r = 1 + 2 cos(θ). We see that the inner loop of the limaçon begins
and ends when r = 0, which occurs when cos(θ) = −1

2, which occurs when
θ = 2π

3 ,
4π
3 . It follows that

(436) Area(R) =

∫∫
R

1dA =

∫∫
R

rdrdθ =

∫ 4π
3

2π
3

∫ 1+2 cos(θ)

0

rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(437) =

∫ 4π
3

2π
3

1

2
r2
∣∣∣1+2 cos(θ)

r=0
dθ =

∫ 4π
3

2π
3

1

2
(1 + 2 cos(θ))2dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(438) =

∫ 4π
3

2π
3

(
1

2
+2 cos(θ)+2 cos2(θ))dθ =

∫ 4π
3

2π
3

(
1

2
+2 cos(θ)+cos(2θ)+1)dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(439) = (
3

2
θ + 2 sin(θ) +

1

2
sin(2θ))

∣∣∣4π
3

2π
3

= π − 3

2

√
3 .

Solution to (b): Letting R′ denote the region inside of the outer loop and
outside of the inner loop of the limaçon r = 1 + 2 cos(θ), we see that

(440) Area(R′) + 2Area(R) =

∫ 2π

0

∫ 1+2 cos(θ)

0

rdrdθ

(441) = (
3

2
θ + 2 sin(θ) +

1

2
sin(2θ))

∣∣∣2π
0

= 3π.

Using our answer from part (c), we see that

(442) Area(R′) = 3π − 2Area(R) = 3π − 2(π − 3

2

√
3) = π + 3

√
3 .
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Problem 4.11: Let R be the region inside both the cardiod r = 1 + sin(θ)
and the cardiod r = 1 + cos(θ). Sketch a picture of the region R, or create an
image of the region R using a graphing program, then use double integration
to find the area of R.

Solution: We begin by drawing a picture of the region R.

We see that the 2 cardiods intersect when sin(θ) = cos(θ), which occurs when
θ = π

4 ,−
3π
4 . We now see that when −3π

4 ≤ θ ≤ π
4 we have 1 + sin(θ) ≤

1 + cos(θ) and when π
4 ≤ θ ≤ 5π

4 we have 1 + cos(θ) ≤ 1 + sin(θ). It follows
that

(443) Area(R) =

∫∫
R

1dA =

∫ π
4

−3π
4

∫ 1+sin(θ)

0

rdrdθ +

∫ 5π
4

π
4

∫ 1+cos(θ)

0

rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(444) =

∫ π
4

−3π
4

1

2
r2
∣∣∣1+sin(θ)

r=0
dθ +

∫ 5π
4

π
4

1

2
r2
∣∣∣1+cos(θ)

r=0
dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(445) =

∫ π
4

−3π
4

1

2
(1 + 2 sin(θ) + sin2(θ))dθ +

∫ 5π
4

π
4

1

2
(1 + 2 cos(θ) + cos2(θ))dθ
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(446) =

∫ π
4

−3π
4

1

2
(1 + 2 sin(θ) +

1− cos(2θ)

2
)dθ

+

∫ 5π
4

π
4

1

2
(1 + 2 cos(θ) +

1 + cos(2θ)

2
)dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(447) =

(
3

4
θ − cos(θ) +

− sin(2θ)

4

∣∣∣π4
−3π

4

)
+

(
3

4
θ + sin(θ) +

sin(2θ)

4

∣∣∣5π
4

π
4

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(448) =
3π

2
− 2
√

2 .
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Problem 4.12: Evaluate

(449)

∫ 4

0

∫ 2

√
x

x

y5 + 1
dydx

by changing the order of integration.

Hint: Start by drawing a picture of the region of integration.

Solution: We change the order of integration as shown in the pictures below.

Figure 15. Traversing the region of integration when dA = dydx.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 16. Traversing the region of integration when dA = dxdy.
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(450)∫ 4

0

∫ 2

√
x

x

y5 + 1
dydx =

∫ 2

0

∫ y2

0

x

y5 + 1
dxdy =

∫ 2

0

(
x2

2(y5 + 1)

∣∣∣y2

x=0

)
dy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(451) =

∫ 2

0

y4

2y5 + 2
dy

u=y5

=

∫ 2

y=0

1

2u + 2

du

5
=

1

10
ln(u + 1)

∣∣∣2
y=0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(452) =
1

10
ln(y5 + 1)

∣∣∣2
y=0

=
ln(33)

10
.
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Problem 6.2: Let R be the region in the first quadrant bounded by the
hyperbolas xy = 1 and xy = 4 and the lines y = x and y = 3x. Evaluate

(453)

∫∫
R

y4dA.

Note that you can also solve this problem in Cartesian coordinates and
polar coordinates, not just a change of variables. Try solving it with all
three methods and compare their difficulties!

Solution 1: Our first solution will use a change of variables. Noting that the
line y = x can be rewritten as y

x = 1 and the line y = 3x can be rewritten as
y
x = 3, we decide to use the change of variables u = xy and v = y

x in order to
make our new region of integration in the uv-place a rectangle. In particular, we
see that R′ = {(u, v) : 1 ≤ u ≤ 4, 1 ≤ v ≤ 3} is the new region of integration.

Figure 17. The original region of integration in the xy-plane R.
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Figure 18. The new region of integration in the uv-plane R′.

In order to calculate the Jacobian J(u, v) we must first solve for x and y in
terms of u and v. To that end, we see that

(454)
u = xy
v = y

x

→ x = (x2)
1
2 = (

u

v
)

1
2 = u

1
2v−

1
2 and y = (y2)

1
2 = u

1
2v

1
2 .

We note that we took the positive square roots above since we are working in
the first quadrant of the xy-place, so x and y are both nonnegative. We now
see that

(455) J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
2u
−1

2v−
1
2 −1

2u
1
2v−

3
2

1
2u
−1

2v
1
2 1

2u
1
2v−

1
2

∣∣∣∣∣∣
(456) =

1

2
u−

1
2v−

1
2 · 1

2
u

1
2v−

1
2 − (−1

2
u

1
2v−

3
2) · 1

2
u−

1
2v

1
2 =

1

2
v−1.

Since 1 ≤ v ≤ 3 in our new region of integration R′, we see that 1
2v
−1 ≥ 0 on

R′, so |J(u, v)| = J(u, v) on R′. We now see that

(457)

∫∫
R

y4dA =

∫∫
R′

(u
1
2v

1
2)4|J(u, v)|dA =

∫ 4

1

∫ 3

1

u2v2 · 1

2
v−1dvdu

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(458) =
1

2

∫ 4

1

∫ 3

1

u2vdvdu =
1

2

∫ 4

1

1

2
u2v2

∣∣∣3
v=1
du
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(459) =

∫ 4

1

2u2du =
2

3
u3
∣∣∣4
1

= 42 .

Solution 2: Our next solution will use polar coordinates. We begin by ob-
serving that in the first quadrant we have

(460) y = x⇔ r sin(θ) = r cos(θ)⇔ sin(θ) = cos(θ)⇔ θ =
π

4
,

(461) y = 3x⇔ r sin(θ) = 3r cos(θ)⇔ tan(θ) = 3⇔ θ = tan−1(3),

(462) 1 = xy = r2 cos(θ) sin(θ)⇔ r =

√
1

cos(θ) sin(θ)
, and

(463) 4 = xy = r2 cos(θ) sin(θ)⇔ r =

√
4

cos(θ) sin(θ)
.

It follows that

(464)

∫∫
R

y4dA =

∫ tan−1(3)

π
4

∫ √
4

cos(θ) sin(θ)√
1

cos(θ) sin(θ)

(r sin(θ))4rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(465) =

∫ tan−1(3)

π
4

∫ √
4

cos(θ) sin(θ)√
1

cos(θ) sin(θ)

r5 sin4(θ)drdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(466) =

∫ tan−1(3)

π
4

(
1

6
r6 sin4(θ)

∣∣∣√ 4
cos(θ) sin(θ)√

1
cos(θ) sin(θ)

)
dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(467) =

∫ tan−1(3)

π
4

21

2

sin(θ)

cos3(θ)
dθ =

21

2

∫ tan−1(3)

π
4

sin(θ)

cos(θ)︸ ︷︷ ︸
u=tan(θ)

· 1

cos2(θ)
dθ︸ ︷︷ ︸

du=sec2(θ)dθ
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(468)
21

2

(
1

2
tan2(θ)

∣∣∣tan−1(3)

π
4

)
=

21

4
(32 − 12) = 42 .

Solution 3: Our last solution will use Cartesian coordinates. We begin by
observing that in the first quadrant we have

(469)

xy = 1 and y = x → (x, y) = (1, 1)

xy = 1 and y = 3x → (x, y) = ( 1√
3
,
√

3)

xy = 4 and y = x → (x, y) = (2, 2)

xy = 4 and y = 3x → (x, y) = ( 2√
3
, 2
√

3)

Now that we have identified the ’corners’ of our region as shown in the picture
below, we are able to set up and evaluate the desired double integral.

(470)

∫∫
R

y4dA =

∫ 1

1√
3

∫ 3x

1
x

y4dydx +

∫ 2√
3

1

∫ 3x

x

y4dydx +

∫ 2

2√
3

∫ 4
x

x

y4dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(471) =

∫ 1

1√
3

1

5
y5
∣∣∣3x
y= 1

x

dx +

∫ 2√
3

1

1

5
y5
∣∣∣3x
y=x

dx +

∫ 2

2√
3

1

5
y5
∣∣∣ 4
x

y=x
dx

Page 152



Sohail Farhangi Problems and Solutions Compilation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(472) =
1

5

(∫ 1

1√
3

(243x5 − x−5)dx +

∫ 2√
3

1

242x5dx +

∫ 2

2√
3

(1024x−5 − x5)dx
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(473) =
1

5

(
(
81

2
x6 +

1

4
x−4
∣∣∣1

1√
3

) + (
121

3
x6
∣∣∣ 2√

3

1
) + (−256x−4 − 1

6
x6
∣∣∣2

2√
3

)
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(474)
1

5

(
(
81

2
+

1

4
− 3

2
− 9

4
) + (

121

3
· (64

27
− 1)) + (−16− 32

3
+ 144 +

32

81
)
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(475)
1

5

(
37 +

121 · 37

81
+ 128− 26 · 32

81

)
= 42 .
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Problem 4.13: Find the volume of the solid S bounded by the paraboloid
z = 8− x2 − 3y2 and the hyperbolic paraboloid z = x2 − y2.

Figure 19. A view of the solid S whose volume we are calculating.

Solution: We begin by finding the (x, y)-coordinates of the curves of inter-
section of the 2 given surfaces. We see that

(476) 8− x2 − 3y2 = z = x2 − y2 → 2x2 + 2y2 = 8→ x2 + y2 = 4,

so the (x, y)-coordinates of the curve of intersection is simply the circle of radius
2 centered at the origin.

Figure 20. A bird’s eye view of the solid S that is used to find the region of integration R.
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Noting that 8−02−3·02 = 8 > 0 = 02−02, we see that the curve z = 8−x2−3y2

lies above the curve z = x2 − y2 for all (x, y) inside of R, the disc of radius 2
centered at the origin. We now see that

(477) Volume(S) =

∫∫
R

(ztop−zbot.)dA =

∫∫
R

(
(8−x2−3y2)−(x2−y2)

)
dA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(478) =

∫∫
R

(8− 2x2 − 2y2)dA =

∫ 2π

0

∫ 2

0

(8− 2r2)rdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(479) =

(∫ 2π

0

dθ

)(∫ 2

0

(8r − 2r3)dr

)
= (2π)

(
4r2 − 1

2
r4
∣∣∣2
0

)
= 16π .
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Problem 5.1: Write an iterated integral for
∫∫∫

D f (x, y, z)dV , where D is a
sphere of radius 9 centered at (0, 0, 1). Use the order dV = dzdydx.

Hint: Start by finding the equation of the the surface of the sphere of radius
9 centered at (0, 0, 1).

Solution: We recall that the equation of the sphere of radius R centered at
(a, b, c) is given by

(480) (x− a)2 + (y − b)2 + (z − c)2 = r2,

so the equation of the sphere of radius 9 centered at (0, 0, 1) is given by

(481) x2 + y2 + (z − 1)2 = 81.

Since we are considering

(482)

∫∫∫
D

f (x, y, z)dV =

∫ ?

?

∫ ?

?

∫ ?

?

f (x, y, z)dzdydx,

we begin by observing that the smallest possible value of x in our region D is
−9, and the largest possible value of x in our region D is 9, so −9 ≤ x ≤ 9.
We then observe that for each x ∈ [−9, 9], we have

(483) y2 + (z − 1)2 = 81− x2,

so the smallest possible value of y in our region D (corresponding to our chosen
value of x) is −

√
81− x2 and the largest possible value of y in our region

D (corresponding to our chosen value of x) is
√

81− x2, so −
√

81− x2 ≤
y ≤

√
81− x2. Lastly, we observe that for each x ∈ [−9, 9] and each y ∈

[−
√

81− x2,
√

81− x2], we have

(484) (z − 1)2 = 81− x2 − y2 → z = 1±
√

81− x2 − y2,

so the smallest possible value of z in our region D (corresponding to our chosen

values of x and y) is 1−
√

81− x2 − y2 and the largest possible value of y in our

region D (corresponding to our chosen values of x and y) is 1+
√

81− x2 − y2,
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so 1−
√

81− x2 − y2 ≤ z ≤ 1+
√

81− x2 − y2. It follows that we can describe
our region D as

(485) D =
{

(x, y, z) : −9 ≤ x ≤ 9,−
√

81− x2 ≤ y ≤
√

81− x2,

1−
√

81− x2 − y2 ≤ z ≤ 1 +
√

81− x2 − y2
}

, so

(486)

∫∫∫
D

f (x, y, z)dV =

∫ 9

−9

∫ √81−x2

−
√

81−x2

∫ 1+
√

81−x2−y2

1−
√

81−x2−y2
f (x, y, z)dzdydx .
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Problem 5.2: Sketch by hand or graph with a computer program the region
of integration for the integral

(487)

∫ 1

0

∫ √1−z2

0

∫ √1−y2−z2

0

f (x, y, z)dxdydz.

Note: You may also describe the region of integration in writing instead.
If you choose to do this, please write complete sentences and provide a
thorough description.

Solution: Since x2 + y2 + z2 = 1 is the equation of the unit sphere (centered
at (0,0,0)), we may repeat the steps of the previous problem to see that the
region of integration is related to the unit sphere. The key difference here is
that the smallest possible values of x, y, and z are always 0, so our region of
integration ends up being the portion of the unit sphere within the first octant.
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Problem 5.3: Evaluate

(488)

∫ ln(8)

1

∫ √z
1

∫ ln(2y)

ln(y)

ex+y2−zdxdydz.

Solution: We see that

(489)

∫ ln(8)

1

∫ √z
1

∫ ln(2y)

ln(y)

ex+y2−zdxdydz =

∫ ln(8)

1

∫ √z
1

ex+y2−z
∣∣∣ln(2y)

x=ln(y)
dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(490) =

∫ ln(8)

1

∫ √z
1

(eln(2y)+y2−z − eln(y)+y2−z)dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(491) =

∫ ln(8)

1

∫ √z
1

(2yey
2−z − yey2−z)dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(492) =

∫ ln(8)

1

∫ √z
1

yey
2−zdydz

u=y2

=

∫ ln(8)

1

1

2
ey

2−z
∣∣∣√z
y=1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(493)
1

2

∫ ln(8)

1

(e0 − e1−z)dz =
1

2
(z + e1−z

∣∣∣ln(8)

1
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(494) =
1

2
(ln(8) + e1−ln(8) − (e1−1 + 1))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(495)

=
1

2
(ln(8) + e1 · e− ln(8) − e0 − 1) =

1

2
(ln(8) +

e

eln(8)
− 2) =

1

2
ln(8) +

e

16
− 1 .
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Problem 5.4: Find the volume of the solid S in the first octant that is
bounded by the cone z = 1−

√
x2 + y2 and the plane x + y + z = 1.

Solution 1: We see that

(496) Volume(S) =

∫∫∫
S

1dV =

∫ 1

0

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdydz

(497) =

∫ 1

0

∫ 1−z

0

x
∣∣∣√(1−z)2−y2

1−z−y
dydz

(498) =

∫ 1

0

∫ 1−z

0

(√
(1− z)2 − y2 − (1− z − y)

)
dydz.

We see that evaluating (the difficult part of) the inner integral in (498) is
tantamount to evaluating

(499)

∫ √
1− y2dy,

which is certainly possible, but it is difficult and computationally intensive,
so we will evaluate the volume by an alternative method. If we more closely
examine the integrals in (496), then we see that

(500)

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdy

Page 160



Sohail Farhangi Problems and Solutions Compilation

calculates the area of the cross section Cz shown in figure 21.

Figure 21. The cross section of S at a particular height z.

Using elementary Euclidena geometry, we see that

(501)

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdy = Area(Cz)

=
1

4
π(1− z)2 − 1

2
(1− z)2 =

π − 2

4
(1− z)2.

It follows that

(502)

∫ 1

0

∫ 1−z

0

∫ √(1−z)2−y2

1−z−y
1dxdydz =

∫ 1

0

π − 2

4
(1− z)2dz

= −π − 2

12
(1− z)3

∣∣∣1
0

=
π − 2

12
.

Solution 2: Let C be the portion of the cone z = 1−
√
x2 + y2 that is in the

first quadrant and let T be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (0, 0, 1). We see that S is simply the solid C with the solid T removed
from it. Recalling that the volume of a cone of radius r and height h is 1

3πr
2h,
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and that the volume of a tetrahedron with height h and a base of area b is 1
3bh,

we see that

(503) Vol(S) = Vol(C)−Vol(T ) =
1

3
π ·12 ·1 ·1

4︸︷︷︸
QI

−1

3
· (1

2
· 1 · 1)︸ ︷︷ ︸

Area of base

·1 =
π − 2

12
.

Solution 3: We proceed as we did in Solution 2, but we will now derive
the formula for the volume of C and T by using a triple integral in cylindrical
coordinates for C and a triple integral in Cartesian coordinates for T . Recalling
that the Cartesian equation z = 1 −

√
x2 + y2 is rewritten as z = 1 − r in

cylindrical coordinates, we see that

(504) Vol(S) = Vol(C)− Vol(T )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(505) =

∫ π
2

0

∫ 1

0

∫ 1−r

0

rdzdrdθ −
∫ 1

0

∫ 1−z

0

∫ 1−z−y

0

dxdydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(506) =

∫ π
2

0

∫ 1

0

rz
∣∣∣1−r
0
drdθ −

∫ 1

0

∫ 1−z

0

x
∣∣∣1−z−y
0

dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(507) =

∫ π
2

0

∫ 1

0

(r − r2)drdθ −
∫ 1

0

∫ 1−z

0

(1− z − y)dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(508) =

∫ π
2

0

(
1

2
r2 − 1

3
r2
∣∣∣1
0
)dθ −

∫ 1

0

((1− z)y − 1

2
y2
∣∣∣1−z
y=0

)dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(509) =

∫ π
2

0

1

6
dθ −

∫ 1

0

1

2
(1− z)2dz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(510) =
1

6
θ
∣∣∣π2
0
− 1

6
(1− z)3

∣∣∣1
0

=
π − 2

12
.
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Problem 5.5: Use triple integration in Cartesian coordinates to find the
volume of the tetrahedron S that has its vertices at (0, 0, 0), (a, 0, 0), (0, b, 0),
and (0, 0, c), where a, b, c > 0.
Hint: One of the faces of the tetrahedron lies on the plane x

a + y
b + z

c = 1.

Solution: We see that an alternative description of S is that it is the solid
bound between the planes x = 0, y = 0, z = 0, and x

a + y
b + z

c = 1.

Figure 22. A picture of the solid S when a = 1, b = 2, and c = 3.

(511) Volume of S =

∫∫∫
S

1dV =

∫ c

0

∫ b(1−zc )

0

∫ a(1−zc−
y
b )

0

1dxdydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(512) =

∫ c

0

∫ b(1−zc )

0

a(1− z

c
− y

b
)dydz = a

∫ c

0

(y − z

c
y − 1

2b
y2
∣∣∣b(1−zc )

y=0
)dz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(513) = a

∫ c

0

(
b(1− z

c
)− z

c
b(1− z

c
)︸ ︷︷ ︸

b(1−zc )2

− 1

2b
b2(1−z

c
)2
)
dz =

ab

2

∫ c

0

(1−z
c

)2dz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(514) =
ab

2
(−c

3
(1− z

c
)3
∣∣∣c
z=0

) =
abc

6
.
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Problem 5.6: Evaluate

(515)

∫ 4

1

∫ 4z

z

∫ π2

0

sin(
√
yz)

x
3
2

dydxdz.

Hint: A different order of integration can make the problem easier, even
though it is not necessary.

Solution: We see that trying to evaluate the inner integral in the current
order of integration is tantamount to evaluating

(516)

∫
c1 sin(c2

√
y)dy,

which is very difficult, so we decide to change the order of integration in hopes
that the inner integral becomes easier to evaluate. We see that integrating with
respect to z in the inner integral is not any easier since z and y are symmetric
in the integrand, so we decide to integrate with respect to x in the inner integral
in our new order of integration. Since z and y are symmetric in the integrand,
the difficulty of the integrations doesn’t seem to change if we use dxdydz or
dxdzdy, so we will use the order dxdydz in order to reduce our workload by
only changing the order of dx and dy instead of changing the order of dx, dy,
and dz. We see that the bounds that we have in (515) tell us that

(517)
1 ≤ z ≤ 4
z ≤ x ≤ 4z
0 ≤ y ≤ π2

→
1 ≤ z ≤ 4
0 ≤ y ≤ π2

z ≤ x ≤ 4z
.

Thankfully, we didn’t have to do any work to interchange the order of dx and
dy since the bounds for y in the first order of integration were independent of
x. We now see that

(518)

∫ 4

1

∫ 4z

z

∫ π2

0

sin(
√
yz)

x
3
2

dydxdz =

∫ 4

1

∫ π2

0

∫ 4z

z

sin(
√
yz)x−

3
2dxdydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(519) =

∫ 4

1

∫ π2

0

−2 sin(
√
yz)x−

1
2

∣∣∣4z
x=z

dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(520) =

∫ 4

1

∫ π2

0

(
−2 sin(

√
yz)(4z)−

1
2 + 2 sin(

√
yz)z−

1
2

)
dydz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(521)

=

∫ 4

1

∫ π2

0

(
−

sin(
√
yz)

z
1
2

+ 2
sin(
√
yz)

z
1
2

)
dydz =

∫ 4

1

∫ π2

0

sin(
√
yz)

z
1
2

dydz.

We see that evaluating the inner integral at the end of (521) is again tanta-
mount to evaluating the integral in (516), so we decide to change the order of
integration once again. Note that this is equivalent to having decided to use
the order dxdzdy from the beginning, but we were not able to see that dxdzdy
was the best order of integration until now. Nonetheless, our initial change in
the order of integration did allow us to make progress despite not being the
best possible order of integration.

(522)

∫ 4

1

∫ π2

0

sin(
√
yz)

z
1
2

dydz =

∫ π2

0

∫ 4

1

sin(
√
yz)

z
1
2

dzdy.

Recalling that y does not change when evaluating the inner integral with respect
to z, we treat y as a constant (relative to z) to perform the u-substituion

(523) u =
√
yz, du =

√
y

2
√
z
dz, dz =

2
√
z

√
y
du.

We now see that

(524)

∫ π2

0

∫ 4

1

sin(
√
yz)

z
1
2

dzdy =

∫ π2

0

∫ 4

z=1

2 sin(u)
√
y

dudy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(525) =

∫ π2

0

−2 cos(u)
√
y

∣∣∣4
z=1
dy =

∫ π2

0

−2 cos(
√
yz)

√
y

∣∣∣4
z=1
dy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(526) =

∫ π2

0

(
−2 cos(

√
4y)

√
y

+
2 cos(

√
y)

√
y

)
dy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(527)
u=
√
y

=

∫ π2

y=0

(−4 cos(2u) + 4 cos(u)) du = (−2 sin(2u) + 4 sin(u))
∣∣∣π2

y=0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(528) = (−2 sin(2
√
y) + 4 sin(

√
y))
∣∣∣π2

y=0
= 0 .
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Problem 5.7: Find the volume of the solid region S outside the cone ϕ = π
4

and inside the sphere ρ = 4 cos(ϕ).

First Solution: We will proceed by using spherical coordinates. Due to the
symmetry of our solid with respect to θ we begin by taking a cross section with
the xz-plane. Since we are working in spherical coordinates, the cross section
will be in coordinates similar to polar coordinates. Remember that the angle
ϕ is measured from the z-axis and satisfies 0 ≤ ϕ ≤ π, not 0 ≤ ϕ ≤ 2π. Also
remember that this cross section is showing you the portions of the solid from
θ = 0 and θ = π.

Figure 23. The xz-plane cross section in spherical coordinates.
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We now see that for any θ ∈ [0, 2π) we have that π
4 ≤ ϕ ≤ π

2 . Recalling that
the blue circle is defined by ρ = 4 cos(ϕ), we see that once ϕ is also chosen we
have that 0 ≤ ρ ≤ 4 cos(ϕ). We now see that the volume of the solid is given
by

(529) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ π
2

π
4

∫ 4 cos(ϕ)

0

ρ2 sin(ϕ)dρdϕdθ

(530) =

∫ 2π

0

∫ π
2

π
4

1

3
ρ3 sin(ϕ)

∣∣∣4 cos(ϕ)

ρ=0
dϕdθ =

∫ 2π

0

∫ π
2

π
4

64

3
cos3(ϕ)︸ ︷︷ ︸

u3

sin(ϕ)dϕ︸ ︷︷ ︸
−du

dθ

(531) = −64

3

∫ 2π

0

∫ π
2

ϕ=π
4

u3dudθ = −64

3

∫ 2π

0

1

4
u4
∣∣∣π2
ϕ=π

4

dθ

(532) = −64

3

∫ 2π

0

1

4
cos4(ϕ)

∣∣∣π2
π
4

dθ = −64

3

∫ 2π

0

− 1

16
dθ = −64

3
·2π ·−1

16
=

8π

3
.

Second Solution: We will proceed by using cylindrical coordinates. Due
to the symmetry of our solid with respect to θ we begin by taking a cross
section with the xz-plane. Since we are working in spherical coordinates, the
cross section will be in coordinates similar to Cartesian coordinates with (r, z)
taking the place of (x, y). Remember that this cross section is also showing you
the portions of the solid from θ = 0 and θ = π.

Figure 24. The xz-plane cross section in cylindrical coordinates.
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We now see that for any 0 ≤ θ < 2π we have that 0 ≤ z ≤ 2. Noting that we
have r =

√
4− (z − 2)2 =

√
4z − z2 on the blue circle, we see that once z is

chosen we have z ≤ r ≤
√

4z − z2. We now see that the volume of the solid is
given by

(533) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ 2

0

∫ √4z−z2

z

rdrdzdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(534) =

∫ 2π

0

∫ 2

0

1

2
r2
∣∣∣√4z−z2

z
dzdθ =

∫ 2π

0

∫ 2

0

(2z − z2)dzdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(535)

∫ 2π

0

(z2 − 1

3
z3)
∣∣∣2
0
dθ =

∫ 2π

0

4

3
dθ =

8π

3
.
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Problem 5.8: Find the volume of the solid region S that is bounded by the
cylinders r = 1 and r = 2, and the cones ϕ = π

6 and ϕ = π
3 .

First Solution: We will proceed by using spherical coordinates. Due to the
symmetry of our solid with respect to θ we begin by taking a cross section with
the xz-plane. Since we are working in spherical coordinates, the cross section
will be in coordinates similar to polar coordinates. This time we will focus
on the right of the z-axis (y-axis) in order to only see the part of the solid
corresponding to θ = 0.

Figure 25. The xz-plane cross section in spherical coordinates.
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We see that for any 0 ≤ θ < 2π we have π
6 ≤ ϕ ≤ π

3 . Noting that r = ρ sin(ϕ),
we see that when r = 1 we have ρ = csc(ϕ) and when r = 2 we have ρ =
2 csc(ϕ). It follows that once ϕ is also chosen we have csc(ϕ) ≤ ρ ≤ 2 csc(ϕ).
We now see that the volume of the solid is given by

(536) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ π
3

π
6

∫ 2 csc(ϕ)

csc(ϕ)

ρ2 sin(ϕ)dρdϕdθ

(537) =

∫ 2π

0

∫ π
3

π
6

1

3
ρ3 sin(ϕ)

∣∣∣2 csc(ϕ)

ρ=csc(ϕ)
dϕdθ =

∫ 2π

0

∫ π
3

π
6

7

3
csc2(ϕ)dϕdθ

(538) =

∫ 2π

0

−7

3
cot(ϕ)

∣∣∣π3
π
6

dθ =

∫ 2π

0

14

3
√

3
dθ =

28π

3
√

3
.

Second Solution: We will proceed by using cylindrical coordinates. Due
to the symmetry of our solid with respect to θ we begin by taking a cross
section with the xz-plane. Since we are working in spherical coordinates, the
cross section will be in coordinates similar to Cartesian coordinates with (r, z)
taking the place of (x, y). This time we will focus on the right of the z-axis
(y-axis) in order to only see the part of the solid corresponding to θ = 0.

Figure 26. The xz-plane cross section in cylindrical coordinates.
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We note that for any 0 ≤ θ < 2π we have 1 ≤ r ≤ 2. Once r is also chosen,
we see that 1√

3
r ≤ z ≤ r

√
3. We now see that the volume of the solid is given

by

(539) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ 2

1

∫ r
√

3

1√
3
r

rdzdrdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(540) =

∫ 2π

0

∫ 2

1

rz
∣∣∣r√3

1√
3
r
drdθ =

∫ 2π

0

∫ 2

1

2√
3
r2drdθ =

∫ 2π

0

2

3
√

3
r3
∣∣∣2
1
dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(541) =

∫ 2π

0

14

3
√

3
dθ =

28π

3
√

3
.
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Problem 3.8: What point on the plane x+y+4z = 8 is closest to the origin?
Give an argument showing that you have found an absolute minimum of the
distance function.

Solution: Note that for any (x, y, z) on the plane x + y + 4z = 8 we have

(542) z = 2− 1

4
x− 1

4
y,

from which we see that

(543) d((x, y, z), (0, 0, 0)) =
√

(x− 0)2 + (y − 0)2 + (z − 0)2

(544) =

√
x2 + y2 + (2− 1

4
x− 1

4
y)2 =

√
4− x− y +

1

8
xy +

17

16
x2 +

17

16
y2.

We recall that if f (x, y) is any nonnegative function, then f (x, y) and f 2(x, y)
have their (local and global) minimums and maximums occur at the same values
of (x, y). It follows that we want to optimize the function

(545) f (x, y) = 4− x− y +
1

8
xy +

17

16
x2 +

17

16
y2.

Since any global minimum of f (x, y) is also a local minimum, we see that the
global minimum of f (if it exists) is at a critical point. We now begin finding
the critical points of f . We see that

(546)
0 = fx(x, y) = 17

8 x + 1
8y − 1

0 = fy(x, y) = 17
8 y + 1

8x− 1
→ 0 = (

17

8
x +

1

8
y − 1)− (

17

8
y +

1

8
x− 1)

(547) = 2x− 2y → x = y → x = y =
4

9
.

We see that (4
9,

4
9) is the only critical point. We will now use the second deriv-

ative test to verify that (4
9,

4
9) is a local minimum. We see that
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(548)

fxx(x, y) = 17
8

fyy(x, y) = 17
8

fxy(x, y) = 1
8

→ D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2

(549) =
17

8
· 17

8
− (

1

8
)2 =

9

2
→ D(

4

9
,

4

9
) =

9

2
> 0.

Since we also see that fxx(
4
9,

4
9) = 17

8 > 0, the second derivative test tells
us that (4

9,
4
9) is indeed a local minimum of f (x, y). It remains to show that

f (x, y) attains its global minimum at (4
9,

4
9). Firstly, we note that f (4

9,
4
9) = 32

9 .
Since 32

9 < 25 (I picked 25 randomly, I just needed some larger number), let us

consider the region R of (x, y) for which (x, y, 2− 1

4
x− 1

4
y︸ ︷︷ ︸

z

) has a distance of

at most 5 from the origin. This is the same as R = {(x, y) | f (x, y) ≤ 25}.
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Since R is a closed and bounded region, and f (x, y) is a continuous function
function, we know that f attains an absolute minimum on R. The point (4

9,
4
9)

is inside of R, so the minimum of f is not attained on the boundary of R (as
that is where the distance to the origin is exactly 5). Since the minimum of f
on R is attained on the interior, we see that it must be obtained at a critical
point of f (x, y), so it is attained at (4

9,
4
9). For any point (x, y) outside of R,

we have f (x, y) > 25 (by the very definition of R), so the global minimum of
f (x, y) is 32

9 and is attained at (4
9,

4
9). It follows that the point on the plane

x + y + 4z = 8 that is closest to the origin is (
4

9
,

4

9
,

16

9
) .
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Problem 3.9: Find the point on the plane x + y + z = 4 nearest the point
P (0, 3, 6). Remember to justify why your answer is a global minimum and not
just a local minimum.
N ote: You may solve this problem using geometry instead of calculus and still
receive full credit as long as you show all of your work.

Solution: Note that for any (x, y, z) on the plane x + y + z = 4 we have

(550) z = 4− x− y,

from which we see that

(551) d((x, y, z), (0, 3, 6)) =
√

(x− 0)2 + (y − 3)2 + (z − 6)2

(552)

=
√
x2 + y2 − 6y + 9 + (−2− x− y)2 =

√
2x2 + 2y2 + 2xy + 4x− 2y + 13.

We recall that if f (x, y) is any nonnegative function, then f (x, y) and f 2(x, y)
have their (local and global) minimums and maximums occur at the same values
of (x, y). It follows that we can instead optimize the function

(553) f (x, y) = 2x2 + 2y2 + 2xy + 4x− 2y + 13.

Since any global minimum of f (x, y) is also a local minimum, we see that the
global minimum of f (if it exists) is at a critical point. We now begin finding
the critical points of f . We see that

(554)
0 = fx(x, y) = 4x + 2y + 4

0 = fy(x, y) = 4y + 2x− 2
→ 0 = (4x + 2y + 4)− 2(4y + 2x− 2)

(555) = −6y + 8→ y =
4

3
→ x = −5

3
.

We see that (−5
3,

4
3) is the only critical point. We will now use the second

derivative test to verify that (−5
3,

4
3) is a local minimum. We see that
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(556)

fxx(x, y) = 4

fyy(x, y) = 4

fxy(x, y) = 2

→ D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2

(557) = 4 · 4− 22 = 12→ D(−5

3
,

4

3
) = 12 > 0.

Since we also see that fxx(−5
3,

4
3) = 4 > 0, the second derivative test tells us that

(−5
3,

4
3)is indeed a local minimum of f (x, y). It remains to show that f (x, y)

attains its global minimum at (−5
3,

4
3). Firstly, we note that f (−5

3,
4
3) = 25

3 .
Since 25

3 < 15 (I picked 15 randomly, I just needed some larger number), let us
consider the region R of (x, y) for which (x, y, 4− x− y︸ ︷︷ ︸

z

) has a distance of at

most
√

15 from the point (0, 3, 6). This is the same as R = {(x, y) | f (x, y) ≤
15}.
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Since R is a closed and bounded region, and f (x, y) is a continuous function
function, we know that g attains an absolute minimum on R. The point (−5

3,
4
3)

is inside ofR, so the minimum of g is not attained on the boundary ofR (as that
is where the squared distance to the origin is exactly 15). Since the minimum of
g on R is attained on the interior, we see that it must be obtained at a critical
point of f (x, y), so it is attained at (−5

3,
4
3). For any point (x, y) outside of R,

we have f (x, y) > 15 (by the very definition of R), so the global minimum of
f (x, y) is 25

3 and is attained at (−5
3,

4
3). It follows that the point on the plane

x + y + z = 4 that is closest to the origin is (−5

3
,

4

3
,

13

3
) .
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Problem 3.10: Find the point on the plane 2x + 3y + 6z − 10 = 0 closest
to the point (−2, 5, 1) by using the method of Lagrange Multipliers. Can you
justify that your answer is a global minimum and not just a local minimum?

Solution: We see that our constraint function is g(x, y, z) = 2x+3y+6z−10,
and the function that we are trying to optimize is the distaince from a point
(x, y, z) on the plane to the point (−2, 5, 1), which is given by

(558) h(x, y, z) =
√

(x− (−2))2 + (y − 5)2 + (z − 1)2

=
√
x2 + 4x + 4 + y2 − 10y + 25 + z2 − 2z + 1.

Since h(x, y, z) and f (x, y, z) = (h(x, y, z))2 have their absolute minimum(s)
occurring at the same location(s), we will optimize f (x, y, z) subject to g(x, y, z) =
0 instead since the resulting calculations will be easier. Since our constraint
function defines an open region (a plane) the method of Lagrange multipliers
will give us all of the critical points in the open region, and we will compare the
values of f (x, y, z) at the critical points to the values of f (x, y, z) as (x, y, z)
approaches the boundary. Noting that

(559) ∇g(x, y, z) = 〈2, 3, 6〉 and

(560) ∇f (x, y, z) = 〈2x + 4, 2y − 10, 2z − 2〉,

the method of Lagrange multipliers gives us the system of equations

(561)
g(x, y, z) = 0

~∇f (x, y, z) = λ~∇g(x, y, z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(562) ⇔ 2x + 3y + 6z − 10 = 0
〈2x + 4, 2y − 10, 2z − 2〉 = λ〈2, 3, 6〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 180



Sohail Farhangi Problems and Solutions Compilation

(563) ⇔

2x + 3y + 6z − 10 = 0
2x + 4 = 2λ

2y − 10 = 3λ
2z − 2 = 6λ

⇔

2x + 3y + 6z − 10 = 0
x = λ− 2
y = 3

2λ + 5
z = 3λ + 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(564) → 0 = 2(λ− 2) + 3(
3

2
λ + 5) + 6(3λ + 1)− 10 =

49

2
λ + 7→ λ = −2

7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(565) → (x, y, z) = (−16

7
,

32

7
,

1

7
) .

We see that a point (x, y, z) in the plane 2x + 3y + 6z − 10 = 0 approaches
the boundary of the plane (the ’outer edges’ of the plane) if at least one of
x, y, or z appraoches infinity. It follows that the square of the distance function
(f (x, y, z)) approaches positive infinity as (x, y, z) approaches the boundary,
so the absolute minimum exists and occurs at the critical point that we found.
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Problem 3.11: Use Lagrange multipliers to find the dimensions of the right
circular cylinder of minimum surface area (including the circular ends) with a
volume of 32π in3.

Solution: We recall that a cylinder of radius r and height h has a volume of
V = πr2h and a surface area (including the 2 circular ends) of S = 2πr2+2πrh.
It follows that we want to optimize the function f (r, h) = 2πr2 + 2πrh subject
to the constraint 0 = g(r, h) = πr2h− 32π. Since

(566) ∇f (r, h) = 〈4πr + 2πh, 2πr〉 and ∇g(r, h) = 〈2πrh, πr2〉, we obtain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(567)
4πr + 2πh = 2πλrh

2πr = πλr2

πr2h = 32π

r 6=0→
2r + h = λrh

2 = λr
r2h = 32

→
2r + h = 2h

2 = λr
r2h = 32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(568) →
2r = h
2 = λr
r2h = 32

→
2r = h
2 = λr

2r3 = 32
→ r =

3
√

16 = 2
3
√

2→ h = 4
3
√

2.

Since the cylinder does not have a maximum surface area when subjected to
the constraint V = 32π, we see that the critical point that we found has to
correspond to a local minimum. The extreme/boundary cases occur when either
r →∞ or h→∞, in which case we also have S →∞. It follows that f (r, h)

attains a minimum value of 24π 3
√

4 when (r, h) = (2
3
√

2, 4
3
√

2) .
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Problem 3.12: Economists model the output of manufacturing systems using
production functions that have many of the same properties as utility functions.
The family of Cobb-Douglas production functions has the form P = f (K,L) =
CKaL1−a, where K represents capital, L represents labor, and C and a are
positive real numbers with 0 < a < 1. If the cost of capital is p dollars per
unit, the cost of labor is q dollars per unit, and the total available budget is B,
then the constraint takes the form pK + qL = B. Find the values of K and L
that maximize the production function

(569) P = f (K,L) = 10K
1
3L

2
3

subject to

(570) 30K + 60L = 360,

assuming K ≥ 0 and L ≥ 0.

Solution: We see that the region defined by the constraint is the line segment
from (K,L) = (0, 6) to (K,L) = (12, 0), which is a closed and bounded region
with boundary.

The method of Lagrange multipliers will give us all of the critical points in the
interior of the line segment, and we will then compare the values of f at the
critical points with the values of f at the boundary (the 2 end points of the
line segment) in order to find the absolute maximum and absolute minimum
values. We begin by identifying our constraint function g(K,L), its gradient
field ∇g(K,L), and the gradient field ∇f (K,L) of our optimization function
as
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(571) g(K,L) = 30K + 60L− 360,∇g(K,L) = 〈30, 60〉, and

(572) ∇f (K,L) = 〈10

3
K−

2
3L

2
3 ,

20

3
K

1
3L−

1
3〉.

The method of Lagrange multipliers gives us the system of equations

(573)
g(K,L) = 0
∇f (K,L) = λ∇g(K,L)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(574) ⇔
30K + 60L− 360 = 0

〈10
3 K

−2
3L

2
3 , 20

3 K
1
3L−

1
3〉 = λ〈30, 60〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(575) ⇔
30K + 60L− 360 = 0

10
3 K

−2
3L

2
3 = 30λ

20
3 K

1
3L−

1
3 = 60λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(576) → 20

3
K−

2
3L

2
3 = 60λ =

20

3
K

1
3L−

1
3 → K = L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(577) → 0 = 30K + 60L− 360 = 90L− 360→ L = 4→ (K,L) = (4, 4) .

Since (4, 4) is the only critical point given to use by the method of Lagrange
multipliers and

(578) f (4, 4) = 10 · 4
1
34

2
3 = 10 · 4 = 40 > 0 = f (12, 0) = f (0, 6),

we see that the production function attains its absolute maximum value (subject
to the given constraint) of 40 at (4, 4).
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Problem 3.13: Given the production function P = f (K,L) = KaL1−a and
the budget constraint pK + qL = B, where a, p, q, and B are given, show
that P is maximized when K = aB/p and L = (1 − a)B/q. (Recall that
p, q,K, L ≥ 0 and 0 < a < 1 in order for the model to make sense in the real
world and for the production function f to be well defined.)

Solution: We see that the region defined by the constraint is the line segment
from (K,L) = (0, Bq ) to (K,L) = (Bp , 0), which is a closed and bounded region
with boundary. The method of Lagrange multipliers will give us all of the
critical points in the interior of the line segment, and we will then compare the
values of f at the critical points with the values of f at the boundary (the 2 end
points of the line segment) in order to find the absolute maximum and absolute
minimum values. We begin by identifying our constraint function g(K,L), its
gradient field ∇g(K,L), and the gradient field ∇f (K,L) of our optimization
function as

(579) g(K,L) = pK + qL−B,∇g(K,L) = 〈p, q〉, and

(580) ∇f (K,L) = 〈aKa−1L1− a, (1− a)KaL−a〉.

The method of Langrange multipliers gives us the system of equations

(581)
g(K,L) = 0
∇f (K,L) = λ∇g(K,L)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(582) ⇔ pK + qL−B = 0
〈aKa−1L1− a, (1− a)KaL−a〉 = λ〈p, q〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(583) ⇔
pK + qL−B = 0
aKa−1L1− a = pλ
(1− a)KaL−a = qλ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(584) → qaKa−1L1−a = pqλ = p(1− a)KaL−a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(585) → qaL = p(1− a)K → L =
p(1− a)

qa
K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(586) → 0 = pK + qL−B = pK +
p(1− a)

a
K −B → K =

Ba

p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(587) → L
(By (585))

=
B(1− a)

q
, so

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(588) (K,L) = (
Ba

p
,
B(1− a)

q
)

is the only critical point obtained by the method of Lagrange multipliers. We
see that K,L > 0 at this critical point, so

(589) f (K,L) > 0 = f (0,
B

q
) = f (

B

p
, 0).

Since the value of f at the (only) critical point is larger than the values of f
on the boundary (the end points) we see that f attains its absolute maximum
value at the critical point as desired.
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Problem 3.14: Find the absolute minimum and absolute maximum values
of the function

(590) f (x, y) = x2 + 4y2 + 1

over the region

(591) R = {(x, y) : x2 + 4y2 ≤ 1}.

You should know how to solve this type of problem using lagrange multipli-
ers, but you can avoid using lagrange multipliers (and even avoid param-
eterization of the boundary) in this particular problem if you think about
it carefully.

Figure 27. The interior of the R is shaded in red and the boundary of R is blue.

Solution: Since the region R is a closed and bounded region, and the function
f is continuous, the extreme value theorem tells us that the absolute minimum
and absolute maximum values of f must be achieved on the boundary of R or
at a critical point in the interior of R. We first find all of the critical points of
f . We see that

(592)
fx(x, y) = 0
fy(x, y) = 0

⇔ 2x = 0
8y = 0

⇔ (x, y) = (0, 0).
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We see that (0, 0) ∈ R and that f (0, 0) = 1. Next we will determine the
absolute minimum and absolute maximum values of f on the boundary of R.
Since the boundary of R is given by x2 + 4y2 = 1, we see that f (x, y) = 2 for
every (x, y) on the boundary of R, so we immediately see that f achieves its
absolute minimum value of 1 at (0, 0) and its absolute maximum value of 2 at
any (x, y) on the boundary of R.

If we were not lucky enough to instatly notice that f (x, y) = 2 for every
(x, y) on the boundary of R, then we would try to handle the boundary by
using the method of Lagrange multipliers. More specifically, we would try
to optimize the function f (x, y) = 1 + x2 + 4y2 subject to the constraint
g(x, y) = x2 + 4y2 − 1 = 0. Noting that

(593) ∇g(x, y) = 〈2x, 8y〉 and ∇f (x, y) = 〈2x, 8y〉

the method of Lagrange multipliers gives us the system of equations

(594)
g(x, y) = 0
∇f (x, y) = λ∇g(x, y)

⇔ g(x, y) = 0
〈2x, 8y〉 = λ〈2x, 8y〉

(595) ⇔
g(x, y) = 0

2x = 2λx
8y = 8λy

.

Letting λ = 1, we see that every point (x, y) on the boundary of R (which is the
same as every point (x, y) satisfying the constraint g(x, y) = 0 also satisfies the
system of equations given to us by the method of Lagrange multipliers. This
seems bad at first since the boundary has infinitely many points, so it looks
like the method of Lagrange multipliers did not help us in our search for the
absolute minimum and absolute maximum values that occur on the boundary.
However, it turns out that the only time every point on the boundary of our
region R (assuming that R has a piecewise smooth boundary, which it always
will in this class) is a critical point is when f (x, y) is constant on the region R
(as it was in this problem), so the problem turns out to be easier in these cases
since you can determine the value of f (x, y) on the boundary of R by checking
the value at any random point (x, y) on the boundary of R.
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Problem 3.15: Show that each of the following functions f (x, y) have exactly
1 critical point that is a local extrema, but not a global extrema.9

(i) f (x, y) = e3x + y3 − 3yex.
(ii) f (x, y) = x2 + y2(1 + x)3.

Remark: A continuously differentiable single variable function f (x) that
has exactly 1 critical point that is a local extrema will also have that critical
point be a global extrema. This problem shows that the same phenomena
does not hold for functions of 2 or more variables.

Solution to (i): We begin by finding the critical points of f (x, y).

0 =fx(x, y) =3e3x − 3yex→y =e2x→e4x = ex→ x = 0→ y = 1(596)

0 =fy(x, y) =3y2 − 3ex y2=ex

We will now proceed to apply the second derivative test to the critical point
(0, 1) to verify that it is a local extremum.

fxx(x, y) = 9e3x − 3yex,(597)

fyy(x, y) = 6y,

fx,y(x, y) = −3ex,

→D(0, 1) = fxx(0, 1)fyy(0, 1)− (fxy(0, 1))2 = 6 · 6− (−3)2 = 27.

Since D(0, 1) > 0 and fxx(0, 1) > 0, we see that f has a local minimum at
(0, 1). To see that f does not have a global minimum or global maximum, it
suffices to observe that f (0, y) = y3 − 3y + 1.

Solution to (ii): We begin by finding the critical points of f (x, y).

0 =fx(x, y) =2x + 3y2(1 + x)2→x = −3

2
y2(1 + x)2→x = 0(598)

0 =fy(x, y) =2y(1 + x)3 y = 0 or x = −1 → y = 0

We will now proceed to apply the second derivative test to the critical point
(0, 0) to verify that it is a local extremum.

9I took item (i) from Tom Vogel of Texas A& M and item (ii) from Henry Wente of University of Toledo.
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fxx(x, y) = 2 + 6y2(1 + x),(599)

fyy(x, y) = 2(1 + x)3,

fx,y(x, y) = 6y(1 + x)2,

→D(0, 0) = fxx(0, 0)fyy(0, 0)− (fxy(0, 0))2 = 2 · 2− 02 = 4.

Since D(0, 0) > 0 and fxx(0, 0) > 0, we see that f has a local minimum at
(0, 0). To see that f does not have a global minimum or global maximum, it
suffices to observe that f (x, 1) = (1 + x)3 + x2.
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Problem 4.1: Evaluate

(600)

∫ √π
2

0

∫ 1

0

yx sin(x2)dydx,

(601)

∫ 1

0

∫ √π
2

0

yx sin(x2)dxdy, and

(602)

(∫ √π
2

0

x sin(x2)dx

)(∫ 1

0

ydy

)
Note that all 3 integrals should result in the same value once evaluated.
Please show your work for the calculations of each of the 3 integrals sepa-
rately.

Solution: We see that

(603)

∫ √π
2

0

∫ 1

0

yx sin(x2)dydx =

∫ √π
2

0

(
y2

2
x sin(x2)

∣∣∣1
y=0

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(604) =

∫ √π
2

0

1

2
x sin(x2)dx

u=x2

=

∫ √π
2

x=0

1

4
sin(u)du = −1

4
cos(u)

∣∣∣√π
2

x=0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(605) = −1

4
cos(x2)

∣∣∣√π
2

x=0
=

1

4
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(606)

∫ 1

0

∫ √π
2

0

yx sin(x2)dxdy
u=x2

=

∫ 1

0

∫ √π
2

x=0

1

2
y sin(u)dudy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(607)

=

∫ 1

0

(
−1

2
y cos(u)

∣∣∣√π
2

x=0

)
dy =

∫ 1

0

(
−1

2
y cos(x2)

∣∣∣√π
2

x=0

)
dy =

∫ 1

0

1

2
ydy
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(608) =
1

4
y2
∣∣∣1
0

=
1

4
, and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(609)
(∫ √π

2

0

x sin(x2)dx
)(∫ 1

0

ydy
)
u=x2

=

(∫ √π
2

x=0

1

2
sin(u)du

)(
1

2
y2
∣∣∣1
0

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(610) =

(
−1

2
cos(u)

∣∣∣√π
2

x=0

)
· 1

2
=

(
−1

2
cos(x2)

∣∣∣√π
2

x=0

)
· 1

2
=

1

2
· 1

2
=

1

4
.
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Problem 4.2: Suppose that the second partial derivative of f are continuous
on R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. Show that

(611)

∫∫
R

∂2f

∂x∂y
(x, y)dA = f (a, b)− f (a, 0)− f (0, b) + f (0, 0).

Hint: Think about the fundamental theorem of calculus.

Solution: We see that

(612)

∫∫
R

∂2f

∂x∂y
(x, y)dA =

∫ b

0

∫ a

0

∂2f

∂x∂y
(x, y)dxdy =

∫ b

0

∂f

∂y
(x, y)

∣∣∣a
x=0

dy

(613) =

∫ b

0

(
∂f

∂y
(a, y)− ∂f

∂y
(0, y)

)
dy = (f (a, y)− f (0, y))

∣∣∣b
0
.

(614) = f (a, b)− f (0, b)− f (a, 0) + f (0, 0).

Alternatively, since the second partial derivatives of f are continuous on R, we
can use Clairaut’s Theorem to perform the calculations in the following fashion.

(615)

∫∫
R

∂2f

∂x∂y
(x, y)dA =

∫ a

0

∫ b

0

∂2f

∂y∂x
(x, y)dydx =

∫ a

0

∂f

∂x
(x, y)

∣∣∣b
y=0
dx

(616) =

∫ a

0

(
∂f

∂x
(x, b)− ∂f

∂x
(x, 0)

)
dx = (f (x, b)− f (x, 0))

∣∣∣a
0
.

(617) = f (a, b)− f (a, 0)− f (0, b) + f (0, 0).

Remark: A similar method can show that if R = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d}, then

(618)

∫∫
R

∂2f

∂x∂y
(x, y)dA = f (b, d)− f (a, d)− f (b, c) + f (a, c).

The Fundamental Theorem of Calculus told us that
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(619)

∫ b

a

df

dx
(x)dx = f (b)− f (a).

Comparing equations (619) and (618), we see that instead taking the difference
at the 2 endpoints of a line segment, we are adding 2 opposite corners of the
rectangular regionR (f (b, d) and f (a, c), or f (a, b) and f (0, 0) from the original
problem) and subtracting from that the sum of the other 2 opposite corners
(f (a, d) and f (b, c), or f (a, 0) and f (0, b) from the original problem).
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Problem 4.3: Let R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
(a) Evaluate

∫∫
R cos(x

√
y)dA.

(b) Evaluate
∫∫

R x
3y cos(x2y2)dA.

Hint: Choose a convenient order of integration.

Solution to a: Noting that
∫

cos(cx)dx is easily computable, but
∫

cos(c
√
y)dy

is not easily computable, we decide to use the order of integration given by
dA = dxdy. It follows that

(620)

∫∫
R

cos(x
√
y)dA =

∫ 1

0

∫ 1

0

cos(x
√
y)dxdy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(621)
u=x
√
y

=

∫ 1

0

∫ 1

0

cos(x
√
y)

√
y

√
ydxdy

u=x
√
y

=

∫ 1

0

∫ 1

x=0

cos(u)
√
y
dudy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(622) =

∫ 1

0

(
sin(u)
√
y

∣∣∣1
x=0

)
dy =

∫ 1

0

(
sin(x

√
y)

√
y

∣∣∣1
x=0

)
dy =

∫ 1

0

sin(
√
y)

√
y

dy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(623)
u=
√
y

=

∫ 1

0

2 sin(
√
y)

dy

2
√
y

u=
√
y

=

∫ 1

y=0

2 sin(u)du = −2 cos(u)
∣∣∣1
y=0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(624) = −2 cos(
√
y)
∣∣∣1
y=0

= 2− 2 cos(1) .

Solution to b: Noting that
∫
c1x

3 cos(c2x
2)dx is not easily computable, but∫

c1y cos(c2y
2)dy is easily computable, we decide to use the order of integration

given by dA = dydx. It follows that

(625)

∫∫
R

x3y cos(x2y2)dA =

∫ 1

0

∫ 1

0

x3y cos(x2y2)dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(626)
u=y2

=

∫ 1

0

∫ 1

0

x3

2
cos(x2y2)2ydydx

u=y2

=

∫ 1

0

∫ 1

y=0

x3

2
cos(x2u)dudx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(627)
v=x2u

=

∫ 1

0

∫ 1

y=0

x

2
cos(x2u)x2dudx

v=x2u
=

∫ 1

0

∫ 1

y=0

x

2
cos(v)dvdx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(628) =

∫ 1

0

(
x

2
sin(v)

∣∣∣1
y=0

)
dx =

∫ 1

0

(
x

2
sin(x2u)

∣∣∣1
y=0

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(629)

=

∫ 1

0

(
x

2
sin(x2y2)

∣∣∣1
y=0

)
dx =

∫ 1

0

x

2
sin(x2)dx

u=x2

=

∫ 1

0

1

4
sin(x2)2xdx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(630)
u=x2

=

∫ 1

x=0

1

4
sin(u)du = −1

4
cos(u)

∣∣∣1
x=0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(631) = −1

4
cos(x2)

∣∣∣1
x=0

=
1

4
− 1

4
cos(1) .
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Problem 4.4: Let R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Let F be an
antiderivative of f satisfying F (0) = 0, and let G be an antiderivative of F .
Show that if f and F are integrable, and r, s ≥ 1 are real numbers, then

(632)

∫∫
R

x2r−1ys−1f (xrys)dA =
G(1)−G(0)

rs
.

Hint: Pick a convenient order of integration, then apply u-substition. It
also helps if you do problem 14.1.60 before doing this problem.

Solution: We note that Problem 14.1.60b was a special instance of this prob-
lem in which r = s = 2 and f (t) = cos(t). Therefore we will proceed in a
similar fashion, but we will slightly simplify our solution by merging the first 2
u-substitutions that were performed in the solution to Problem 14.1.60b into a
single u-substitution. We now see that

(633)

∫∫
R

x2r−1ys−1f (xrys)dA =

∫ 1

0

∫ 1

0

x2r−1ys−1f (xrys)dydx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(634)
u=xrys

=

∫ 1

0

∫ 1

0

xr−1f (xrys)xrys−1dydx
u=xrys

=

∫ 1

0

∫ 1

y=0

xr−1

s
f (u)dudx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(635) =

∫ 1

0

(
xr−1

s
F (u)

∣∣∣1
y=0

)
dx =

∫ 1

0

(
xr−1

s
F (xrys)

∣∣∣1
y=0

)
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(636) =

∫ 1

0

xr−1

s
F (xr)− xr−1

s
F (0)︸︷︷︸

=0

 dx =

∫ 1

0

xr−1

s
F (xr)dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(637)
u=xr
=

∫ 1

0

1

rs
F (xr)rxr−1dx

u=xr
=

∫ 1

x=0

1

rs
F (u)du

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(638) =
1

rs
G(u)

∣∣∣1
x=0

=
1

rs
G(xr)

∣∣∣1
x=0

=
G(1)−G(0)

rs
.
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Problem 4.5: Let R be the region in quadrants 1 and 4 bounded by the
semicircle of radius 4 centered at (0, 0). Sketch a picture of R, then evaluate

(639)

∫∫
R

x2ydA.

Solution 1: If we decide to integrate using the order dA = dxdy, then we
obtain the picture and calculations show below.

(640)

∫∫
R

x2ydA =

∫ 4

−4

∫ √16−y2

0

x2ydxdy =

∫ 4

−4

(
x3

3
y
∣∣∣√16−y2

x=0

)
dy

(641) =

∫ 4

−4

1

3
y(16− y2)

3
2dy = − 1

15
(16− y2)

5
2

∣∣∣4
−4

= 0 .

Solution 2: If we decide to integrate using the order dA = dydx, then we
obtain the picture and calculations show below.
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(642)

∫∫
R

x2ydA =

∫ 4

0

∫ √16−x2

−
√

16−x2
x2ydydx =

∫ 4

0

1

2

(
x2y2

∣∣∣√16−x2

y=−
√

16−x2

)
dx

(643) =

∫ 4

0

0dx = 0 .

Solution 3: Using the symmetry shown below,

we see that
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(644)

∫∫
R

x2ydA =

∫∫
R1

x2ydA +

∫∫
R2

x2ydA

(645) = −
∫∫

R2

x2ydA +

∫∫
R2

x2ydA = 0 .

To see the details of the above calculation worked out in more detail, we proceed
as we did in solution 2.

(646)

∫∫
R1

x2ydA =

∫ 4

0

∫ √16−x2

0

x2ydydx =

∫ 4

0

∫ √16−x2

0

x2(−y)(−dy)dx

(647)
y=−y

=

∫ 4

0

∫ −√16−x2

0

x2ydydx = −
∫ 4

0

∫ 0

−
√

16−x2
x2ydydx

(648) = −
∫∫

R2

x2ydA.
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Problem 5.9: Rewrite the the triple integral

(649)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx

using the order dzdxdy.

First Solution: We envision the 3-dimensional solid that is described by
the bounds of the triple integral in the currect order of dydzdx, and then we
traverse the solid using the new order of dzdxdy.
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(650)

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .

Second Solution: In order to avoid drawing and thinking about 3-dimensional
regions, we will perform 2 separate changes of order. We will first change the
order from dydzdx to dzdydx, and then we will change the order from dzdydx
to dzdxdy.
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(651)

∫ 2

0

∫ 9−x2

0

∫ x

0

f (x, y, z)dydzdx =

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx

(652)

∫ 2

0

∫ x

0

∫ 9−x2

0

f (x, y, z)dzdydx =

∫ 2

0

∫ 2

y

∫ 9−x2

0

f (x, y, z)dzdxdy .
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Problem 5.10: Find the volume of the solid S that is bounded by the para-
bolic cylinders z = y2 + 1 and z = 2− x2.

Solution: S is a 3 dimensional solid that is defined as the region inbetween
2 surfaces. First, we find the intersection I of z = y2 + 1 and z = 2 − x2 to
satisfy y2 + 1 = 2− x2 or x2 + y2 = 1.
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It follows that the (x, y)-coordinates of I are the circle of radius 1 centered
at the origin. Note that the intersection I is not itself a circle since the z-
coordinate is not constant on the intersection. NThankfully, for the purposes of
calculating the volume of S, we only need to know the projection R of I onto
the xy-plane (along with the interior of the projection), which is the same as
knowing the the (x, y)-coordinates of I .

(653) Volume(S) =

∫∫
R

(ztop − zbottom)dA

(654) =

∫ 2π

0

∫ 1

0

(
(2− (r cos(θ))2)− ((r sin(θ))2 + 1)

)
rdrdθ
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(655) =

∫ 2π

0

∫ 1

0

(
1− r2 cos2(θ)− r2 sin2(θ)

)
rdrdθ

(656) =

∫ 1

0

∫ 2π

0

(
r − r3

)
dθdr =

∫ √3

0

(
rθ − r3θ

) ∣∣∣2π
θ=0
dr

(657) =

∫ 1

0

2π
(
r − r3

)
dr = 2π

(
1

2
r2 − 1

4
r4

) ∣∣∣1
0

=
π

2
.

Remark: We could have also calculated the volume by using a triple integral
in cylindrical coordinates as follows.

(658) Volume(S) =

∫∫∫
S

1dV =

∫ 2π

0

∫ √3

0

∫ 2−r2 cos2(θ)

r2 sin2(θ)+1

rdzdrdθ = π .
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Problem 7.1: Use a scalar line integral to find the length of the curve

(659) ~r(t) = 〈20 sin(
t

4
), 20 cos(

t

4
),
t

2
〉, for 0 ≤ t ≤ 2.

Solution: Firstly, we note that

(660) ~r ′(t) = 〈5 cos(
t

4
),−5 sin(

t

4
),

1

2
〉.

We now see that

(661)

Arclength(C) =

∫
C

1ds =

∫ 2

0

|~r ′(t)|dt =

∫ 2

0

|〈5 cos(
t

4
),−5 sin(

t

4
),

1

2
〉|dt

(662) =

∫ 2

0

√(
5 cos(

t

4
)

)2

+

(
−5 sin(

t

4
)

)2

+

(
1

2

)2

dt

(663) =

∫ 2

0

√
25 cos2(

t

4
) + 25 sin2(

t

4
) +

1

4
dt =

∫ 2

0

√
25

1

4
dt

(664) =

√
25

1

4
t
∣∣∣2
0

= 2

√
25

1

4
=
√

101 .
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Problem 7.2: Find the work required to move an object along the line seg-
ment from (1, 1, 1) to (8, 4, 2) through the forcefield ~F given by

(665) ~F =
〈x, y, z〉

x2 + y2 + z2
.

Solution 1: Firstly, we recall that one method of parameterizing the line
segment that starts at ~p and ends at ~q is to use the parameterization

(666) ~r(t) = (1− t)~p + t~q = ~p + t(~q − ~p), 0 ≤ t ≤ 1.

It follows that

(667)
~r(t) = 〈1, 1, 1〉 + t (〈8, 4, 2〉 − 〈1, 1, 1〉) = 〈1 + 7t, 1 + 3t, 1 + t〉, 0 ≤ t ≤ 1,

is a parameterization of the line segment from (1, 1, 1) to (8, 4, 2). We now see
that

(668) Work =

∫
C

~F · d~r =

∫ 1

0

~F (~r(t)) · ~r ′(t)dt

(669) =

∫ 1

0

〈1 + 7t, 1 + 3t, 1 + t〉
(1 + 7t)2 + (1 + 3t)2 + (1 + t)2︸ ︷︷ ︸

~F (~r(t))

· 〈7, 3, 1〉dt︸ ︷︷ ︸
d~r

(670) =

∫ 1

0

(1 + 7t) · 7 + (1 + 3t) · 3 + (1 + t) · 1
1 + 14t + 49t2 + 1 + 6t + 9t2 + 1 + 2t + t2

dt

(671) =

∫ 1

0

11 + 59t

3 + 22t + 59t2
dt =

∫ 1

0

t + 11
59

t2 + 22
59t + 3

59

dt =

∫ 1

0

t + 11
59

(t + 11
59)2 + 56

3481

dt

(672) =
1

2
ln

(
(t +

11

59
)2 +

56

3481

) ∣∣∣1
0

=
1

2
ln(28) .
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Solution 2: We note that for ϕ = 1
2 ln(x2 + y2 + z2) we have ∇ϕ = ~F , so

the Fundamental Theorem for Line Integrals (section 3.3) allows us to simplify
the calculations from equations (668)-(672) as follows.

(673) Work =

∫
C

~F · d~r =

∫
C

∇ϕ · d~r = ϕ ((8, 4, 2))− ϕ ((1, 1, 1))

(674) =
1

2
ln(82+42+22)− 1

2
ln(12+12+12) =

1

2
ln(84)− 1

2
ln(3) =

1

2
ln(28) .
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Problem 7.3: Determine whether the vector field ~F given by

(675) ~F = 〈y − ex+y, x− ex+y + 1,
1

z
〉

is a conservative vector field. If ~F is conservative, find a potential function ϕ.

Solution: We see that

~F = 〈m,n, p〉, with(676)

m(x, y, z) = y − ex+y, n(x, y, z) = x− ex+y + 1, p(x, y, z) =
1

z
.

Since
∂m

∂y
= 1− ex+y =

∂n

∂x
,

∂n

∂z
= 0 =

∂p

∂y
,

∂m

∂z
= 0 =

∂p

∂x
,

we see that ~F is a conservative vector field. We will now find the potential
function ϕ for ~F . We recall that

(677) 〈m,n, p〉 = ~F = ∇ϕ = 〈ϕx, ϕy, ϕz〉.

We will now handle the 3 scalar differential equations that arise from (677) in
order to find ϕ (but only up to a constant).

ϕx(x, y, z) = m(x, y, z) = y − ex+y(678)

→ϕ(x, y, z) =

∫
(y − ex+y)dx = xy − ex+y + h(y, z)

x− ex+y + 1 = n(x, y, z) = ϕy(x, y, z) = x− ex+y + hy(y, z)

→hy(y, z) = 1→ h(y, z) =

∫
1dy = y + g(z)

→ϕ(x, y, z) = xy − ex+y + y + g(z)

1

z
= p(x, y, z) = ϕz(x, y, z) = gz(z) = g′(z)

→g(z) =

∫
1

z
dz = ln |z| + C

→ ϕ(x, y, z) = xy − ex+y + y + ln |z| + C .
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Problem 7.4: Evaluate

(679)

∫
C

〈 4
√
x + 6 + ln(ln(ln(ee

e
+ 5 + x)))− 1, y3 + 2 + ey

2〉 · d~r,

where C is the curve that is shown in the picture below.

Figure 28. The curve C.

Solution: Letting

(680) m(x, y, z) = 4
√
x + 6 + ln(ln(ln(ee

e
+ 5 + x)))− 1, and

(681) n(x, y, z) = y3 + 2 + ey
2
, we see that

(682) ~F := 〈m,n〉, satisfies

(683)
∂m

∂y
= 0 =

∂n

∂x

so ~F is a conservative vector field. We also see that
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(684)

∫
C

〈 4
√
x + 6 + ln(ln(ln(ee

e
+ 5 + x)))− 1, y3 + 2 + ey

2〉 · d~r =

∫
C

~F · d~r.

Since ~F is conservative and C is a (simple, piecewise smooth, oriented) closed

curve, and ~F is continuous on C and its interior, we see that

(685)

∫
C

~F · d~r = 0 .

Challenge for the brave: Letting C once again denote the curve in figure
28, evaluate

(686)

∫
C

〈y, 0〉 · d~r.
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Problem 8.1: An idealized two-dimensional ocean is modeled by the square
region R = [−π

2 ,
π
2 ]× [−π

2 ,
π
2 ]. with boundary C. Consider the stream function

Ψ(x, y) = 4 cos(x) cos(y) defined on R. Some of the level curves of Ψ are shown
in the figure below.

Figure 29. Some level curves of the stream function Ψ(x, y).

(a) The horizontal (east-west) component of the velocity is u = Ψy and the
vertical (north-south) component of the velocity is v = −Ψx. Sketch a few
representative velocity vectors and show that the flow is counterclockwise
around the region.

(b) Is the velocity field source free? Explain.
(c) Is the velocity field irrotational? Explain.
(d) Find the total outward flux across C.
(e) Find the circulation on C assuming counterclockwise orientation.

Solution to part (a): We see that

(687) u(x, y) = Ψy(x, y) = −4 cos(x) sin(y), and

(688) v(x, y) = −Ψx(x, y) = 4 sin(x) cos(y),
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so the velocity field ~F = ~F (x, y) is given by

(689) ~F (x, y) = 〈u(x, y), v(x, y)〉 = 〈−4 cos(x) sin(y), 4 sin(x) cos(y)〉.

Solution to part (b): We see that the divergence of ~F is given by

(690) Div(~F ) =
∂u

∂x
+
∂v

∂y
= 4 sin(x) sin(y)− 4 sin(x) sin(y) = 0,

so the velocity field ~F is source free. In fact, we can show that any vector field
~F = 〈f, g〉 = 〈Ψy,−Ψx〉 that arises from a stream function Ψ is source free. It
suffices to observe that

(691) Div(~F ) =
∂f

∂x
+
∂g

∂y
= (Ψy)x + (−Ψx)y = Ψyx − Ψxy = 0.

This should be compared to the fact that any vector field ~F = 〈ϕx, ϕy〉 coming
from a potential function ϕ is conservative/irrotational.

Solution to part (c): We see that the curl of ~F is given by

(692) Curl(F ) =
∂v

∂x
− ∂u

∂y
= 4 cos(x) cos(y)− (−4 cos(x) cos(y))

= 8 cos(x) cos(y) 6≡ 0,

so the velocity field ~F is not irrotational.

Solution to part (d): Using the flux form of Green’s Theorem we see that

(693)

∫
C
~F · n̂ds =

∫∫
R

Div(~F )dA =

∫ π
2

−π2

∫ π
2

−π2
0dxdy = 0 .

Solution to part (e): Using the circulation form of Green’s Theorem we see
that

(694)

∫
C
~F · d~r =

∫∫
R

Curl(~F )dA =

∫ π
2

−π2

∫ π
2

−π2
8 cos(x) cos(y)dxdy
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(695) = 8

(∫ π
2

−π2
cos(y)dy

)(∫ π
2

−π2
cos(x)dx

)
= 8

(∫ π
2

−π2
cos(x)dx

)2

(696) = 8

(
sin(x)

∣∣∣π2
−π2

)2

= 8 · 22 = 32 .
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Problem 8.2: Consider the radial field ~F (x, y) = 〈x,y〉√
x2+y2

= ~r
|~r| shown below.

(a) Explain why the conditions of Green’s Theorem do not apply to ~F on a
region R containing the origin.

(b) Let R be the unit disk centered at the origin and compute

(697)

∫∫
R

(
∂f

∂x
+
∂g

∂y
)dA.

(c) Evaluate the line integral in the flux form of Green’s Theorem applied to

the region R and the vector field ~F .
(d) Do the results of parts (b) and (c) agree? Explain.

Solution to part (a): We see that for

(698) f (x, y) =
x√

x2 + y2
and g(x, y) =

y√
x2 + y2

,

we have ~F = 〈f, g〉. One of the conditions of Green’s Theorem (flux form
and circulation form) is that f and g have continuous first partial derivatives
in R. Since neither of f and g are continuous at (0, 0), their first partial
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derivatives don’t even exist at (0, 0), so they are not continuous. It follows that
the conditions of Green’s Theorem are not satisfied if (0, 0) ∈ R.

Solution to part (b): We see that

(699)
∂f

∂x
=

1√
x2 + y2

+ x

(
−1

2
(x2 + y2)−

3
2 · 2x

)
=

y2√
x2 + y2

3 , and

(700)
∂g

∂y
=

1√
x2 + y2

+ y

(
−1

2
(x2 + y2)−

3
2 · 2y

)
=

x2√
x2 + y2

3 .

It follows that

(701)

∫∫
R

(
∂f

∂x
+
∂g

∂y
)dA =

∫∫
R

(
y2√

x2 + y2
3 +

x2√
x2 + y2

3

)
dA

(702) =

∫∫
R

1√
x2 + y2

dA =

∫ 2π

0

∫ 1

0

1

r
rdrdθ =

∫ 2π

0

∫ 1

0

drdθ = 2π .

Solution to part (c): We recall that

(703) ~r(t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ 2π

is the parameterization by arclength of the unit circle. In this case we may
naturally identify ~r(t) with the radial vector ~r, so we will do so by abuse of
notation. Furthermore, recalling that n̂ is the outward unit normal vector, we
see that

(704) n̂(t) = 〈cos(t), sin(t)〉 = ~r(t), 0 ≤ t ≤ 2π.

It follows that

(705)

∫
C
~F · n̂ds =

∫
C

~r

|~r|
· (~r(t))ds =

∫ 2π

0

|~r(t)|2

|~r(t)|
dt =

∫ 2π

0

12

1
dt = 2π .

Solution to part (d): Even though the conditions of Green’s Theorem do
not apply, the answers to parts (b) and (c) are the same. This shows that
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the conditions of Green’s Theorem are sufficient conditions but not necessary
conditions to attain the result of Green’s Theorem.
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Problem 8.3: Suppose y = f (x) is a continuous and positive function on
[a, b]. Let S be the surface generated when the graph of f (x) is revolved about
the x-axis.

(a) Show that S is described parametrically by ~r(u, v) = 〈u, f (u) cos(v),
f (u) sin(v)〉, for a ≤ u ≤ b, 0 ≤ v ≤ 2π.

(b) Find an integral that gives ths surface area of S .
(c) Apply the result of part (b) to the surface S1 generated with f (x) = x3,

for 1 ≤ x ≤ 2.

Solution to (a): We see that for each value of u inbetween a and b, if we
rotate the point (u, f (u)) about the x-axis then we generate a circle C of radius
f (u) in the plane x = u as shown in the picture below.

We see that the x-coordinate at every point of the circle C is u. It now suffices
to recall that the parametrization of a circle of radius f (u) in the xy-plane is
〈f (u) cos(v), f (u) sin(v)〉 for 0 ≤ v ≤ 2π, but we have a circle in the plane
x = u (which is parallel to the yz-plane), so we obtain the parametrization
~r(u, v) = 〈u, f (u) cos(v), f (u) sin(v)〉 for a ≤ u ≤ b and 0 ≤ v ≤ 2π as
desired.
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Solution to (b): We begin by calculating

∂~r

∂u
× ∂~r

∂v
=

∣∣∣∣∣∣
î ĵ k̂
1 f ′(u) cos(v) f ′(u) sin(v)
0 −f (u) sin(v) f (u) cos(v)

∣∣∣∣∣∣(706)

= î(f (u)f ′(u) cos2(v) + f (u)f ′(u) sin2(v))

=− ĵ(f (u) cos(v)) + k̂(−f (u) sin(v))

= f (u)f ′(u)̂i− f (u) cos(v)ĵ − f (u) sin(v)k̂, hence

∣∣∣∣∂~r∂u × ∂~r

∂v

∣∣∣∣ =
√

(f (u)f ′(u))2 + (−f (u) cos(v))2 + (−f (u) sin(v))2(707)

= f (u)
√

(f ′(u))2 + 1.

We now see that

Surface Area(S) =

∫∫
S

1dS =

∫ b

a

∫ 2π

0

f (u)
√

(f ′(u))2 + 1dvdu(708)

= 2π

∫ b

a

f (u)
√

(f ′(u))2 + 1du

Solution to (c): From part (b) we see that

Surface Area(S1) = 2π

∫ 2

1

u3
√

(3u2)2 + 1du = 2π

∫ 2

1

u3
√

9u4 + 1du(709)

w=9u4+1
= 2π

∫ 2

u=1

√
w
dw

36
=
π

18
· 2

3
w

3
2

∣∣∣2
u=1

=
π

27
(9u4 + 1)

3
2

∣∣∣2
1

=
π

27

(
145

3
2 − 10

3
2

)
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Problem 8.4: Given a sphere of radius R and a length 0 < L ≤ 2R, show
that the surface area of the strips of length L on the sphere depend only on L
and not on the location of the strip.

Figure 30. An example of Problem 8.4 with L = 0.925 and R = 4.

Hint: Problem 8.3 can help.

Solution: We begin by recalling that the graph of f (x) =
√
R2 − x2 for

−R ≤ x ≤ R is the upper half of the circle of radius R centered at the
origin of the xy-plane. We may now use Problem 8.3(b) to see that for any
−R ≤ a ≤ R−L the surface area obtained by revolving f (x) for a ≤ x ≤ a+L
is

2π

∫ a+L

a

√
R2 − u2

√
(
−u√
R2 − u2

)2 + 1du(710)

=2π

∫ a+L

a

√
R2 − u2

√
R2

R2 − u2
du = 2π

∫ a+L

a

Rdu = 2πRL
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Problem 8.5(Rain on roofs): Let z = s(x, y) define the surface S over a
region R in the xy-plane, where z ≥ 0 on R. Show that the downward flux of
the vertical vector field ~F = 〈0, 0,−1〉 across S equals the area of R. Interpret
the result physically.

Solution: We see that the surface S can be parametrized by ~r(x, y) =
〈x, y, s(x, y)〉 for (x, y) ∈ R. We now proceed to calculate n̂dS, the vector
normal to the surface whose length is proportional to the differential area at
each point.

n̂dS =
∂~r

∂x
× ∂~r

∂y
=

∣∣∣∣∣∣
î ĵ k̂
1 0 sx(x, y)
0 1 sy(x, y)

∣∣∣∣∣∣(711)

= î(−sx(x, y))− ĵsy(x, y) + k̂(1)

= −sx(x, y)̂i− sy(x, y)ĵ + k̂.

We now see that the downward flux of the vector field ~F is given by∫∫
S
~F · n̂dS =

∫∫
R

〈0, 0,−1〉 · 〈−sx(x, y),−sy(x, y), 1〉dA(712)

=

∫∫
R

−1dA = −Area(R) .

One way in which to physically interpret this result is the following. If S is
modeling the roof of a house built over the region R, and ~F represents the force
of rain drops that are falling straight down, then the downward flux of the rain
on the roof (the force imparted by the rain onto the roof) of the house depends
only on the area of the base of the house, not the shape of the roof.
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Problem 8.6(Surface Area and Volume of a Torus):

(a) Show that a torus T with radii R > r (See figure) may be described
parametrically by ~r(K, θ) = 〈(R+r cos(K)) cos(θ), (R+r cos(K)) sin(θ),
r sin(K)〉, for 0 ≤ K ≤ 2π, 0 ≤ θ ≤ 2π.

(b) Show that the surface area of the torus T is 4π2Rr.
Interestingly, the arclength of the small circle is 2πr and the arclength of
the large circle inside the torus is 2πR, so the surface area of the torus
happens to be the product of the arclengths of the 2 circles from which it
is created.

(c) Use part (a) to find a parametrization ~s(K, θ, r) for the solid torus T (T
from part (a) as well as its interior), then use ~s and a change of variables
to show that the volume of T is πr2R.

Solution to (a): The justification that ~r(K, θ) is indeed a parametrization
for T is given by the diagram below.
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Solution to (b): We begin by calculating
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∂~r

∂K
× ∂~r

∂θ
(713)

=

∣∣∣∣∣∣
î ĵ k̂

−r sin(K) cos(θ) −r sin(K) sin(θ) r cos(K)
−(R + r cos(K)) sin(θ) (R + r cos(K)) cos(θ) 0

∣∣∣∣∣∣
=î(−r cos(K)(R + r cos(K)) cos(θ)

− ĵ(−r cos(K)(R + r cos(K)) sin(θ))

k̂
(
− r sin(K) cos(θ)(R + r cos(K)) cos(θ)

− r sin(K) sin(θ)(R + r cos(K)) sin(θ)
)

=− r cos(K) cos(θ)(R + r cos(K))̂i

+ r cos(K) sin(θ)(R + r cos(K))ĵ

− r sin(K)(R + r cos(K))k̂, hence

∣∣∣∣ ∂~r∂K × ∂~r

∂θ

∣∣∣∣ = (R + r cos(K))
√

(r cos(K) cos(θ))2 + (r cos(K) sin(θ))2 + (−r sin(K))2(714)

=(R + r cos(K))
√
r2 cos2(K) + r2 sin2(K)

=r(R + r cos(K))

We now see that

Surface Area(T ) =

∫∫
T

1dS =

∫ 2π

0

∫ 2π

0

∣∣∣∣ ∂~r∂K × ∂~r

∂θ

∣∣∣∣ dKdθ(715)

=

∫ 2π

0

∫ 2π

0

(rR + r2 cos(K))dKdθ

=

∫ 2π

0

(
rRK + r2 sin(K)

∣∣∣2π
K=0

)
dθ

=

∫ 2π

0

2πrRdθ = 4π2rR .
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Solution to (c): We only need to replace the radius r with a new radius
0 ≤ ρ ≤ r in order to get toroidal shells within the original torus, so we obtain
the parametrization

~s(K, θ, ρ) =〈(R + ρ cos(K)) cos(θ), (R + ρ cos(K)) sin(θ), ρ sin(K)〉(716)

for 0 ≤ K ≤ 2π, 0 ≤ θ ≤ 2π, and 0 ≤ ρ ≤ r.

Now that we have found ~s, we can we can calculate the Jacobian of the trans-
formation (x, y, z) = ~s(K, θ, r). We see that

J(K, θ, ρ) =

∣∣∣∣∣∣∣∣∣
∂x
∂K

∂y
∂K

∂z
∂K

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂ρ

∂y
∂ρ

∂z
∂ρ

∣∣∣∣∣∣∣∣∣(717)

=

∣∣∣∣∣∣
−ρ sin(K) cos(θ) −ρ sin(K) sin(θ) ρ cos(K)

−(R + ρ cos(K)) sin(θ) (R + ρ cos(K)) cos(θ) 0
cos(K) cos(θ) cos(K) sin(θ) sin(K)

∣∣∣∣∣∣

= −ρ sin(K) cos(θ)(R + ρ cos(K)) cos(θ)sin(K)

= − (−ρ sin(K) sin(θ))(−(R + ρ cos(K)) sin(θ))sin(K)

= + ρ cos(K)
(
−(R + ρ cos(K)) sin(θ)cos(K) sin(θ)

= −ρ cos(K)
(
− cos(K) cos(θ)(R + ρ cos(K)) cos(θ)

)
= (R + ρ cos(K))

(
− ρ sin2(K) cos2(θ)− ρ sin2(K) sin2(θ)

= (R + ρ cos(K))
(

+ ρ cos2(K)(− sin2(θ)− cos2(θ))
)

= (R + ρ cos(K))(−ρ sin2(K)− ρ cos2(K)) = −ρ(R + ρ cos(K)).

Recalling that dV = dxdydz = |J(K, θ, ρ)|dKdθdρ, we see that
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Volume(T ) =

∫∫∫
T

1dV =

∫ 2π

0

∫ 2π

0

∫ r

0

|J(K, θ, ρ)|dKdθdρ(718)

=

∫ r

0

∫ 2π

0

∫ 2π

0

ρ(R + ρ cos(K))dKdθdρ

=

∫ 2π

0

∫ 2π

0

(
ρR + ρ2 sin(K)

∣∣∣2π
K=0

)
dθdρ

=

∫ r

0

∫ 2π

0

ρRdθdρ = 2π

∫ r

0

ρRdρ

= 2π(
1

2
ρ2R

∣∣∣r
ρ=0

) = πr2R .
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Problem 8.7: Let S be the upper half of the ellipsoid x2

4 + y2

9 + z2 = 1 and

let ~F = 〈z, x, y〉. Use Stoke’s theorem to evaluate

(719)

∫∫
S

(∇× ~F ) · n̂dS.

Figure 31. A view of S and ∂S.

Solution: We see that the boundary ∂S of S is obtained when z = 0, so it is

given by the equation x2

4 + y2

9 = 1. Since ∂S is an ellipse in the xy− plane, we
see that it can be parametrized by ~r(t) = 〈2 cos(t), 3 sin(t), 0〉 for 0 ≤ t ≤ 2π.
We observe that

~F (~r(t)) = 〈0, 2 cos(t), 3 sin(t)〉 and ~r ′(t) = 〈−2 sin(t), 3 cos(t), 0〉.(720)

We now use Stoke’s theorem to see that

∫∫
S

(∇× ~F ) · n̂dS =

∫
∂S
~F · d~r =

∫ 2π

0

~F (~r(t)) · ~r ′(t)dt

(721)

=

∫ 2π

0

〈0, 2 cos(t), 3 sin(t)〉 · 〈−2 sin(t), 3 cos(t), 0〉dt

=

∫ 2π

0

(0 + 6 cos2(t) + 0)dt
(

cos(2t) = 2 cos2(t)− 1
)

=

∫ 2π

0

(3 cos(2t) + 3)dt =
3

2
sin(2t) + 3t

∣∣∣2π
0

= 6π .
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Problem 8.8: Let C be the circle x2 + y2 = 12 in the plane z = 0 (as a

subset of R3) and let ~F = 〈(x + 4)x, y ln(y + 4), ez
2+
√
z〉. Use Stoke’s theorem

to evaluate

(722)

∮
C

~F · d~r.

Solution: It is clear that the line integral in equation (722) is very diffi-
cult to evaluate directly, and the formulation of the problem suggests that the
surfaces integral arising from Stoke’s theorem will be easier to evaluate. To
this end, we begin by verifying that ∇ × ~F = ~0 whenever ~F is of the form
~F = 〈f1(x), f2(y), f3(z)〉.

∇× ~F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

f1(x) f2(y) f3(z)

∣∣∣∣∣∣(723)

= î

(
∂f3(z)

∂y
− ∂f2(y)

∂z

)
− ĵ

(
∂f3(z)

∂x
− ∂f1(x)

∂z

)
= + k̂

(
∂f2(y)

∂x
− ∂f1(x)

∂y

)
= 0î + 0ĵ + 0k̂ = ~0.

We may now view C as the boundary ∂S of the upper half of the sphere of
radius 2

√
3 S so that we may apply Stoke’s Theorem.

Figure 32. A view of C and S.
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(724)

∮
C

~F · d~r =

∫∫
S

(∇× ~F )dS =

∫∫
S

0dS = 0 .

Remark: We could have applied the same procedure for the vector field ~F =
〈(x+4)x, y ln(y+4)〉 by identifying it with the vector field ~F = 〈(x+4)x, y ln(y+
4), 0〉. In particular, a 2-dimensional circulation integral may become easier by
viewing it as a circulation integral in 3-dimensions and using Stoke’s theorem.
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Problem 8.9: Let S be the surface of the cube cut from the first octant by
the planes x = 1, y = 1, and z = 1. Let ~F = 〈x2, 2xz, y2〉. Use the Divergence

theorem to evaluate the net outward flux of ~F across S .

Solution: We begin by observing that

(725) Div(~F ) =
∂

∂x
(x2) +

∂

∂y
(2xz) +

∂

∂z
(y2) = 2x + 0 + 0 = 2x.

We may now apply the Diverence theorem to see that

Flux(~F ,S) =

∫∫
S
~F · n̂dS =

∫∫∫
int(S)

Div(~F )dV(726)

=

∫ 1

0

∫ 1

0

∫ 1

0

2xdxdydz =

∫ 1

0

∫ 1

0

(x2
∣∣∣1
x=0

)dydz

=

∫ 1

0

∫ 1

0

1dydz = 1 .

Remark: One of the benefits to calculating the divergence in this problem
with the divergence theorem rather than by direct calculation is that it is easier
to evaluate 1 triple integral than a sum of 6 surface integrals.
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Problem 8.10: Let S be the boundary of the ellipsoid x2

4 + y2 + z2 = 1 and

let ~F = 〈x2ey cos(z),−4xey cos(z), 2xey sin(z)〉. Evaluate the outward flux of
~F across S .

Solution: We begin by observing that

Div(~F ) =
∂

∂x
(x2ey cos(z)) +

∂

∂y
(−4xey cos(z)) +

∂

∂z
(2xey sin(z))(727)

= 2xey cos(z)− 4xey cos(z) + 2xey cos(z) = 0.

We may now apply the Diverence theorem to see that

Flux(~F ,S) =

∫∫
S
~F · n̂dS =

∫∫∫
int(S)

Div(~F )dV(728)

=

∫∫∫
int(S)

0dV = 0 .
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Problem 9.1: Three people play a game in which there are always 2 winners
and 1 loser. They have the understanding that the loser always gives each
winner an amount equal to what the winner already has. After 3 games, each
has lost once and each has $24. With how much money did each begin?

Solution: Let us assume that player 1 begins with $x, player 2 begins with $y,
and player 3 begins with $z. We may further assume without loss of generality
that player 1 loses round 1, player 2 loses round 2, and player 3 loses round 3.
We then obtain the following table.

Player 1 Player 2 Player 3

Money at the Start x y z

Money at the end of round 1 x-y-z 2y 2z

Money at the end of round 2 2x-2y-2z -x+3y-z 4z

Money at the end of round 3 4x-4y-4z -2x+6y-2z -x-y+7z

We now obtain and solve the following system of equations.

(729)
4x − 4y − 4z = 24
−2x + 6y − 2z = 24
−x − y + 7z = 24

→

 4 −4 −4 24
−2 6 −2 24
−1 −1 7 24



(730)

R1 + 4R3

R2 − 2R3→

 0 −8 24 120
0 8 −16 −24
−1 −1 7 24

 R1↔R3→

−1 −1 7 24
0 8 −16 −24
0 −8 24 120


(731)

−R1→

1 1 −7 −24
0 8 −16 −24
0 −8 24 120

 R3+R2→

1 1 −7 −24
0 8 −16 −24
0 0 8 96

 1
8R2

1
8R3→

1 1 −7 −24
0 1 −2 −3
0 0 1 12


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(732)
R1−R2→

1 0 −5 −21
0 1 −2 −3
0 0 1 12

 R1 + 5R3

R2 + 2R3→

1 0 0 39
0 1 0 21
0 0 1 12


(733) → (x, y, z) = (39, 21, 12) .
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Problem 9.2: For the following problems, determine all possiblities for the
solution set (from among infinitely many solutions, a unique solution, or no so-
lution) of the system of linear equations described. After determining the pos-
sibilities for the solution set create concrete examples of systems corresponding
to each possibility.

(1) A homogeneous system of 4 equations in 5 unknowns.
(2) A system of 4 equations in 3 unknowns.
(3) A system of 3 equations in 4 unknowns that has x1 = −1, x2 = 0, x3 = 2,

x4 = −3 as a solution.
(4) A homogeneous system of 3 equations in 3 unknowns.
(5) A homogeneous system of 3 equations in 3 unknowns that has solution

x1 = 1, x2 = 3, x3 = −1.
(6) A system of 2 equations in 3 unknowns.

You are free to make use of the following facts.

(1) Any homogeneous system of equations is consistent.
– This is seen by the fact that the trivial solution (the solution in which all

variables are equal to 0) is always a solution to a homogeneous system
of equations.

(2) If a consistent system of equations (a system of equations with at least 1
solution) has more than 1 solution, then it has infinitely many solutions.

(3) If a consistent system of equations has more variables than equations, then
it has infinitely many solutions.

Solution:

(1) By facts (1) and (3) we see that there are infinitely many solutions.

(734)

x1 = 0
x2 = 0

x3 = 0
x4 + x5 = 0

has infinitely many solutions.

(2) Anything is possible. The system could be inconsistent, it could have a
unique solution, or it could have infinitely many solutions.
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(735)

x1 = 0
x2 = 0

x3 = 0
2x3 = 2

has no solutions.

(736)

x1 = 0
x2 = 0

x3 = 0
2x3 = 0

has a unique solution.

(737)

x1 + x2 = 0
2x1 + 2x2 = 0

x3 = 0
2x3 = 0

has infinitely many solutions.

(3) By facts (1) and (3) we see that there are infinitely many solutions.

(738)
x1 − x4 = 2

x2 = 0
x3 + 2x4 = −4

has infinitely many solutions.

(4) The system has to be consistent by fact (1). The system could have a
unique solution, or it could have infinitely many solutions.

(739)
x1 = 0

x2 = 0
x3 = 0

has a unique solution.

(740)
x1 = 0

x2 + x3 = 0
2x2 + 2x3 = 0

has infinitely many solutions.

(5) The system is consistent by fact (1). Since we are given a solution other
than the trivial solution, fact (2) tells us that there are infinitely many
solutions.

(741)
x1 + x2 + 4x3 = 0

x2 + 3x3 = 0
x1 + x3 = 0

has infinitely many solutions.
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(6) It is possible that the system is inconsistent and has no solutions. By fact
(1), the only possible alternative is an infinite number of solutions.

(742)
x1 + x2 + 4x3 = 0
x1 + x2 + 4x3 = 1

has no solutions.

(743)
x1 + x2 + 4x3 = 0

x2 + 3x3 = 0
has infinitely many solutions.
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Problem 9.3: For what value(s) of a does the following system have nontrivial
solutions?

(744)
x1 + 2x2 + x3 = 0
−x1 + ax2 + x3 = 0
3x1 + 4x2 − x3 = 0

.

Solution: Let us first represent the system of equations as an augmented
matrix that we will reduce into echelon form.

(745)

 1 2 1 0
−1 a 1 0
3 4 −1 0

 R2 +R1

R3 − 3R1→

1 2 1 0
0 a + 2 2 0
0 −2 −4 0


In order to continue the row reduction, we would like to use the row operation
R3 + 2

a+2R2, but this is only valid if a + 2 6= 0, which occurs if and only if
a = −2. So let us assume that a 6= −2 for now and we will handle a = −2 as
a separate case.

(746)
R3+ 2

a+2R2→

1 2 1 0
0 a + 2 2 0
0 0 4

a+2 − 4 0


If 4

a+2− 4 6= 0, then equation (744) will only have the trivial solution. Since we
are searching for the value(s) of a that result in nontrivial solutions to equation
(744), we solve 4

a+2 − 4 = 0 and see that a = −1 . The only other possible
value of a is a = −2 which we will now consider as a separate case. Plugging
a = −2 back into (745) we obtain

(747)

1 2 1 0
0 0 2 0
0 −2 −4 0

 R2↔R3→

1 2 1 0
0 −2 −4 0
0 0 2 0

 −1
2R2

−1
2R3→

1 2 1 0
0 1 2 0
0 0 1 0

 .
Since the system represented in equation (747) only has the trivial solution, we
see that −2 is not one of the desired values of a. In conclusion, the only value
of a that results in nontrivial solutions for equation (744) is a = −1 .
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Problem 5.11: Find the volume of the solid cylinder E whose height is 4
and whose base is the disk {(r, θ) : 0 ≤ r ≤ 2 cos(θ)}.

Solution: We first look at the cross section of E in the xy−plane to help us
determine our bounds.
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(748) Volume(E) =

∫∫∫
E

1dV =

∫ 4

0

∫ π
2

−π2

∫ 2 cos(θ)

0

rdrdθdz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(749) =

∫ 4

0

∫ π
2

−π2

1

2
r2
∣∣∣2 cos(θ)

0
dθdz =

∫ 4

0

∫ π
2

−π2
2 cos2(θ)dθdz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(750) =

∫ 4

0

∫ π
2

−π2
(cos(2θ) + 1)dθdz =

∫ 4

0

(
1

2
sin(2θ) + θ)

∣∣∣π2
−π2
dz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(751) =

∫ 4

0

πdz = 4π .
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Problem 5.12: Find the volume of the solid cardiod of revolution D =
{(ρ, ϕ, θ) : 0 ≤ ρ ≤ 1

2(1− cos(ϕ)), 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π}.

Solution: In this problem, the description of the region is just a reordering
of the description that we need to write down our triple integral in spherical
coordinates to find the volume. We see that

(752) Volume(D) =

∫∫∫
D

1dV =

∫ 2π

0

∫ π

0

∫ 1
2(1−cos(ϕ))

0

ρ2 sin(ϕ)dρdϕdθ

(753) =

∫ 2π

0

∫ π

0

1

3
ρ3 sin(ϕ)

∣∣∣1
2(1−cos(ϕ))

0
dϕdθ

(754) =

∫ 2π

0

∫ π

0

1

3

1

2
(1− cos(ϕ))︸ ︷︷ ︸

u


3

sin(ϕ)dϕ︸ ︷︷ ︸
2du

dθ =

∫ 2π

0

1

6
u4
∣∣∣π
ϕ=0

dθ

(755) =

∫ 2π

0

1

6

(
1

2
(1− cos(ϕ))

)4 ∣∣∣π
0
dθ =

∫ 2π

0

1

6
dθ =

π

3
.
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Problem 5.13: Find the volume of S, the cap of a sphere of radius R with
thickness h.

Solution 1: We will first solve this problem using cylindrical coordinates.
Due to the symmetry of our solid with respect to θ we begin by taking a cross
section with the xz-plane, which corresponds to the θ = 0 and θ = π cross
sections combined. Since we are working in cylindrical coordinates, the cross
section will be handled in coordinates similar to Cartesian coordinates.

Page 243



Sohail Farhangi Problems and Solutions Compilation

(756) Vol(S) =

∫ 2π

0

∫ R

R−h

∫ √R2−z2

0

rdrdzdθ =

∫ 2π

0

∫ R

R−h

1

2
r2
∣∣∣√R2−z2

r=0
dzdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(757) =
1

2

∫ 2π

0

∫ R

R−h
(R2 − z2)dzdθ =

1

2

∫ 2π

0

(R2z − 1

3
z3
∣∣∣R
z=R−h

)dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(758)

=
1

2

∫ 2π

0

(R3 − 1

3
R3 − (R2(R− h)− 1

3
(R− h)3))dθ =

1

2

∫ 2π

0

(Rh2 − 1

3
h3)dθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(759) = π(Rh2 − 1

3
h3) =

π

3
h2(3R− h) .

Solution 2: We will now solve this problem using spherical coordinates. Due
to the symmetry of our solid with respect to θ we once again begin by taking a
cross section with the xz-plane. Since we are working in spherical coordinates,
the cross section will be handled in coordinates similar to polar coordinates.
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(760) Vol(S) =

∫ 2π

0

∫ cos−1(R−hR )

0

∫ R

(R−h) secφ

ρ2 sin(ϕ)dρdϕdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(761) =

∫ 2π

0

∫ cos−1(R−hR )

0

1

3
ρ3 sin(ϕ)

∣∣∣R
ρ=(R−h) secφ

dϕdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(762) =
1

3

∫ 2π

0

∫ cos−1(R−hR )

0

(R3 sin(ϕ)− (R− h)3 sin(ϕ) sec3(ϕ))dϕdθ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(763) =
2π

3

∫ cos−1(R−hR )

0

(R3 sin(ϕ)− (R− h)3 sin(ϕ) sec3(ϕ))dϕ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(764)

=
2π

3

(∫ cos−1(R−hR )

0

R3 sin(ϕ)dϕ−
∫ cos−1(R−hR )

0

(R− h)3 sin(ϕ) sec3(ϕ))dϕ

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(765)

=
2π

3

(
−R3 cos(ϕ)

∣∣∣cos−1(R−hR )

0
−
∫ cos−1(R−hR )

0

(R− h)3 tan(ϕ) sec2(ϕ))dϕ

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(766)
u=tan(ϕ)

=
2π

3

(
−R3(

R− h
R

)− (−R3 · 1)− 1

2
(R− h)3 tan2(ϕ)

∣∣∣cos−1(R−hR )

0

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(767) =
2π

3

(
R2h− 1

2
(R− h)31− cos2(ϕ)

cos2(ϕ)

∣∣∣cos−1(R−hR )

0

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(768) =
2π

3

(
R2h− 1

2
(R− h)31− (R−hR )2

(R−hR )2

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(769) =
2π

3

(
R2h− 1

2
(R− h)3R

2 − (R− h)2

(R− h)2

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(770) =
2π

3

(
R2h− 1

2
(R− h)(2Rh− h2)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(771) =
π

3
(2R2h− 2R2h + 2Rh2 + Rh2 − h3) =

π

3
h2(3R− h) .

Remark: In both solutions we can easily check our final answer by noting
that h = 0 results in a volume of 0, h = R results in a volume of 2π

3 R
3 which
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is indeed the volume of a hemisphere of radius R, and h = −R results in a
volume of 4

3R
3 which is indeed the volume of a sphere of radius R.
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Problem 6.1: Let R be the region bounded by the lines y − x = 0, y − x =
2, y + x = 0, y + x = 2. Use a change of variables to evaluate

(772)

∫∫
R

√
y2 − x2dA.

Solution: We use the substitution u = y − x and v = y + x as suggested
by the defining equations of the boundary curves. We also see in the picture
below that this substitution results in a simple tesselation of our region R,
which shows us that the new region of integration in the uv-plane is just R′ =
{(u, v) | 0 ≤ u ≤ 2, 0 ≤ v ≤ 2}.

Figure 33. A picture of the region R and the tesselation that results from our given change of variables.
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Figure 34. A picture of the region of integration in the uv-plane R′.

In order to calculate the Jacobian J(u, v), we need to solve for x and y in terms
of u and v. To this end, we see that

(773)
u = y − x
v = y + x

→
x = 1

2

(
(y + x)− (y − x)

)
= 1

2(v − u)

y = 1
2

(
(y + x) + (y − x)

)
= 1

2(v + u)
.

We now see that

(774) J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
1
2

1
2

1
2

1
2

∣∣∣∣∣∣ = (−1

2
) · 1

2
− 1

2
· 1

2
= −1

2
.

It follows that |J(u, v)| = | − 1
2| =

1
2. We now see that

(775) Area(R) =

∫∫
R

√
y2 − x2dA =

∫∫
R′

√
(y − x)(y + x) · |J(u, v)|dA

(776) =

∫ 2

0

∫ 2

0

√
uv

1

2
dudv =

1

2

∫ 2

0

∫ 2

0

u
1
2v

1
2dudv =

1

2

∫ 2

0

2

3
u

3
2v

1
2

∣∣∣2
u=0

dv

(777) =
1

2

∫ 2

0

2

3
2

3
2v

1
2dv =

2
√

2

3

∫ 2

0

v
1
2dv =

4
√

2

9
v

3
2

∣∣∣2
0

=
16

9
.
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Problem 6.3: Find the volume of the solid D that is bounded by the planes
y − 2x = 0, y − 2x = 1, z − 3y = 0, z − 3y = 1, z − 4x = 0, and z − 4x = 3.

Solution: We use the substitution u = y − 2x, v = z − 3y, and w = z − 4x
as suggested by the defining equations of the boundary curves. We also see in
the pictures below that this substitution results in a simple tesselation of our
region R, which shows us that the new region of integration in the uvw-space
is just R′ = {(u, v, w) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 3}.

Figure 35. A visualization of the impact of changing the value of y − 2x.

Figure 36. A visualization of the impact of changing the value of z − 3y.
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Figure 37. A visualization of the impact of changing the value of z − 4x.

Figure 38. The region of integration R′ in the uvw-space.

In order to calculate the Jacobian J(u, v, w), we need to solve for x, y, and z
in terms of u, v, and w. To this end, we see that

(778)
u = y − 2x
v = z − 3y
w = z − 4x

→ v − w = 4x− 3y

(779) → (v − w) + 3u = −2x→ x =
1

2
(−3u− v + w)
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(780) → y = u + 2x = u− 3u− v + w = −2u− v + w
z = w + 4x = w − 6u− 2v + 2w = −6u− 2v + 3w

.

We now see that

(781) J(u, v, w) =

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
−3

2 −
1
2

1
2

−2 −1 1

−6 −2 3

∣∣∣∣∣∣∣∣∣
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(782) = −3

2

∣∣∣∣−1 1
−2 3

∣∣∣∣− (−1

2
)

∣∣∣∣−2 1
−6 3

∣∣∣∣ +
1

2

∣∣∣∣−2 −1
−6 −2

∣∣∣∣
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(783) = −3

2
(−3 + 2) +

1

2
(−6 + 6) +

1

2
(4− 6) =

1

2
.

It follows that |J(u, v, w)| = 1
2. We now see that

(784) Volume(D) =

∫∫∫
D

1dV =

∫∫∫
D′

1 · |J(u, v, w)|dV

(785) =

∫ 1

0

∫ 1

0

∫ 3

0

1

2
dudvdw = (1− 0)(1− 0)(3− 0)

1

2
=

3

2
.
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Problem 6.4 ( Parabolic coordinates): This problem has parts a.-g.
spread out across the following pages. Your solutions to parts a, b, and f
should include (hand drawn or computer generated) pictures.

Consider the Transformation T from the uv-plane to the xy-plane given by
T (u, v) = (u2 − v2, 2uv).

a. Show that the lines u = a in the uv-plane map to parabolas in the xy-
plane that open in the negative x-direction with vertices10 on the positive
x-axis.11 Compare the images of the lines u = a and u = −a under T .

b. Show that the lines v = b in the uv-plane map to parabolas in the xy-
plane that open in the positive x-direction with vertices on the negative
x-axis.12 Compare the images of the lines v = b and v = −b under T .

c. Evaluate J(u, v).

Solution to part a: We see that T (a, v) = (a2−v2, 2av). Setting x = a2−v2

and y = 2av, we see that v = 1
2ay, so x = a2 − ( 1

2ay)2 = a2 − 1
4a2y

2, or

equivalently, x−a2 = − 1
4a2y

2. Since−a2 < 0 and− 1
4a2 < 0 when a 6= 0, we see

(as mentioned in the footnote) that T (a, v) is the parameterization of a parabola
that opens in the negative x-direction and has its vertex on the positive x-axis.
We see that T (−a, v) = (a2 − v2,−2av) = (a2 − (−v)2, 2a(−v) = T (a,−v),
so T (a, v) and T (−a, v) parameterize the same parabola in the xy-plane, but
the parameterizations are in opposite directions (if a 6= 0). We also see that
T (0, v) = (−v2, 0), which is a parameterization (with repitition) of the negative
x-axis, which can be viewed as a degenerate parabola that opens in the negative
x-direction and has its vertex at (0, 0).

10The vertex of the parabola y = x2 is the point (0, 0) and the vertex of the parabola x = y2 is also (0, 0).

11You have to show that the curve ~r1(v) = (a2 − v2, 2av) represents the same curve as x+ c = dy2 for some negative numbers c and d.

12You have to show that the curve ~r2(u) = (u2 − b2, 2ub) represents the same curve as x+ c = dy2 for some positive numbers c and d.
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Figure 39. Vertical lines in the uv-plane.

Figure 40. The parabolas in the xy-plane corresponding to vertical lines in the uv-plane under the trans-
formation T .

Solution to part b: We see that T (u, b) = (u2−b2, 2ub). Setting x = u2−b2

and y = 2ub, we see that u = 1
2by, so x = ( 1

2by)2 − b2 = 1
4b2
y2 − b2, or

equivalently, x + b2 = 1
4b2
y2. Since b2 > 0 and 1

4b2
> 0 when b 6= 0, we see (as

mentioned in the footnote) that T (u, b) is the parameterization of a parabola
that opens in the postive x-direction and has its vertex on the negative x-axis.
We see that T (u,−b) = (u2 − b2,−2ub) = ((−u)2 − b2, 2(−u)b) = T (−u, b),
so T (u, b) and T (u,−b) parameterize the same parabola in the xy-plane, but
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the parameterizations are in opposite directions (if b 6= 0). We also see that
T (u, 0) = (u2, 0), which is a parameterization (with repitition) of the positive
x-axis, which can be viewed as a degenerate parabola that opens in the positive
x-direction and has its vertex at (0, 0).

Figure 41. Horizontal lines in the uv-plane.

Figure 42. The parabolas in the xy-plane corresponding to horizontal lines in the uv-plane under the
transformation T .

Solution to part c: Since x = u2 − v2 and y = 2uv, we see that
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(786) J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 2u 2v

−2v 2u

∣∣∣∣∣∣ = 2u · 2u− (−2v) · 2v = 4u2 + 4v2 .

We also observe that |J(u, v)| = J(u, v) = 4u2 + 4v2 since squares are always
bigger than or equal to 0.
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d. Use a change of variables into parabolic coordinates to find the area of
the region R in the xy-plane bounded by the curves x = 4 − 1

16y
2 and

x = 1
4y

2 − 1. Sketch a picture of the new region of integration as well.

Solution to part d: We begin by using parts a and b to see that the parabola
x = 4− 1

16y
2 = 22− 1

4·22y
2 in the xy-plane is the image under T of the line u = 2

(or u = −2) in the uv-plane and the parabola x = 1
4y

2 − 1 = 1
4·12y

2 − 12 in
the xy-plane is the image under T of the line v = 1 (or v = 1) in the uv-plane.
Note that for a postive number p, T (2, p) is on the upper half of the parabola
x = 4− 1

16y
2 and T (2,−p) is on the lower half. Similarly, for T (p, 1) is on the

upper half of the parabola x = 1
4y

2−1 and T (−p, 1) = T (p,−1) is on the lower
half. We also recall that T (almost) bijects the closed right (or left, or upper, or
lower) half of the uv-plane to the xy-plane.13 The picture below puts together
all of the previous discussion to show that the region R in the xy-plane is the

13The map T from the uv-plane to the xy-plane is a one-to-one map if you restrict yourself to an open half of the uv-plane and an appropriate
closed half of an axis (such as the open left half of the plane and the closed upper half of the y-axis), but T is not one-to-one on the entire uv-plane

since T (a, b) = T (−a,−b).
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image under T of the region rectangle R′ = {(u, v) | 0 ≤ u ≤ 2,−1 ≤ v ≤ 1}
in the uv-plane.

(787) Area(R) =

∫∫
R

1dA =

∫∫
R′

1 · |J(u, v)|dA =

∫ 2

0

∫ 1

−1

|J(u, v)|dvdu

(788) =

∫ 2

0

∫ 1

−1

(4u2+4v2)dvdu =

∫ 2

0

(4u2v+
4

3
v3
∣∣∣1
v=−1

)du =

∫ 2

0

(8u2+
8

3
)du

(789) =
8

3
u3 +

8

3
u
∣∣∣2
u=0

=
80

3
.
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e. Use a change of variables into parabolic coordinates to find the area of
the curved rectangle R above the x-axis bounded by x = 4 − 1

16y
2, x =

9 − 1
36y

2, x = 1
4y

2 − 1, and x = 1
64y

2 − 16. Sketch a picture of the new
region of integration as well.

Solution to part e: We proceed as we did in part d. We note that
x = 4− 1

16y
2 corresponds to u = 2,−2, x = 9− 1

36y
2 corresponds to u = 3,−3,

x = 1
4y

2 − 1 corresponds to v = 1,−1, and x = 1
64y

2 − 16 corresponds to v = 4,−4.
Since y = 2uv is positive when u and v are both positive (or both negative),
we obtain the parabolic rectangle above the x-axis as the image of the region
R′ = {(u, v) | 2 ≤ u ≤ 3, 1 ≤ v ≤ 4} under T .
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Figure 43. The new region of integration R′ in the uv-plane.

We now see that

(790) Area(R) =

∫∫
R

1dA =

∫∫
R′

1 · |J(u, v)|dA =

∫ 3

2

∫ 4

1

(4u2 + 4v2)dvdu

(791) =

∫ 3

2

(4u2v +
4

3
v3
∣∣∣4
v=1

)du =

∫ 3

2

(12u2 + 84)du = 4u3 + 84u
∣∣∣3
2

= 160 .
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f. Describe the effect of the transformation (u, v) 7→ (2uv, u2− v2) on hori-
zontal and vertical lines in the uv-plane.14

Solution to part f: Let S(u, v) = (2uv, u2 − v2). If P is a parabola that
opens in the negative x-direction and has its vertex on the positive x-axis, then
upon reflection over the line x = y, we obtain a parabola P ′ that opens in the
negative y-direction and has its vertex on the positive y-axis. It follows that
the image of the vertical line u = a in the uv-plane under the transformation
S gives a parabola in the xy-plane that opens in the negative y-direction and
has its vertex on the positive y-axis. Similarly, if P is a parabola that opens
in the positive x-direction and has its vertex on the negative x-axis, then upon
reflection over the line x = y, we obtain a parabola P ′ that opens in the positive
y-direction and has its vertex on the negative y-axis. It follows that the image
of the horizontal line v = b in the uv-plane under the transformation S gives
a parabola in the xy-plane that opens in the positive y-direction and has its
vertex on the negative y-axis.

14Remember that the transformation (x, y) 7→ (y, x) reflects points in the xy-plane across the line y = x. It will also help to use the results of

parts a. and b. of this problem.
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Figure 44. Vertical lines in the uv-plane.

Figure 45. The parabolas in the xy-plane corresponding to vertical lines in the uv-plane under the trans-
formation S.
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Figure 46. Horizontal lines in the uv-plane.

Figure 47. The parabolas in the xy-plane corresponding to horizontal lines in the uv-plane under the
transformation S.
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g. Show that the parabolas that are the images of the lines u = a and v = b
under T (u, v) = (u2 − v2, 2uv) are orthogonal to eachother.

Solution to part g: We have already seen in parts a and b that T (a, v) is
the parabola x = a2 − 1

4a2y
2 and T (u, b) is the parabola x = 1

4b2
y2 − b2. We

will first find the intersection points of these 2 parabolas, then we will calculate
the slope of the tangent lines at the intersection points in order to see that the
tangent lines (and hence the curves) are orthogonal.

Figure 48. A picture of T (2, v), T (u, 1), and the tangent lines to both curves at their intersection points.

Figure 49. A zoomed in shot around the intersection point (3, 4) to show that the tangent lines (and hence
the curves) are perpendicular.
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To this end, we see that

(792)
x = a2 − 1

4a2y
2

x = 1
4b2
y2 − b2

→ a2− 1

4a2
y2 =

1

4b2
y2−b2 → a2+b2 = (

1

4a2
+

1

4b2
)y2

(793) → y2 =
a2 + b2

1
4a2 + 1

4b2

= 4a2b2 → y = ±2ab→ x = a2 − b2.

It follows that T (a, b) = T (−a,−b) = (a2−b2, 2ab) and T (a,−b) = T (−a, b) =
(a2 − b2,−2ab) are the intersection points of the 2 parabolas. Noting that

(794) x = a2 − 1

4a2
y2 → dx = − 1

2a2
ydy → dy

dx
= −2

a2

y
, and

(795) x =
1

4b2
y2 − b2 → dx =

1

2b2
ydy → dy

dx
= 2

b2

y
,

We see that at the point (a2 − b2, 2ab), the tangent line to the curve x =
a2 − 1

4a2y
2 has a slope of −a

b and the tangent line to the curve x = 1
4b2
y2 − b2

has a slope of b
a. Since −a

b ·
b
a = −1, we see that the tangent lines at the point

(a2 − b2, 2ab) are indeed orthogonal to each other. Similarly, we see that at
the point (a2 − b2,−2ab), the tangent line to the curve x = a2 − 1

4a2y
2 has a

slope of a
b and the tangent line to the curve x = 1

4b2
y2 − b2 has a slope of − b

a.

Since a
b · (−

b
a) = −1, we see that the tangent lines at the point (a2 − b2, 2ab)

are indeed orthogonal to each other.
Remark: We see that the parabolas produced by S in part f also share this
orthogonality property since orthogonality is preserved under reflections.
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Problem 7.5: Consider the vector field ~F = 〈x,−y〉 and the curve C which
is the square with vertices (±1,±1) with the counterclockwise orientation.

Figure 50. The curve C.

(a) Evaluate
∫
C
~F · d~r by finding a parametrization ~r(t) for the curve C.

(b) Evaluate
∫
C
~F · d~r by using the Fundamental Theorem for Line Integrals.

Solution to (a): Letting C1, C2, C3, and C4 be as in Figure 50, we see that

(796)

∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r +

∫
C3

~F · d~r +

∫
C4

~F · d~r.

Since

(797)

∫
C1

~F · d~r =

∫ 1

−1

〈1,−t〉 · 〈0, 1〉dt =

∫ 1

−1

−tdt = −1

2
t2
∣∣∣1
−1

= 0,

(798)

∫
C2

~F · d~r =

∫ −1

1

〈t,−1〉 · 〈1, 0〉dt =

∫ −1

1

tdt =
1

2
t2
∣∣∣−1

1
= 0,
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(799)

∫
C3

~F · d~r =

∫ −1

1

〈−1,−t〉 · 〈0, 1〉dt =

∫ −1

1

−tdt = −1

2
t2
∣∣∣−1

1
= 0,

(800)

∫
C4

~F · d~r =

∫ 1

−1

〈t, 1〉 · 〈1, 0〉dt =

∫ 1

−1

tdt =
1

2
t2
∣∣∣1
−1

= 0,

we see that

(801)

∫
C

~F · d~r = 0 + 0 + 0 + 0 = 0 .

Solution to (b): Since

(802)
∂

∂y
(x) = 0 =

∂

∂x
(−y),

we see that ~F = 〈x,−y〉 is a conservative vector field. We now have 2 ways in
which to finish the problem.

Finish 1: Since ~F is a conservative vector field and C is a (simple, piecewise

smooth, oriented) closed curve, and ~F is continuous on C and its interior, we
see that

(803)

∫
C

~F · d~r = 0 .

Finish 2: We now want to find a potential function ϕ(x, y) for ~F . Since

(804) 〈ϕx, ϕy〉 = ∇ϕ = ~F = 〈x,−y〉,

we see that

(805) ϕx(x, y) = x→ ϕ(x, y) =

∫
xdx =

1

2
x2 + g(y)→
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g′(y) = ϕy(x, y) = −y(806)

→g(y) = −1

2
y2 + C → ϕ(x, y) =

1

2
(x2 − y2) + C.

Now let P be any point on the curve C. For example, we may take P =
(1, 1). Since the curve C can be seen as starting at P and ending at P , the
Fundamental Theorem for Line Integrals tells us that

(807)

∫
C

~F · d~r = ϕ ((1, 1))− ϕ ((1, 1)) = 0 .

Remark: We see that in Finish 2, we did not even need to determine what
the function ϕ was in order to conclude that the final answer is 0.
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Problem 7.6: Find the average value of

(808) f (x, y) =
√

4 + 9y2/3

on the curve y = x3/2, for 0 ≤ x ≤ 5.

Solution: For curves of the form y = f (x), a ≤ x ≤ b, we have the param-
eterization r(t) = 〈t, f (t)〉, a ≤ t ≤ b. In this particular problem, we see that

r(t) = 〈t, t3
2〉, 0 ≤ t ≤ 5. It follows that

(809) r′(t) = 〈1, 3

2
t

1
2〉 → |r′(t)| =

√
12 + (

3

2
t

1
2)2 =

√
1 +

9

4
t.

Recall that the average value of f over a curve C is given by

(810) Av(f ) =

∫
C fds

Arclength(C)
=

∫
C fds∫
C 1ds

.

We begin by calculating
∫
C fds and see that

(811)

∫
C

fds =

∫ 5

0

f (r(t))|r′(t)|dt =

∫ 5

0

f (t, t
3
2)

√
1 +

9

4
tdt

(812) =

∫ 5

0

√
4 + 9(t

3
2)

2
3

√
1 +

9

4
tdt =

∫ 5

0

√
4 + 9t

√
1 +

9

4
tdt

(813) =

∫ 5

0

2

√
1 +

9

4
t

√
1 +

9

4
tdt = 2

∫ 5

0

(1 +
9

4
t)dt = 2(t +

9

8
t2
∣∣∣5
0
) =

265

4
.

We now calculate the arclength of our given curve and see that

(814) Arclength(C) =

∫
C

1ds =

∫ 5

0

|r′(t)|dt =

∫ 5

0

√
1 +

9

4
tdt

(815)
u=1+9

4t=

∫ 5

t=0

√
u

4

9
du =

4

9
· 2

3
u

3
2

∣∣∣5
t=0

=
8

27
(1 +

9

4
t)

3
2

∣∣∣5
0

=
335

27
.

It follows that the final answer is
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(816) Av(f ) =

∫
C fds

Arclength(C)
=

∫
C fds∫
C 1ds

=
265
4

335
27

=
1431

268
.
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Problem 7.7: Consider ∫
C
(x2 + y2)ds,

where C is the line segment from (0, 0) to (5, 5).

(1) Find a parametric description for C in the form ~r(t) = 〈x(t), y(t)〉. (Re-
member to state the domain of the parameter.)

(2) Evaluate |~r′(t)|.
(3) Convert the line integral to an ordinary integral with respect to the pa-

rameter and evaluate it.

Solution to (1): We recall that

(817) ~r(t) = ~P + t( ~Q− ~P ), 0 ≤ t ≤ 1

is one way in which to parameterize the line segment that starts at the point
P and ends at the point Q. In this particular problem, we see that

(818) ~r(t) = 〈0, 0〉 + t(〈5, 5〉 − 〈0, 0〉) = 〈5t, 5t〉, 0 ≤ t ≤ 1

is a parameterization for the line segment from (0, 0) to (5, 5).

Solution to (2): We see that

(819) ~r′(t) = 〈5, 5〉 → |~r′(t)| =
√

52 + 52 =
√

50 = 5
√

2.

Solution to (3): We have

(820)

∫
C

(x2 + y2)ds =

∫ 1

0

((5t)2 + (5t)2)5
√

2dt = 5
√

2

∫ 1

0

(25t2 + 25t2)dt

(821) = 250
√

2

∫ 1

0

t2dt =
250
√

2

3
t3
∣∣∣1
0

=
250
√

2

3
.
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Problem 7.8: Compute

(822)

∫
C
xeyzds,

where C is ~r(t) = 〈t, 2t,−4t〉 for 1 ≤ t ≤ 2.

Solution: We observe that

(823) ~r ′(t) = 〈1, 2,−4〉 → |~r ′(t)| =
√

12 + 22 + (−4)2 =
√

21, so

(824)

∫
C
xeyzds =

∫ 2

1

te2t(−4t)
√

21dt =
√

21

∫ 2

1

te−8t2dt

(825)
u=−8t2

=
√

21

∫ 2

t=1

eu(− 1

16
)du =

√
21(− 1

16
eu
∣∣∣2
t=1

)

(826) = −
√

21

16
e−8t2

∣∣∣2
1

=

√
21

16
(e−8 − e−32) .
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Problem 7.9: Compute

(827)

∫
C

xy

z
ds,

where C is the line segment from (1, 4, 1) to (3, 6, 3).

Solution: Firstly, we recall that

(828) r(t) = ~P + t( ~Q− ~P ), 0 ≤ t ≤ 1

is one way in which to parameterize the line segment that starts at the point
P and ends at the point Q. In this particular problem, we see that

(829) r(t) = 〈1, 4, 1〉+t(〈3, 6, 3〉−〈1, 4, 1〉) = 〈1+2t, 4+2t, 1+2t〉, 0 ≤ t ≤ 1

is a parameterization for the line segment from (1, 4, 1) to (3, 6, 3). We note
that

(830) r′(t) = 〈2, 2, 2〉 → |r′(t)| =
√

22 + 22 + 22 = 2
√

3, so

(831)

∫
C

xy

z
ds =

∫ 1

0

x(t)y(t)

z(t)
|r′(t)|dt =

∫ 1

0

(1 + 2t)(4 + 2t)

1 + 2t
2
√

3dt

(832) = 4
√

3

∫ 1

0

(2 + t)dt = 4
√

3

(
2t +

1

2
t2
∣∣∣1
t=0

)
= 10

√
3
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Problem 7.13: Compute the circulation of
~F = 〈y − x, x〉

on the curve C which is given by ~r(t) = 〈2 cos(t), 2 sin(t)〉 for 0 ≤ t ≤ 2π.

Solution: We see that

(833) Circulation =

∫
C

~F · T̂ ds =

∫
C

~F · ~r ′(t)dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(834) =

∫ 2π

0

~F (~r(t)) · 〈−2 sin(t), 2 cos(t)〉dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(835) =

∫ 2π

0

〈〈2 sin(t)︸ ︷︷ ︸
y

− 2 cos(t)︸ ︷︷ ︸
x

, 2 cos(t)︸ ︷︷ ︸
x

〉 · 〈−2 sin(t), 2 cos(t)〉dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(836) =

∫ 2π

0

(
−4 sin2(t) + 4 cos(t) sin(t) + 4 cos2(t)

)
dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(837) = 15

∫ 2π

0

(4 cos(2t) + 2 sin(2t)) dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(838) = 2 sin(2t)− cos(2t)
∣∣∣2π
0

= 0 .

15cos(2t) = cos2(t)− sin2(t) = 2 cos2(t)− 1 = 1− 2 sin2(t) and sin(2t) = 2 sin(t) cos(t).
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Problem 7.14: Let a be a positive number. Consider the vector field ~F =
〈y, x〉 and the curve C given by ~r(t) = 〈a cos(t), a sin(t)〉 for 0 ≤ t ≤ 2π.

Compute the flux of ~F across C. (Your answer should be in terms of a.)

Solution: We see that

(839)

~r ′(t) = 〈−a sin(t), a cos(t)〉 → |~r ′(t)| =
√

(−a sin(t))2 + (a cos(t))2 = a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(840) → T̂ (t) =
~r ′(t)

|~r ′(t)|
= 〈− sin(t), cos(t)〉

(841) → n̂(t) = T̂ (t)× k̂ = 〈cos(t), sin(t)〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(842) Flux =

∫
C

~F · n̂ds =

∫ 2π

0

~F (~r(t)) · n̂(t)|~r ′(t)|dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(843) =

∫ 2π

0

〈sin(t)︸ ︷︷ ︸
y

, cos(t)︸ ︷︷ ︸
x

〉 · 〈cos(t), sin(t)〉adt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(844) = a

∫ 2π

0

(sin(t) cos(t) + cos(t) sin(t))dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(845) = a

∫ 2π

0

sin(2t)dt = −a
2

cos(2t)
∣∣∣2π
0

= 0 .

Remark: We also could have used the fact that

(846) n̂ds = n̂|~r ′(t)|dt = |~r ′(t)× k̂|dt = 〈a cos(t), a sin(t)〉
in order to avoid the calculation of |~r ′(t)| and T̂ (t) and save a little effort.
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Problem 7.15: Consider the flow field F = 〈y, x〉 shown in the figure below.

(a) Compute the outward flux across the quarter circle C:r(t) = 〈2 cos(t), 2 sin(t)〉,
0 ≤ t ≤ π

2 .
(b) Compute the outward flux across the quarter circle C:r(t) = 〈2 cos(t), 2 sin(t)〉,

π
2 ≤ t ≤ π.

(c) Explain why the flux across the quarter circle in the third quadrant equals
the flux computed in part (a).

(d) Explain why the flux across the quarter circle in the fourth quadrant equals
the flux computed in part (b).

(e) What is the outward flux across the full circle?
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Solution to (a): We begin by calculating the unit normal vector n̂(t) at any
point on the circle (as opposed to only on the first quadrant). We see that

(847)

r′(t) = 〈−2 sin(t), 2 cos(t)〉 → |r′(t)| =
√

(−2 sin(t))2 + (2 cos(t))2 = 2

(848) → T̂ (t) =
r′(t)

|r′(t)
=
〈−2 sin(t), 2 cos(t)〉

2
= 〈− sin(t), cos(t)〉

(849) → n̂(t) = T̂ (t)× k̂ = 〈cos(t),−(− sin(t))〉 = 〈cos(t), sin(t)〉.
We now are able to calculate the desired flux as

(850) Flux(C) =

∫
C

F · n̂ds =

∫ π
2

0

F(2 cos(t), 2 sin(t)) · 〈cos(t), sin(t)〉 2dt︸︷︷︸
ds

(851) =

∫ π
2

0

〈2 sin(t), 2 cos(t)〉 · 〈2 cos(t), 2 sin(t)〉dt

(852) =

∫ π
2

0

(4 sin(t) cos(t) + 4 cos(t) sin(t))dt

(853) =

∫ π
2

0

8 sin(t) cos(t)dt =

∫ π
2

0

4 sin(2t)dt = −2 cos(2t)
∣∣∣π2
0

= 4 .

Solution to (b): Since we have already found n̂(t) in part a, we proceed
directly to the calculation of the flux, which is also similar to the calculation
that we did in part a.

(854) Flux(C) =

∫
C

F · n̂ds =

∫ π

π
2

F(2 cos(t), 2 sin(t)) · 〈cos(t), sin(t)〉2dt

(855) =

∫ π

π
2

8 sin(t) cos(t)dt = −2 cos(2t)
∣∣∣π
π
2

= −4 .

Solution to (c): The symmetry in the given picture shows us that the flux
through the circle in quadrant 1 is the same as the flux through the circle

Page 277



Sohail Farhangi Problems and Solutions Compilation

in quadrant 3. To be more detailed, we can observe that the map (x, y) 7→
(−x,−y) will send the first quadrant to the third quadrant, and the map
θ 7→ θ + π (which is basically the same map) also maps the first quadrant to
the third quadrant. It follows that for each 0 ≤ t ≤ π

2 (remembering that t is
essentially the angle θ in this situation) we have

(856) F(r(t + π)) = F(−r(t)) = −F(r(t)), and

(857) n̂(t + π) = −n̂(t), so

(858) Flux(Third Quadrant) =

∫ 3π
2

π

F · n̂ds =

∫ 3π
2

π

F(r(t)) · n̂ds =

(859) =

∫ π
2

0

F(r(t + π)) · n̂(t + π)ds =

∫ π
2

0

(−F(r(t))) · (−n̂(t))ds

(860) =

∫ π
2

0

F · n̂(t)ds = Flux(First Quadrant).

Solution to (d): Once again the symmetry in the given picture shows us
that the flux through the circle in quadrant 2 is the same as the flux through
the circle in quadrant 4. To be more detailed, we perform calculations similar
to those of part (c) to see that

(861) Flux(Fourth Quadrant) =

∫ 2π

3π
2

F · n̂ds =

∫ 2π

3π
2

F(r(t)) · n̂ds

(862) =

∫ π

π
2

F(r(t + π)) · n̂(t + π)ds =

∫ π

π
2

(−F(r(t))) · (−n̂(t))ds

(863) =

∫ π

π
2

F · n̂(t)ds = Flux(Second Quadrant).

Solution to (e): We could calculate the total flux directly, but to make use
of parts a−d, we observe that
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(864) Total Flux =

∫ 2π

0

F · n̂ds

(865) =

∫ π
2

0

F · n̂ds︸ ︷︷ ︸
Q1 Flux

+

∫ π

π
2

F · n̂ds︸ ︷︷ ︸
Q2 Flux

+

∫ 3π
2

π

F · n̂ds︸ ︷︷ ︸
Q3 Flux

+

∫ 2π

3π
2

F · n̂ds︸ ︷︷ ︸
Q4 Flux

(866) = 4 + (−4) + 4 + (−4) = 0 .
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Problem 7.16: Consider the rotation field ~F = 〈−y, x〉, and the three paths
shown in the figure.

(1) Compute the work required in the presence of the force field ~F to move
an object on the curve C1.

(2) Compute the work required in the presence of the force field ~F to move
an object on the curve C2.

(3) Compute the work required in the presence of the force field ~F to move
an object on the curve C3.

(4) Does it appear that the line integral
∫
C
~F · ~Tds is independent of the path,

where C is any path from (1, 0) to (0, 1)?

Solution to part 1: We begin by finding a parameterization for our curve
C1. Since C1 is a line segment, we can use the standard parameterization

(867) ~r(t) = 〈1, 0〉︸ ︷︷ ︸
Start Point

+t( 〈0, 1〉︸ ︷︷ ︸
End Point

− 〈1, 0〉︸ ︷︷ ︸
Start Point

) = 〈1− t, t〉, 0 ≤ t ≤ 1.

We now see that

(868) Work =

∫
C1

~F · T̂ ds =

∫
C1

~F · ~r ′dt

(869) =

∫ 1

0

〈 −t︸︷︷︸
−y

, 1− t︸︷︷︸
x

〉 · 〈−1, 1〉dt =

∫ 1

0

(t + 1− t)dt =

∫ 1

0

1dt = 1 .
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Solution to part 2: We begin by finding a parameterization for our curve
C2. Since C2 is a portion of a circle with the counter clockwise orientation, we
can use the standard parameterization

(870) ~r(t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ π

2
.

We now see that

(871) Work =

∫
C1

~F · T̂ ds =

∫
C1

~F · ~r ′dt

(872) =

∫ π
2

0

~F (~r(t)) · 〈− sin(t), cos(t)〉dt

(873) =

∫ π
2

0

〈− sin(t)︸ ︷︷ ︸
−y

, cos(t)︸ ︷︷ ︸
x

〉 · 〈− sin(t), cos(t)〉dt

(874) =

∫ π
2

0

(sin2(t) + cos2(t))dt =

∫ π
2

0

1dt =
π

2
.

Solution to part 3: Since C3 is composed of 2 separate smooth curves, we
will decompose C3 into its pieces and handle them separately. Let C4 denote
the line segment from (1, 0) to (0, 0) and let C5 denote the line segment from
(0, 0) to (0, 1). We see that

(875) Work =

∫
C3

~F · T̂ ds =

∫
C4

~F · T̂ ds +

∫
C5

~F · T̂ ds.

In light of this observation, we will first calculate the work it takes to move an
object across C4 in the presence of the force field ~F , then we will calculate the
work it takes to move an object across C5 in the presence of the force field ~F .
Since C4 is a line segment, we see as in part 1 that

(876) ~r(t) = 〈−t, 0〉, 0 ≤ t ≤ 1

is a paramterization for C4. We now see that
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(877)

∫
C4

~F · T̂ ds =

∫ 1

0

~F (~r(t)) · ~r ′(t)dt

(878) =

∫ 1

0

〈 0︸︷︷︸
−y

, −t︸︷︷︸
x

〉 · 〈−1, 0〉dt =

∫ 1

0

0dt = 0.

Since C5 is also a line segment, we see as before that

(879) ~r(t) = 〈0, t〉, 0 ≤ t ≤ 1

is a paramterization for C5. We now see that

(880)

∫
C5

~F · T̂ ds =

∫ 1

0

~F (~r(t)) · ~r ′(t)dt

(881) =

∫ 1

0

〈 −t︸︷︷︸
−y

, 0︸︷︷︸
x

〉 · 〈0, 1〉dt =

∫ 1

0

0dt = 0.

It follows that the total work is 0 + 0 = 0 .

Solution to part 4: Since the answers to parts 1, 2, and 3 are all different,
we see that the work required to move an object from (1, 0) to (0, 1) in the

presence of the force field ~F depends on that path that use. In particular, the
vector field ~F is not conservative.
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Problem 7.17: Find the work required to move an object along the line
segment from (1, 1, 1) to (8, 4, 2) through the force field ~F given by

~F =
〈x, y, z〉

x2 + y2 + z2
.

Solution 1: We note that for ϕ = 1
2 ln(x2 + y2 + z2) we have ∇ϕ = ~F , so we

may use the Fundamental Theorem for Line Integrals as follows:

(882) Work =

∫
C

~F · d~r =

∫
C

∇ϕ · d~r = ϕ ((8, 4, 2))− ϕ ((1, 1, 1))

(883) =
1

2
ln(82+42+22)− 1

2
ln(12+12+12) =

1

2
ln(84)− 1

2
ln(3) =

1

2
ln(28) .

Solution 2: Firstly, we recall that one method of parameterizing the line
segment that starts at ~p and ends at ~q is to use the parameterization

(884) ~r(t) = (1− t)~p + t~q = ~p + t(~q − ~p), 0 ≤ t ≤ 1.

It follows that

(885)
~r(t) = 〈1, 1, 1〉 + t (〈8, 4, 2〉 − 〈1, 1, 1〉) = 〈1 + 7t, 1 + 3t, 1 + t〉, 0 ≤ t ≤ 1,

is a parameterization of the line segment from (1, 1, 1) to (8, 4, 2). We now see
that

(886) Work =

∫
C

~F · d~r =

∫ 1

0

~F (~r(t)) · ~r ′(t)dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(887) =

∫ 1

0

〈1 + 7t, 1 + 3t, 1 + t〉
(1 + 7t)2 + (1 + 3t)2 + (1 + t)2︸ ︷︷ ︸

~F (~r(t))

· 〈7, 3, 1〉dt︸ ︷︷ ︸
d~r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(888) =

∫ 1

0

(1 + 7t) · 7 + (1 + 3t) · 3 + (1 + t) · 1
1 + 14t + 49t2 + 1 + 6t + 9t2 + 1 + 2t + t2

dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(889) =

∫ 1

0

11 + 59t

3 + 22t + 59t2
dt =

∫ 1

0

t + 11
59

t2 + 22
59t + 3

59

dt =

∫ 1

0

t + 11
59

(t + 11
59)2 + 56

3481

dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(890) =
1

2
ln

(
(t +

11

59
)2 +

56

3481

) ∣∣∣1
0

=
1

2
ln(28) .
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Problem 7.18: Given the force field F = 〈x, y, z〉, find the work required
to move an object around the tilted ellipse that is parameterized by r(t) =
〈4 cos(t), 4 sin(t), 4 cos(t)〉, 0 ≤ t ≤ 2π.

Solution: We see that

(891) Work =

∫
C

F · T̂ ds =

∫ 2π

0

F(4 cos(t), 4 sin(t), 4 cos(t)) · ~r ′(t)dt

(892) =

∫ 2π

0

〈4 cos(t), 4 sin(t), 4 cos(t)〉︸ ︷︷ ︸
F(~r(t))=~r(t) coincidentally

·〈−4 sin(t), 4 cos(t),−4 sin(t)〉dt

(893) =

∫ 2π

0

(−16 cos(t) sin(t) + 16 sin(t) cos(t)− 16 cos(t) sin(t))dt

(894) =

∫ 2π

0

−16 sin(t) cos(t)dt =

∫ 2π

0

−8 sin(2t)dt

(895) = 4 cos(2t)
∣∣∣2π
0

= 0 .
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Problem 7.19: Evaluate the line integral
∫
C∇φ · d~r for φ(x, y) = xy and

C : ~r(t) = 〈cos(t), sin(t)〉, for 0 ≤ t ≤ π in two ways.

(a) Use a parametric description of C and evaluate the integral directly;
(b) Use the Fundamental Theorem for line integrals.

Solution to (a): We see that ∇φ(x, y) = 〈y, x〉, so

(896)

∫
C

∇φ · d~r =

∫ π

0

∇φ(~r(t)) · ~r ′(t)dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(897)

∫ π

0

∇φ(cos(t), sin(t)) · 〈− sin(t), cos(t)〉dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(898) =

∫ π

0

〈sin(t), cos(t)〉 · 〈− sin(t), cos(t)〉dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(899) =

∫ π

0

(− sin2(t) + cos2(t))dt =

∫ π

0

cos(2t)dt =
1

2
sin(2t)

∣∣∣π
0

= 0 .

Solution to (b): We see that

(900)

∫
C

∇φ · d~r =

∫ π

0

∇φ(~r(t)) · ~r ′(t)dt

(901) = φ(~r(π))− φ(~r(0)) = φ(−1, 0)− φ(1, 0) = 0− 0 = 0 .

Page 286



Sohail Farhangi Problems and Solutions Compilation

Problem 7.20: Let ~F be the vector field

~F = 〈f (x, y), g(x, y)〉 = 〈 −y
x2 + y2

,
x

x2 + y2
〉.

It is a rotational vector field with the graph below

Figure 51. vector field ~F

(a) Find the domain R of ~F .
(b) Is the domain R connected? Is R simply connected?
(c) Show that ∂g

∂x = ∂f
∂y .

(d) Let Ca be the parameterized circle ~r(t) = 〈a cos(t), a sin(t)〉, 0 ≤ t < 2π of
radius a > 0. Show that the integral∫

Ca

~F · d~r = 2π.

(e) Is ~F a conservative vector field on R? If so, please explain. Otherwise,
please explain why it doesn’t contradict the result in (3).

(f) Let R1 be the region R1 = {1 ≤ x ≤ 2, 1 ≤ y ≤ 2}. Is ~F a conservative
vector field on R1? Please explain.

Solution to part (a): The domain of ~F consists of all points in R2 at which
~F is defined. We see that the only time that ~F is undefined is when x2 +y2 = 0,
as we cannot divide by 0, but x2 + y2 = 0 is only satisfed by (x, y) = (0, 0), so

the domain of ~F is R = R2 \ {(0, 0)} .
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Solution to part (b): The domain of R is connected since it is actually
path connected16. Given any 2 points in R, there exists a path consisting of
either 1 or 2 straight line segments that connects the 2 points.

Solution to part (c): We see that

(902)
∂g

∂x
=

∂

∂x
(

x

x2 + y2
) = − x

(x2 + y2)2
· 2x +

1

x2 + y2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(903) = − 2x2

(x2 + y2)2
+

x2 + y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(904)
∂f

∂y
=

∂

∂y
(
−y

x2 + y2
) = − −y

(x2 + y2)2
· 2y +

−1

x2 + y2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(905) =
2y2

(x2 + y2)2
− x2 + y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=
∂f

∂x
.

Solution to part (d): We see that

(906)

∫
Ca

~F (~r(t)) ·~r ′(t)dt =

∫ 2π

0

~F (a cos(t), a sin(t)) · 〈−a sin(t), a cos(t)〉dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(907) =

∫ 2π

0

〈 −a sin(t)

(a cos(t))2 + (a sin(t))2
,

a cos(t)

(a cos(t))2 + (a sin(t))2
〉 · 〈−a sin(t), a cos(t)〉dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(908) =

∫ 2π

0

〈− sin(t), cos(t)〉·〈− sin(t), cos(t)〉dt =

∫ 2π

0

(sin2(t)+cos2(t))dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(909) =

∫ 2π

0

1dt = 2π .

16Being path connected is a stronger condition than just being connected, but you probably won’t study the difference between the 2 notions

unless you go on to take a course in real analysis or topology.
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Solution to part (e): Since Ca is a closed loop inside of R for any radius

a > 0, and
∫
Ca
~F · d~r = 2π 6= 0, we see (Theorem 15.6 on page 1118) that ~F is

not a conservative vector field on R. Our calcuations in part (c) cannot be used

alongside Theorem 15.3 (on page 1113) to conclude that the vector field ~F is

conservative, because Theorem 15.3 requires that the vector field ~F be defined
on a simply connected region D.

Solution to part (f): Since the region R1 is simply connected (it has no

holes) and ~F is continuous on R1, we may use the result of part (c) to conclude

that the vector field ~F is conservative on the region R1.
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Problem 7.10: Let f (x, y) = x and consider the segment of the parabola
y = x2 joining O(0, 0) and P (1, 1).

(1) Let C1 be the segment from O to P . Find a parametrization of C1, then
evaluate

∫
C1 fds.

(2) Let C2 be the segment from P to O. Find a parametrization of C2, then
evaluate

∫
C2 fds.

(3) Compare the results of (1) and (2).

Solution to (1): We see that r(t) = 〈t, t2〉, 0 ≤ t ≤ 1 is a parameterization
of the segement of the parabola y = x2 from O(0, 0) to P (1, 1). We see that

(910) r′(t) = 〈1, 2t〉 → |r′(t)| =
√

12 + 4t2 =
√

1 + 4t2, so

(911)∫
C

fds =

∫ 1

0

f (r(t))|r′(t)|dt−
∫ 1

0

f (t, t2)
√

1 + 4t2dt =

∫ 1

0

t
√

1 + 4t2dt

(912)
u=1+4t2

=

∫ 1

t=0

√
u

1

8
du =

1

12
u

3
2

∣∣∣1
t=0

=
1

12
(1 + 4t2)

3
2

∣∣∣1
0

=
5

3
2 − 1

12
.

Solution to (2): We see that if we replace t by 1 − t, then the parameter-
ization starts at P (1, 1) and ends at O(0, 0), so r(t) = 〈1 − t, (1 − t)2〉 is a
parameterization of the segment of the parabola y = x2 from P (1, 1) to O(0, 0).
We see that

(913) r′(t) = 〈−1,−2(1− t)〉

(914) → |r′(t)| =
√

(−1)2 + (−2(1− t))2 =
√

1 + 4(1− t)2, so

(915)

∫
C

fds =

∫ 1

0

f (r(t))|r′(t)|dt =

∫ 1

0

f (1− t, (1− t)2)
√

1 + 4(1− t)2dt
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(916)

=

∫ 1

0

(1− t)
√

1 + 4(1− t)2dt
u=1+4(1−t)2

=

∫ 1

t=0

√
u(−1

8
)du = − 1

12
u

3
2

∣∣∣1
t=0

(917) = − 1

12
(1 + 4(1− t)2)

3
2

∣∣∣1
t=0

=
5

3
2 − 1

12
.

Solution to (3): We see that the answers to parts (1) and (2) are the same.
This makes sense because we are integrating the same function values over

the same region. This should be compared to the fact that
∫ b
a f (x)dx =

−
∫ a
b f (x)dx. Note that the reason that we do not obtain a negative sign

in part (2) is because ds = |r′(t)|dt, and the absolute values absorb the neg-
ative sign. To see this fact in action back in the one dimensional case, we
note that r1(t) = 〈(b − a)t + a〉, 0 ≤ t ≤ 1 is a parameterization of the line
segment from x = a to x = b, and r2(t) = 〈(a − b)t + b〉, 0 ≤ t ≤ 1 is
a parameterization of the line segment from x = b t x = a. We see that
r1
′(t) = 〈b− a〉 = −〈a− b〉 = r2

′(t), so ds = |r1′(t)| = |r2′(t)| = b− a is the
same for both parameterizations.
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Problem 7.11: Find the average value of the function f (x, y) = x + 2y on
the line segment from (1, 1) to (2, 5).

Solution: Firstly, we recall that the average value of a function f over a curve
C is given by

(918) Av(f ) =

∫
C fds

Arclength(c)
=

∫
C fds∫
C 1ds

.

In order to calculate the relevant line integrals, we begin by parameterizing the
line segment from (1, 1) to (2, 5). We see that

(919) ~r(t) = 〈1, 1〉 + t(〈2, 5〉 − 〈1, 1〉) = 〈1 + t, 1 + 4t〉, 0 ≤ t ≤ 1,

is a parameterization of the line segment from (1, 1) to (2, 5). It follows that

(920) ~r ′(t) = 〈1, 4〉 → |~r ′(t)| −
√

12 + 42 =
√

17.

We are now able to calculate both of the relevant line integrals.

(921)

∫
C

fds =

∫ 1

0

f (~r(t))|~r ′(t)|dt =

∫ 1

0

f (1 + t, 1 + 4t)
√

17dt

(922) =

∫ 1

0

(
(1 + t) + 2(1 + 4t))

√
17dt =

√
17

∫ 1

0

(3 + 9t)dt

(923) =
√

17(3t +
9

2
t2
∣∣∣1
0
) =

15
√

17

2
.

(924)

∫
C

1ds =

∫ 1

0

1 · |~r ′(t)|dt =

∫ 1

0

√
17dt =

√
17

(925) → Av(f ) =

∫
C fds∫
C 1ds

=
15
√

17
2√
17

=
15

2
.

Page 292



Sohail Farhangi Problems and Solutions Compilation

Problem 7.12: Find the average value of the function f (x, y, z) = x over
the curve C that is paramterized by

(926) ~r(t) = 〈20 sin(
t

4
), 20 cos(

t

4
),
t

2
〉, 0 ≤ t ≤ 4π.

Solution: We begin by evaluating
∫
C fds and finding the arclength of C. Since

ds = |~r ′(t)|dt, we first observe that
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(927) ~r ′(t) = 〈5 cos(
t

4
),−5 sin(

t

4
),

1

2
〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(928) → |~r ′(t)| =
√

(5 cos(
t

4
))2 + (5 sin(

t

4
))2 + (

1

2
)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(929) =

√
25 cos2(

t

4
) + 25 sin2(

t

4
) +

1

4
=

√
25 +

1

4
=

1

2

√
101.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We now see that
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(930)

∫
C
fds =

∫ 4π

0

f (~r(t)) · |~r ′(t)|dt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(931) =

∫ 4π

0

f (20 sin(
t

4
), 20 cos(

t

4
),
t

2
)
1

2

√
101dt =

∫ 4π

0

20 sin(
t

4
)︸ ︷︷ ︸

f(x,y,z)=x

·1
2

√
101dt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(932) = 10
√

101

∫ 4π

0

sin(
t

4
)dt = 10

√
101
(
− 4 cos(

t

4
)
∣∣∣4π
0

)
= 80
√

101, and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(933) Arclength of C =

∫
C

1ds =

∫ 4π

0

|~r ′(t)|dt =

∫ 4π

0

1

2

√
101dt = 2

√
101π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Putting everything together, we see that

(934) Average value of f over C =

∫
C fds

Arclength of C
=

80
√

101

2
√

101π
=

40

π
.
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Problem 9.4: Let

(935) A =

 1 −1 −1
2 −1 1
−3 1 −3

 , ~x =

x1

x2

x3

 , and ~b =

b1

b2

b3

 .
a) Determine conditions on b1, b2, and b3 that are necessary and sufficient for

the system of equations A~x = ~b to be consistent.
b) For each of the following choices of ~b, either show that the system A~x = ~b

is inconsistent or exhibit the solution.

i) ~b =

1
1
1

 ii) ~b =

5
2
1

 iii) ~b =

7
3
1

 iv) ~b =

0
1
2


Solution to a: We begin by representing the equation A~x = ~b as an aug-
mented matrix that we will proceed to row reduce into reduced echelon form.

(936)

 1 −1 −1 b1

2 −1 1 b2

−3 1 −3 b3

 R2 − 2R1

R3 + 3R1→

1 −1 −1 b1

0 1 3 −2b1 +b2

0 −2 −6 3b1 +b3



(937)
R3+2R2→

1 −1 −1 b1

0 1 3 −2b1 +b2

0 0 0 −b1 +2b2 +b3

 At this point you can already
deduce when the system is
consistent.

(938)
R1+R2→

1 0 2 −b1 +b2

0 1 3 −2b1 +b2

0 0 0 −b1 +2b2 +b3


From the third row of the augmented matrix in equation (938), we see that

(939) −b1 + 2b2 + b3 = 0 · x1 + 0 · x2 + 0 · x3 = 0,

and that the system of equations A~x = ~b is consistent if and only if equation
(939) is true. Furthermore, in the event that equation (939) is true, we see that
equations represented in equation (938) are

Page 295



Sohail Farhangi Problems and Solutions Compilation

(940)
x1 + 2x3 = −b1 + b2

x2 + x3 = −2b1 + b2

(941) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free.

Solution to b: In part a we obtained a formula for ~x in terms of ~b, so we
will now apply that formula to each of the vectors.

i: ~b =

1
1
1

→ −b1 + 2b2 + b3 = 2 6= 0→ The system is inconsistent .

ii: ~b =

5
2
1

→ −b1 + 2b2 + b3 = 0

(942) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free

(943) →

x1

x2

x3

 =

−2x3 − 3
−x3 − 8
x3

 , x3 is free .

iii: ~b =

7
3
1

→ −b1 + 2b2 + b3 = 0

(944) → x1 = −2x3 − b1 + b2

x2 = −x3 − 2b1 + b2
, x3 is free

(945) →

x1

x2

x3

 =

−2x3 − 4
−x3 − 11

x3

 , x3 is free .
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iv: ~b =

0
1
2

→ −b1 + 2b2 + b3 = 4 6= 0→ The system is inconsistent .
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Problem 9.5: Find the inverse of

(946) A =

1 −2 3
0 2 −5
1 −1 1


Solution: We reduce the 3 by 6 matrix [A|I3] until the left half is in reduced
echelon form, which will be I3 since A is invertible.

(947)

1 −2 3 1 0 0
0 2 −5 0 1 0
1 −1 1 0 0 1

 R3−R1−→

1 −2 3 1 0 0
0 2 −5 0 1 0
0 1 −2 −1 0 1



(948)
1
2R2−→

1 −2 3 1 0 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1

 R1+2R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 1 −2 −1 0 1



(949)
R3−R2−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1
2 −1 −1

2 1

 2R3−→

1 0 −2 1 1 0
0 1 −5

2 0 1
2 0

0 0 1 −2 −1 2



(950)
R2+5

2R3−→

1 0 −2 1 1 0
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 R1+2R3−→

1 0 0 −3 −1 4
0 1 0 −5 −2 5
0 0 1 −2 −1 2

 .

To check our work, we note that

(951) AA−1 =

1 −2 3
0 2 −5
1 −1 1

−3 −1 4
−5 −2 5
−2 −1 2


(952) =

1 · (−3) + (−2) · (−5) + 3 · (−2) 1 · (−1) + (−2) · (−2) + 3 · (−1) 1 · 4 + (−2) · 5 + 3 · 2
0 · (−3) + 2 · (−5) + (−5) · (−2) 0 · (−1) + 2 · (−2) + (−5) · (−1) 0 · 4 + 2 · 5 + (−5) · 2
1 · (−3) + (−1) · (−5) + 1 · (−2) 1 · (−1) + (−1) · (−2) + 1 · (−1) 1 · 4 + (−1) · 5 + 1 · 2

 =

1 0 0
0 1 0
0 0 1

 .

Remark: We only have to check that A−1A = I3 OR AA−1 = I3. We do
not have to check both.
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Problem 9.6: Consider the matrices A,D ane E given by

(953) A−1 =

[
3 1
0 2

]
, D =

[
−1 2 3
1 0 2

]
and E =

2 −1
1 1
0 3

 .
Find matrices B and C for which AB = D and CA = E.

Solution: We see that

(954) A−1D = A−1(AB) = (A−1A)B = I2B = B, so

(955) B = A−1D =

[
3 1
0 2

] [
−1 2 3
1 0 2

]
(956) =

[
3 · (−1) + 1 · 1 3 · 2 + 1 · 0 3 · 3 + 1 · 2
0 · (−1) + 2 · 1 0 · 2 + 2 · 0 0 · 3 + 2 · 2

]

(957) =

[
−2 6 11
2 0 4

]
.

Similarly, we see that

(958) EA−1 = (CA)A−1 = C(AA−1) = CI2 = C, so

(959) C = EA−1 =

2 −1
1 1
0 3

[3 1
0 2

]
=

2 · 3 + (−1) · 0 2 · 1 + (−1) · 2
1 · 3 + 1 · 0 1 · 1 + 1 · 2
0 · 3 + 3 · 0 0 · 1 + 3 · 2



(960) =

6 0
3 3
0 6

 .
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Problem 9.7: Let ~u and ~v be vectors in Rn, and let In denote the (n × n)
identity matrix. Let A = In + ~u~vT , and suppose that ~vT~u 6= −1. Show that

(961) A−1 = In − a~u~vT , where a =
1

1 + ~vT~u
.

This result is known as the Sherman-Woodberry formula.

Example: If n = 3,

(962) ~u =

1
2
3

 and ~v =

−1
1
0

 then

(963) ~vT~u =
(
−1 1 0

)1
2
3

 = (−1) · 1 + 1 · 2 + 0 · 3 = 1 6= −1 and

(964) A = I3 + ~u~vT =

1 0 0
0 1 0
0 0 1

 +

1
2
3

(−1 1 0
)

(965) =

1 0 0
0 1 0
0 0 1

 +

1 · (−1) 1 · 1 1 · 0
2 · (−1) 2 · 1 2 · 0
3 · (−1) 3 · 1 3 · 0



(966) =

1 0 0
0 1 0
0 0 1

 +

−1 1 0
−2 2 0
−3 3 0

 =

 0 1 0
−2 3 0
−3 3 1

 .

We also saw that

(967) ~vT~u = 1 and ~u~vT =

−1 1 0
−2 2 0
−3 3 0

 so

(968) a =
1

1 + ~vT~u
=

1

1 + 1
=

1

2
and

Page 300



Sohail Farhangi Problems and Solutions Compilation

(969) A−1 = I3 − a~u~vT =

1 0 0
0 1 0
0 0 1

− 1

2

−1 1 0
−2 2 0
−3 3 0

 =

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1

 .

Indeed, we see that

(970) AA−1 =

 0 1 0
−2 3 0
−3 3 1

3
2 −

1
2 0

1 0 0
3
2 −

3
2 1


(971) =

 0 · 3
2
+ 1 · 1 + 0 · 3

2
0 · (− 1

2
) + 1 · 0 + 0 · (− 3

2
) 0 · 0 + 1 · 0 + 0 · 1

(−2) · 3
2
+ 3 · 1 + 0 · 3

2
(−2) · (− 1

2
) + 3 · 0 + 0 · (− 3

2
) (−2) · 0 + 3 · 0 + 0 · 1

(−3) · 3
2
+ 3 · 1 + 1 · 3

2
(−3) · (− 1

2
) + 3 · 0 + 1 · (− 3

2
) (−3) · 0 + 3 · 0 + 1 · 1

 =

1 0 0
0 1 0
0 0 1



Solution: The inverse of a matrix (if it exists) is unique, so for

(972) B = In − a~u~vT ,
we only have to verify that

(973) AB = In or BA = In,

as we will then know that A is invertible, and that A−1 = B. Since ~vT~u is a
scalar, let us simplify our notation by letting

(974) b = ~vT~u so that a =
1

1 + b
.

We see that

(975)
AB = (In + ~u~vT )(In − a~u~vT ) = InIn + ~u~vTIn + In(−a~u~vT ) + ~u~vT (−a~u~vT )

(976) = In + ~u~vT − a~u~vT − a(~u~vT )(~u~vT ) = In + ~u~vT − a~u~vT − a~u(~vT~u)~vT

(977)
By (974)

= In + ~u~vT − a~u~vT − a~u(b)~vT = In + ~u~vT − a~u~vT − ab~u~vT
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(978) = In + (1− a− ab)~u~vT By (974)
= In + (1− 1

1 + b
− b

1 + b
)~u~vT

(979) = In + 0 · ~u~vT = In.
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Problem 10.1: Plot z = −1 − 1√
3
i in the complex plane. Then find the

modulus and argument of z, and express z in the form z = reiθ.

Solution: Based on the diagram below, we see that −1− 1√
3
i =

2√
3
ei

7π
6 .
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Problem 10.2: For z = −1 + 4i and w = 5 + 2i evaluate
∣∣ z

2w

∣∣.
Solution 1: We see that

(980)
z

2w
=
−1 + 4i

2(5 + 2i)
=
−1 + 4i

10 + 4i
=
−1 + 4i

10 + 4i
· 10− 4i

10− 4i︸ ︷︷ ︸
1

=
(−1 + 4i)(10− 4i)

(10 + 4i)(10− 4i)

(981) =
−10 + 40i + 4i−16i2

100 + 40i− 40i−16i2
i2=−1

=
−10 + 40i + 4i+16

100 + 40i− 40i+16

(982) =
6 + 44i

116
=

3 + 22i

58

(983) →
∣∣∣ z
2w

∣∣∣ =

∣∣∣∣3 + 22i

58

∣∣∣∣ =
1

58
|3 + 22i| = 1

58

√
32 + 222 =

√
493

58
.

Solution 2: We see that

(984)
∣∣∣ z
2w

∣∣∣ =
|z|
|2w|

=
|z|

2|w|
=
| − 1 + 4i|
2|5 + 2i|

(985) =

√
(−1)2 + 42

2
√

52 + 22
=

√
17

2
√

29
=

√
493

58
.
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Problem 10.3: Evaluate i(ei
π
6 − e−iπ6 ).

Solution: Recalling Euler’s formula

(986) ez = ex+iy = ex(cos(y) + i sin(y)), we see that

(987) i(ei
π
6 − e−i

π
6 ) = i

((
cos(

π

6
) + i sin(

π

6
)
)
−
(

cos(−π
6

) + i sin(−π
6

)
))

(988) = i
((

cos(
π

6
) + i sin(

π

6
)
)
−
(

cos(
π

6
)− i sin(

π

6
)
))

= i
(

2i sin(
π

6
)
)

(989) = i(2i · 1

2
) = i2 = −1 .
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Problem 10.4: Let z = −1+i and w = 1+i
√

3 be the two complex numbers.
(1) Compute directly z · w and z

w and express the answer in Cartesian form,
i.e., the form x + iy, where x and y are real numbers.
(2) Express z and w in polar form. Compute z · w and z

w in polar forms.
Compare your answer with part (1).
(3) Draw the four complex numbers w, z, z·w and z

w in the following coordinate.
Explain what multiplication by w and division by w do to the complex number
z in terms of argument and modulus.

Figure 52. A grid to help you plot w, z, z · w, and z
w .

Solution to Part (1): Firstly, we see that

(990) z · w = (−1 + i)(1 + i
√

3) = −1 · 1 +−1 · i
√

3 + i · 1 + i · i︸︷︷︸
i2=−1

√
3

(991) = −1− i
√

3 + i−
√

3 = (−1−
√

3) + i(1−
√

3) , and
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(992)
z

w
=
zw

ww
=

zw

|w|2
=

(−1 + i)(1− i
√

3)

12 +
√

3
2

(993) =
1

4
(−1 ·1+(−1) ·(−i

√
3)+i ·1+i · (−i︸ ︷︷ ︸

−i2=1

√
3)) =

1

4
(−1+i

√
3+i+

√
3)

(994) = (−1

4
+

√
3

4
) + i(

1

4
+

√
3

4
) .

Solution to Part (2): We see that |z| =
√

12 + 12 =
√

2, and that |w| =√
12 +
√

3
2

= 2. It follows that
Since z is in the third quadrant and w is in the first quadrant, we see that

(995) θz = tan−1(
Im(z)

Re(z)
) + π = tan−1(

1

−1
) + π = tan−1(−1) + π =

3π

4
, and

(996) θw = tan−1(
Im(w)

Re(w)
) = tan−1(

√
3

1
) = tan−1(

√
3) =

π

3
.

Recalling that z = |z|eiθz and w = |w|eiθw are the polar forms of z and w

respectively, we see that z =
√

2e
3πi
4 and w = 2e

πi
3 . We now see that

(997) z · w =
√

2e
3πi
4 · 2e

πi
3 = 2

√
2e

3πi
4 +πi

3 = 2
√

2e
13πi
12 , and

(998)
z

w
=

√
2e

3πi
4

2e
πi
3

=
1√
2
e

3πi
4 −

πi
3 =

1√
2
e

5πi
12 .

Using a computer algebra system such as wolfram alpha, we can confirm that

(999) z ·w = 2
√

2e
13πi
12 = 2

√
2(cos(

13π

12
)+i sin(

13π

12
)) = (−1−

√
3)+i(1−

√
3)

and

(1000)
z

w
=

1√
2
e

5πi
12 =

1√
2

(cos(
5π

12
) + i sin(

5π

12
)) = (−1

4
+

√
3

4
) + i(

1

4
+

√
3

4
).
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Solution to Part (3): The calcuations from Part (2) show us that when
we multiply 2 complex numbers we multiply their magnitudes and add their
arguments, and when we divide 2 complex numbers, we divide their magnitudes
and subtract their arguments. In particular, if we multiply a complex number
(such as z) byw, then we will double the magnitude and add 5π

12 to the argument,
and if we divide a complex number (such as z) by w, then we will half the
magnitude and subtract 5π

12 from the argument.

Figure 53. A grid to help you plot w, z, z · w, and z
w .
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Problem 10.5: (Appendix C. 29, 30)
(1) Equate the real and imaginary parts of both sides of the identity

ei(a−b) = eiae−ib

to prove that
cos(a− b) = cos(a) cos(b) + sin(a) sin(b);

sin(a− b) = sin(a) cos(b)− cos(a) sin(b).

(2) Equate the real and imaginary parts of both sides of the identity

ei2θ = eiθ · eiθ

to prove that

cos(2θ) = cos2(θ)− sin2(θ), and sin(2θ) = 2 sin(θ) cos(θ)

Solution to Part (1): Using Euler’s formula, we see that

(1001) ei(a−b) = cos(a− b) + i sin(a− b), eia = cos(a) + i sin(a), and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1002) e−ib = ei(−b) = cos(−b) + i sin(−b) = cos(b)− i sin(b), so

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1003) cos(a− b) + isin(a− b) = ei(a−b) = eiae−ib

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1004) = (cos(a) + i sin(a)) (cos(b)− i sin(b))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1005) = cos(a) cos(b)− i cos(a) sin(b) + i sin(a) cos(b)− i2︸︷︷︸
i2=−1

sin(a) sin(b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1006) = cos(a) cos(b) + sin(a) sin(b) + i (sin(a) cos(b)− cos(a) sin(b))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 309



Sohail Farhangi Problems and Solutions Compilation

(1007) → cos(a− b) = cos(a) cos(b) + sin(a) sin(b)
sin(a− b) = sin(a) cos(b)− cos(a) sin(b)

.

Solution to Part (2): We could deduce the result in part (2) by letting
a = −b = θ, but we will instead prove the result as a corollary to Euler’s
formula once again just for the extra practice. We once again begin the problem
by using Euler’s formula to see that

(1008) ei2θ = cos(2θ) + isin(2θ) and eiθ = cos(θ) + i sin(θ), so

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1009) ei2θ = e2iθ = (eiθ)2 = (cos(θ) + i sin(θ))2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1010) = cos2(θ) + 2i cos(θ) sin(θ) + i2︸︷︷︸
i2=−1

sin2(θ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1011) = cos2(θ)− sin2(θ) + i2 cos(θ) sin(θ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1012) → cos(2θ) = cos2(θ)− sin2(θ)
sin(2θ) = 2 sin(θ) cos(θ)

.
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Problem 10.6: Find all possible fourth roots of −16. Equivalently, find all

possible values of (−16)
1
4 .

Solution: We see that

(1013) − 16 = 16 · (−1) = 16eiπ = 16ei(π+2nπ) (where n is an integer)

(1014) → (−16)
1
4 =

(
16ei(π+2nπ)

)1
4

= 16
1
4

(
ei(π+2nπ)

)1
4

(1015) = 2ei(
π
4 +n

2π) (where n is an integer)

(1016) → (−16)
1
4 ∈ {2ei

π
4 , 2ei

3π
4 , 2ei

5π
4 , 2ei

7π
4 }.

Making use of Euler’s formula, we see that

(1017) 2ei
π
4 = 2

(
cos(

π

4
) + i sin(

π

4
)
)

= 2(
1√
2

+ i
1√
2

) =
√

2 +
√

2i,

(1018) 2ei
3π
4 = 2

(
cos(

3π

4
) + i sin(

3π

4
)

)
= 2(− 1√

2
+ i

1√
2

) = −
√

2 +
√

2i,

(1019)

2ei
5π
4 = 2

(
cos(

5π

4
) + i sin(

5π

4
)

)
= 2(− 1√

2
+ i(− 1√

2
)) = −

√
2−
√

2i,

(1020) 2ei
7π
4 = 2

(
cos(

7π

4
) + i sin(

7π

4
)

)
= 2(

1√
2

+ i(− 1√
2

)) =
√

2−
√

2i,

(1021) → (−16)
1
4 ∈ {

√
2 +
√

2i,−
√

2 +
√

2i,−
√

2−
√

2i,
√

2−
√

2i} .
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Problem 10.7: Determine A, ω, and ϕ for which

(1022) − 3 sin(4t) + 3 cos(4t) = A sin(ωt + ϕ).

Solution: Firstly, we use the angle-addition formula for sin to see that

(1023) A sin(ωt + ϕ) = A sin(ωt) cos(ϕ) + A sin(ϕ) cos(ωt), so

(1024) − 3sin(4t) + 3cos(4t) = A cos(ϕ)sin(ωt) + A sin(ϕ)cos(ωt).

We now see that ω = 4, and that

(1025)
A cos(ϕ) = −3
A sin(ϕ) = 3

(1026) → A2 = A2 cos2(ϕ) + A2 sin2(ϕ) = (−3)2 + 32 = 18→ A=± 3
√

2

(1027) →
cos(ϕ) = ∓ 1√

2

sin(ϕ) = ± 1√
2

→ ϕ =
3π

4
,−π

4

(1028)

→ −3 sin(4t) + 3 cos(4t) = 3
√

2 sin(4t +
3π

4
)︸ ︷︷ ︸

This is amplitude-
phase form since A is
positive.

= −3
√

2 sin(4t− π

4
) .
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Figure 54. The graph of y = −3 sin(4t) + 3 cos(4t) showing the Amplitude of A, Phase Shift of ϕ, and the
period of 2π

ω .

Figure 55. A graph of y = sin(t) for comparison.
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Problem 10.8: Determine R, δ, and ω0 for which

(1029) − 2 cos(πt)− 3 sin(πt) = R cos(ω0t− δ).

Solution: Using the cosine subtraction formula of

(1030) cos(x− y) = cos(x) cos(y) + sin(x) sin(y),

we see that

(1031) R cos(ω0t− δ) = R cos(ω0t) cos(δ) + R sin(ω0t) sin(δ),

so we want to find R,ω0, and δ for which

(1032) − 2cos(πt)− 3sin(πt) = Rcos(ω0t) cos(δ) + Rsin(ω0t) sin(δ).

Comparing the functions that have t in them, i.e., cos(πt), cos(ω0t), sin(πt),
and sin(ω0t), we see that ω0 = π. We now want to find R and δ for which

(1033) − 2 cos(πt)− 3 sin(πt) = R cos(πt) cos(δ) + R sin(πt) sin(δ),

which is the same as finding R and δ for which

(1034) R cos(δ) = −2 and R sin(δ) = −3.

We now see that

(1035) R2 = R2(cos2(δ) + sin2(δ)) = (−2)2 + (−3)2 = 13

(1036) → R = ±
√

13.

We may pickR =
√

13 orR = −
√

13, so we will pickR =
√

13 for convenience.
We now see that
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(1037) cos(δ) = − 2√
13

and sin(δ) = − 3√
13
,

so δ is in the third quadrant, i.e., π < δ < 3π
2 . We now see that

(1038) δ = 2π − cos−1(− 2√
13

) ≈ 4.12.

In conclusion,

(1039) − 2 cos(πt)− 3 sin(πt) =
√

13 cos(πt− 2π + cos−1(− 2√
13

))

(1040) ≈
√

13 cos(πt− 4.12)).
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Problem 11.1: Solve the following initial value problem.

(1041) y′′ − 3y′ − 18y = 0; y(0) = 0, y′(0) = 4.

Draw the graph of the solution. (You may seek help from graphing web-
site/software. Think about why the graph behave in that way and how is
that related to the solution function.)

Solution: We see that the characteristic polynomial of equation (1041) is

(1042) 0 = r2 − 3r − 18 = (r − 6)(r + 3),

which has roots r = −3, 6. It follows that the general solutions to equation
(1041) is

(1043) y(t) = c1e
−3t + c2e

6t.

Using the initial conditions, we see that

(1044)
0 = y(0) = c1e

−3·0 + c2e
6·0 = c1 + c2

4 = y′(0) = −3c1e
3·0 + 6c2e

6·0 = −3c1 + 6c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1045) → c1 + c2 = 0
−3c1 + 6c2 = 4

R2+3R1→ c1 + c2 = 0
9c2 = 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1046)
1
9R2→ c1 + c2 = 0

c2 = 4
9

R1−R2→ c1 = −4
9

c2 = 4
9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1047) → y(t) = −4

9
e−3t +

4

9
e6t .
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Figure 56. A graph of the solution to the initial value problem in (1041).
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Problem 11.4: Let a be a real number.

(a) Find the general solution to equation (1048) in terms of a.

(1048) y′′ − (a + 2)y′ + 2ay = 0.

(b) Solve the initial value problem given in (1049).

(1049) y′′ − 25y′ + 46y; y(0) = 0, y′(0) = 21.

Solution to (a): By examining the characteristic equation of equation (1048),
we see that

(1050) 0 = r2 − (a + 2)r + 2a = (r − a)(r − 2)

(1051) → y(t) =

{
c1e

at + c2e
2t if a 6= 2

c2e
2t + c2te

2t if a = 2
.

Solution to (b): We saw in part (a) that the general solution to equation
(1049) is y(t) = c1e

23t + c2e
2t. It follows that y′(t) = 23c2e

23t + 2c2e
2t. Making

use of the given initial conditions, we see that

(1052)
0 = y(0) = 23c1e

23·0 + c2e
2·0 = 23c1 + c2

21 = y′(0) = 23c1e
23·0 + 2c2e

2·0 = 23c1 + 2c2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1053) → c1 =
1

21
·21c1 =

1

21

(
(23c1 +2c2)−2(c1 +c2)

)
=

1

21
(21−2 ·0) = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1054) → c2 = −c1 = −1→ y(t) = e23t − e2t .
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Problem 11.2: Solve the following initial value problem.

(1055) y′′ − y′ + 1

4
y = 0; y(0) = 1, y′(0) = 2.

Draw the graph of the solution. (You may seek help from graphing web-
site/software. Think about why the graph behave in that way and how is
that related to the solution function.)

Solution: We see that the characteristic polynomial of equation (1055) is

(1056) 0 = r2 − r +
1

4
= (r − 1

2
)2,

which has r = 1
2 as a double root. It follows that the general solutions to

equation (1055) is

(1057) y(t) = c1e
t
2 + c2te

t
2 .

Noting that

(1058) y′(t) =
1

2
c1e

t
2 + c2e

t
2 +

1

2
c2te

t
2 = (

1

2
c1 + c2)e

t
2 +

1

2
c2te

t
2 ,

we can use the initial conditions, to see that

(1059)
1 = y(0) = c1e

0
2 + c2 · 0 · e

0
2 = c1

2 = y′(0) = (1
2c1 + c2)e

0
2 + 1

2c2 · 0 · e
0
2 = 1

2c1 + c2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1060) → c1 = 1
1
2c1 + c2 = 2

→ c1 = 1
c2 = 2− 1

2 · 1 = 3
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1061) → y(t) = e
t
2 +

3

2
te

t
2 .
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Figure 57. A graph of the solution to the initial value problem in (1055).
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Problem 11.3: Solve the following initial value problem.

(1062) y′′ + 6y′ + 10y = 0; y(0) = 0, y′(0) = 6.

Draw the graph of the solution. (You may seek help from graphing web-
site/software. Think about why the graph behave in that way and how is
that related to the solution function.)

Solution: We see that the characteristic polynomial of equation (1062) is

(1063) 0 = r2+6r+10→ r =
−6±

√
62 − 4 · 1 · 10

2 · 1
=
−6±

√
−4

2
= −3±i,

It follows that the general solutions to equation (1062) is

(1064) y(t) = c′1e
(−3+i)t + c′2e

(−3−i)t = c1 sin(t)e−3t + c2 cos(t)e−3t.

Noting that

(1065) y′(t) = c1 cos(t)e−3t − 3c1 sin(t)e−3t − c2 sin(t)e−3t − 3c2 cos(t)e−3t

(1066) = (−3c1 − c2) sin(t)e−3t + (c1 − 3c2) cos(t)e−3t,

we can use the initial conditions to see that

(1067)
0 = y(0) = c1 sin(0)e−3·0 + c2 cos(0)e−3·0

6 = y′(0) = (−3c1 − c2) sin(0)e−3·0 + (c1 − 3c2) cos(0)e−3·0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1068) → 0 = c2

6 = c1 − 3c2
→ c2 = 0

c1 = 6 + 3c2 = 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1069) → y(t) = 6 sin(t)e−3t .
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Figure 58. A graph of the solution to the initial value problem in (1062).
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Problem 11.5: Solve the following initial value problem.

(1070) t2y′′ + 6ty′ + 6y = 0; y(1) = 0, y′(1) = −4.

Draw the graph of the solution. (You may seek help from graphing web-
site/software. Think about why the graph behave in that way and how is
that related to the solution function.)

Remark: The solution below is a detailed solutions ’from first principles’
that also demonstrates how to perform a change of variables in a differential
equation. For a homework or an exam, you are permitted to use the fact that
the characteristic equation of t2y′′+aty′+by = 0 is given by r2+(a−1)r+b = 0,
and that the general solution is of the form y(t) = c1t

r1 + c2t
r2 if the roots are

distinct17, or y(t) = c1t
r + c2t

r ln(t) if r1 = r2 = r.

Solution: We perform a substitution (or a change of variables) in order to
convert equation (1070) into a constant coefficient differential equation, which
will then be straight-forward to solve. Letting x = ln(t), we see that t = ex,
and we may define h(x) = y(ex) = y(t). We see that

(1071) h′(x) =
d

dx
h(x) =

d

dx
y(ex) = y′(ex) · d

dx
ex = y′(ex) · ex = ty′(t), and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1072) h′′(x) =
d

dx
h′(x) =

d

dx
(exy′(ex)) =

d

dx
(ex) · y′(ex) + ex · d

dx
y′(ex)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1073) = exy′(ex) + ex · exy′′(ex) = exy′(ex) + e2xy′′(ex) = ty′(t) + t2y′′(t).

We now see that

(1074) 0 = t2y′′ + 6ty′ + 6y = (t2y′′ + ty′) + 5ty′ + 6y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1075) = (t2y′′(t) + ty′(t)) + 5ty′(t) + 6y(t)

17This general form is still correct if r1 and r2 are distinct complex numbers, but it is usually not the preferred form of the general solution.

If r ± si are the distinct complex roots of the characteristic equation, then the preferred form the general solution is y(t) = c1tr cos(s ln(t)) +
c2tr sin(s ln(t)).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1076) = h′′(x) + 5h′(x) + 6h(x) = h′′ + 5h′ + 6h.

We see that the characteristic equation of our converted equation is

(1077) 0 = r2 + 5r + 6 = (r + 2)(r + 3),

and has solutions r = −3,−2. It follows that the general solution to our
converted equation is

(1078) h(x) = c1e
−2x + c2e

−3x.

Recalling that x = ln(t), we see that the general solution to equation (1070) is

(1079) y(t) = h(x) = c1e
−2x+c2e

−3x = c1e
−2 ln(t)+c2e

−3 ln(t) = c1t
−2 + c2t

−3.

Making use of the initial conditions, we see that

(1080)
0 = y(1) = c1 · 1−2 + c2 · 1−3 = −2c1 + c2

−4 = y′(1) = −2c1 · 1−3 − 3c2 · 1−4 = −2c1 − 3c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1081) → c1 + c2 = 0
−2c1 − 3c2 = −4

R2+2R1→ c1 + c2 = 0
−c2 = −4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1082)
1
5R2→ c1 + c2 = 0

c2 = 4
R1−R2→ c1 = −4

c2 = 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1083) → y(t) = −4t−2 + 4t−3 .
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Figure 59. A graph of the solution to the initial value problem in (1070).
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Problem 11.6: Find the general solution of the equation

(1084) y′′y′ = 1.

Solution: We note that y(t) is not present in equation (1084), so we perform
the substitution v(t) = y′(t). We see that v′(t) = y′′(t), so equation (1084)
becomes

(1085) 1 = vv′ = v
dv

dt
→ dt = vdv

(1086) → t =

∫
dt =

∫
vdv =

1

2
v2 + c1 =

1

2
(y′)2 + c1

(1087) → ±
√

2t− 2c1 = y′ =
dy

dt
→ dy = ±

√
2t− 2c1dt

(1088) y =

∫
dy =

∫
±
√

2t− 2c1dt = ±1

3
(2t− 2c1)

3
2 + c2

(1089) → y(t) = ±1

3
(2t− 2c1)

3
2 + c2 .

Remark: If we had initial conditions, then we could use them to try and
determine values for c1 and c2. We should also note that this solution is only
defined when t > c1. We also note that the form of the general solution looks
completely different from the form of the general solution to a linear differential
equation. The constants c1 and c2 are NOT coefficients in a linear combination,
and we have 2 completely disjoint sets of solutions (the positive solutions and
the negative solutions each have 2 degrees of freedom).
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Problem 11.7: Solve the differential equation

(1090) y′′ = e−y
′
.

Solution: We note that y(t) is not present in equation (1090), so we perform
the substitution v(t) = y′(t). We see that v′(t) = y′′(t), so equation (1090)
becomes

(1091) v′ = e−v → 1 = evv′ = ev
dv

dt
→ dt = evdv

(1092) →
∫
dt =

∫
evdv → t + c1 = ev = ey

′

(1093) → ln(t + c1) = y′ =
dy

dt
→ dy = ln(t + c1)dt

(1094) → y =

∫
dy =

∫
ln(t + c1)dt = (t + c1) ln(t + c1)− t + c2.

(1095) → y(t) = (t + c1) ln(t + c1)− t + c2 .

Remark: If we had initial conditions, then we could use them to try and
determine values for c1 and c2. We should also note that this solution is only
defined when t > −c1. We also note that the form of the general solution looks
completely different from the form of the general solution to a linear differential
equation. The constants c1 and c2 are NOT coefficients in a linear combination.
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For the following problems use the method of undetermined coefficients in order
to find the general form of the solution to the given differential equation.

(1096) y′′ + y = cos(2t) + t3.

(1097) y′′ + 4y = cos(2t).

(1098) 2y′′ − 8y′ + 8y = 4e2t.

(1099) y′′ − y = 25te−t sin(3t).

(1100) y(4) − 3y′′ + 2y = 6te2t.

Solution: Solution to equation (1096): We see that the homogeneous
equation corresponding to equation (1096) is

(1101) y′′ + y = 0,

and has characteristic equation

(1102) 0 = r2 + 1 = (r + i)(r − i)

It follows that the general solution to equation (1101) is

(1103) y(t) = c1e
−it + c2e

it = c3 sin(t) + c4 cos(t).

We now see that the right hand side of equation (1096) is not related to the
solutions of equation (1101), so we may use the standard form of the general
solution in the method of undetermined coefficients, which tells us that

(1104) y(t) = A cos(2t) + B sin(2t) + Ct3 + Dt2 + Et + F .

Solution to equation (1097): We see that the homogeneous equation cor-
responding to equation (1097) is

Page 328



Sohail Farhangi Problems and Solutions Compilation

(1105) y′′ + 4y = 0,

and has characteristic equation

(1106) 0 = r2 + 4 = (r + 2i)(r − 2i).

It follows that the general solution to equation (1105) is

(1107) y(t) = c1e
−2it + c2e

2it = c3 sin(2t) + c4 cos(2t)

We now see that the right hand side of equation (1097) is related to the solutions
of equation (1105), so we have to adjust the standard form of the general solution
in the method of undetermined coefficients. Originally, we would have used

(1108) y(t) = A sin(2t) + B cos(2t),

but we saw that sin(2t) and cos(2t) are solutions to equation (1105), so we then
adjust our answer by multiplying by t to get

(1109) y(t) = At sin(2t) + Bt cos(2t) .

Solution to equation (1098): We see that the homogeneous equation cor-
responding to equation (1098) is

(1110) 2y′′ − 8y′′ + 8y = 0→ y′′ − 4y′ + 4y = 0,

and has characteristic equation

(1111) 0 = r2 − 4r + 4 = (r − 2)2.

It follows that the general solution to equation (1110) is

(1112) y(t) = (c1t + c2)e2t.
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We now see that the right hand side of equation (1098) is related to the solutions
of equation (1110), so we have to adjust the standard form of the general solution
in the method of undetermined coefficients. Originally, we would have used

(1113) y(t) = Ae2t,

but we saw that e2t is a solution to equation (1110), so we would then adjust
our answer by multiplying by t to get

(1114) y(t) = Ate2t,

but we see that te2t is also a solution to equation (1110) (which should not
surprise us since 2 was a double root of the characteristic equation), so we
adjust our answer by multiplying by t once again to get

(1115) y(t) = At2e2t .

Solution to equation (1099): We see that the homogeneous equation cor-
responding to equation (1099) is

(1116) y′′ − y = 0,

and has characteristic equation

(1117) 0 = r2 − 1 = (r − 1)(r + 1).

It follows that the general solution to equation (1116) is

(1118) y(t) = c1e
t + c2e

−t.

Recalling that

(1119) e−t sin(3t) = − i
2

(e(−1+3i)t − e(−1−3i)t),
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we see that the right hand side of equation (1099) is not related to the solutions
of equation (1116), so we may proceed to use the standard form of the general
solution in the method of undetermined coefficients, which tells us that

(1120) y(t) = (At + B)e−t sin(3t) + (Ct + D)e−t cos(3t) .

Solution to equation (1100): We see that the homogeneous equation cor-
responding to equation (1100) is

(1121) y(4) − 3y′′ + 2y = 0,

and has characteristic equation

(1122) 0 = r4− 3r2 + 2 = (r2− 2)(r2− 1) = (r−
√

2)(r+
√

2)(r− 1)(r+ 1).

It follows that the general solution to equation (1121) is

(1123) y(t) = c1e
√

2t + c2e
−
√

2t + c3e
t + c4e

−t.

We now see that the right hand side of equation (1100) is not related to the
solutions of equation (1121), so we may proceed to use the standard form of
the general solution in the method of undetermined coefficients, which tells us
that

(1124) y(t) = (At + B)e2t .
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Problem 11.9: Find a particular solution of the following equation.

(1125) y′′ − y′ − 6y = sin(t) + 3 cos(t).

Solution: We see that the corresponding homogeneous equation of equation
(1125) is

(1126) y′′c − y′c − 6yc = 0.

By examining the characteristic equation of equation (1126), we see that

(1127) 0 = r2 − r − 6 = (r − 3)(r + 2)→ yc(t) = c1e
−2t + c2e

3t.

Since sin(t) + 3 cos(t) is unrelated to yc(t), we may proceed to use the method of
undetermined coefficients without any adjustments. We use the trial solution of
yp(t) = A sin(t) +B cos(t) since {sin(t), cos(t)} is a linearly independent set of
functions that ’generates’ any function which is a derivative of sin(t) + 3 cos(t).
We also note that y′p(t) = A cos(t)−B sin(t), and y′′p(t) = −A sin(t)−B cos(t).
Plugging yp, y

′
p, and y′′p into equation (1125) we see that

(1128) sin(t) + 3 cos(t) = y′′p − y′p − 6yp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1129)
= −A sin(t)−B cos(t)︸ ︷︷ ︸

y′′p (t)

−(A cos(t)−B sin(t)︸ ︷︷ ︸
y′p(t)

)− 6(A sin(t) + B cos(t)︸ ︷︷ ︸
yp(t)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1130) = (−7A + B) sin(t) + (−A− 7B) cos(t)→ −7A + B = 1
−A− 7B = 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1131) → A = − 1

50

(
(−A− 7B) + 7(−7A + B)

)
= − 1

50
(3 + 7 · 1) = −1

5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1132) → B = 1 + 7A = −2

5
→ yp(t) = −1

5
sin(t)− 2

5
cos(t) .
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Problem 11.10: Find a particular solution of the following equation.

(1133) y′′ + y = cos(2t) + t3.

Solution: We see that the corresponding homogeneous equation for (1133) is

(1134) y′′c + yc = 0.

By examining the characteristic equation of equation (1134), we see that

(1135) 0 = r2 + 1→ r = ±i→ yc(t) = c′1e
−it + c′2e

it = c1 sin(t) + c2 cos(t).

Since cos(2t) + t3 is unrelated to yc(t), we may proceed to use the method of
undetermined coefficients without any adjustments. We use a trial solution of

(1136) yp(t) = A sin(2t) +B cos(2t) +Ct3 +Dt2 +Et+F , and observe that

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1137) y′p(t) = 2A cos(2t)− 2B sin(2t) + 3Ct2 + 2Dt + E, and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1138) y′′p(t) = −4A sin(2t)− 4B cos(2t) + 6Ct + 2D.

Plugging yp, y
′
p, and y′′p into equation (11.10), we see that

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1139) cos(2t) + t3 = y′′p + yp = −4A sin(2t)− 4B cos(2t) + 6Ct + 2D︸ ︷︷ ︸
y′′p (t)

+ A sin(2t) + B cos(2t) + Ct3 + Dt2 + Et + F︸ ︷︷ ︸
yp(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1140) = −3A sin(2t)− 3B cos(2t) + Ct3 + Dt2 + (E + 6C)t + (2D + F )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(1141) →

−3A = 0 (by comparing the sin(2t) terms)
−3B = 1 (by comparing the cos(2t) terms)
C = 1 (by comparing the t3 terms)
D = 0 (by comparing the t2 terms)

E + 6C = 0 (by comparing the t terms)
2D + F = 0 (by comparing the constant terms)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1142) → (A,B,C,D,E, F ) = (0,−1

3
, 1, 0,−6, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1143) → yp(t) = −1

3
cos(2t) + t3 − 6t .
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Problem 11.11: (related to the Modified Ungraded problem 16.3.35 (4))
Find a particular solution of the following equation.

(1144) y′′ + 4y = cos(2t).

Solution: We see that the corresponding homogeneous equation of equation
(1144) is

(1145) y′′c + 4yc = 0.

By examining the characteristic equation of equation (1145), we see that

(1146)
0 = r2 + 4→ r = ±2i→ yc(t) = c′1e

−2it + c′2e
2it = c1 sin(2t) + c2 cos(2t).

Normally, the method of undetermined coefficients would have us use the trial
solution yp(t) = A sin(2t) + B cos(2t). However, we see in this case that yp(t) =
yc(t) (after renaming some variables), so we have to adjust our trial solution to
obtain yp(t) = typ(t) = At sin(2t) + Bt cos(2t). Noting that

(1147) y′p(t) = A sin(2t) + 2At cos(2t) + B cos(2t)− 2Bt sin(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1148) = (−2Bt + A) sin(2t) + (2At + B) cos(2t), and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1149) y′′p(t) =

− 2B sin(2t) + 2(−2Bt + A) cos(2t) + 2A cos(2t)− 2(2At + B) sin(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1150) = (−4At− 4B) sin(2t) + (−4Bt + 4A) cos(2t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plugging yp(t), y

′
p(t), and y′′p(t) into (1144), we see that

(1151) cos(2t) = y′′p + 4yp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(1152)
= (−4At− 4B) sin(2t) + (−4Bt + 4A) cos(2t)︸ ︷︷ ︸

y′′p (t)

+4At sin(2t) + Bt cos(2t)︸ ︷︷ ︸
yp(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1153) −4B sin(2t) + 4A cos(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1154) → −4B = 0
4A = 1

→ (A,B) = (
1

4
, 0)→ yp(t) =

1

4
t sin(2t) .
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Problem 11.12: Find a particular solution to equation (1155).

(1155) y′′ + 4y = t sin(2t).

Solution: We begin by finding the general solutions of the corresponding
homogeneous equation, which is the equation

(1156) y′′c + 4yc = 0.

By examining the characteristic equation for equation (1156), we see that

(1157) r2 + 4 = 0→ r = ±2i→ yc(t) = c1 cos(2t) + c2 sin(2t).

Normally, the method of undetermined coefficients would tell us to use the trial
solution yp(t) = (At + B) cos(2t) + (Ct + D) sin(2t), since {cos(2t), sin(2t),
t cos(2t), t sin(2t)} is a linearly independent set of functions that can ’generate’
any function that is a derivative of t sin(2t). However, since cos(2t) and sin(2t)
are a solutions to equation (1156), we see that plugging yp(t) into the left hand
side of equation (1155) will result in an expression of the form E cos(2t) +
F sin(2t), which is not what we want. We consequently have to adjust our trial
solution and use yp(t) = typ(t) = (At2 + Bt) cos(2t) + (Ct2 + Dt) sin(2t). We
now see that
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1158) y′p(t) = (2At+B) cos(2t)− 2(At2 +Bt) sin(2t) + (2Ct+D) sin(2t) + 2(Ct2 +Dt) cos(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1159) = (2Ct2 + 2At+ 2Dt+B) cos(2t) + (−2At2 + 2Ct− 2Bt+D) sin(2t), and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1160) y′′p(t) = (4Ct+ 2A+ 2D) cos(2t)− 2(2Ct2 + 2At+ 2Dt+B) sin(2t)

+(−4At+ 2C − 2B) sin(2t) + 2(−2At2 + 2Ct−Bt+D) cos(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1161) = (−4At2 + 8Ct− 4Bt+ 2A+ 4D) cos(2t) + (−4Ct2 − 8At− 4Dt+ 2C − 4B) sin(2t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We may now plug yp(t), y
′
p(t), and y′′p(t) into equation (1155) in order to solve

for A,B,C and D.
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(1162) t sin(2t) = y′′p(t) + 4yp(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1163) = (−4At2 + 8Ct− 4Bt+ 2A+ 4D) cos(2t) + (−4Ct2 − 8At− 4Dt+ 2C − 4B) sin(2t)︸ ︷︷ ︸
y′′p (t)

+ 4((At2 +Bt) cos(2t) + (Ct2 +Dt) sin(2t)︸ ︷︷ ︸
yp(t)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1164) = (8Ct + 2A + 4D) cos(2t) + (−8At + 2C − 4B) sin(2t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1165) →

8C = 0 (by considering the t cos(2t) term)
2A + 4D = 0 (by considering the cos(2t) term)
−8A = 1 (by considering the t sin(2t) term)

2C − 4B = 0 (by considering the sin(2t) term)

→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1166)
C = 0

A=−1
8

→
D=−1

2A= 1
16

B= 1
2C = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1167) → yp(t) = −1

8
t2 cos(2t) +

1

16
t sin(2t) .
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Problem 11.13: Find the general solution of the following equation and solve
the given initial value problem.

(1168) y′′ + y = 4 sin(2t); y(0) = 1, y′(0) = 0.

Draw the graph of the solution and determine the period of the function. (You
may seek help from graphing website/software. Think about why the graph
behave in that way and how is that related to the solution function.)

Solution: We see that the corresponding homogeneous equation for (1168) is

(1169) y′′c + yc = 0.

By examining the characteristic equation of equation (1169), we see that

(1170) 0 = r2 + 1→ r = ±i→ yc(t) = c′1e
−it + c′2e

it = c1 sin(t) + c2 cos(t).

Since 4 sin(2t) is unrelated to yc(t), we may proceed to use the method of
undetermined coefficients without any adjustments.Using a trial solution of
yp(t) = A sin(2t) + B cos(2t), we observe that y′p(t) = 2A cos(2t)− 2B sin(2t)
and y′′p(t) = −4A sin(2t) − 4B cos(2t). Plugging yp, y

′
p, and y′′p into equation

(1168), we see that
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1171)
4 sin(2t) = y′′p + yp = −4A sin(2t)− 4B cos(2t)︸ ︷︷ ︸

y′′p (t)

+A sin(2t) + B cos(2t)︸ ︷︷ ︸
yp(t)

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1172) = −3A sin(2t)− 3B cos(2t)→ −3A = 4
−3B = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1173) → (A,B) = (−4

3
, 0)→ yp(t) = −4

3
sin(2t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now that we have found a particular solution yp(t) to equation (1168), we see
that y(t) = yp(t) + yc(t) is the general solution to equation (1168). After
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explicitly writing down the general solution y(t), we will make use of the given
initial values to finish the given initial value problem.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1174) → y(t) = yp(t) + yc(t) = −4

3
sin(2t) + c1 sin(t) + c2 cos(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1175) → y′(t) = −8

3
cos(2t) + c1 cos(t)− c2 sin(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1176)
1 = y(0) = c2

0 = y′(0) = −8
3 + c1

→ (c1, c2) = (
8

3
, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1177) → y(t) = −4

3
sin(2t) +

8

3
sin(t) + cos(t) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 60. A graph of the solution to the initial value problem given in (1168)

It is clear that y(t+ 2π) = y(t), so y(t) is periodic with a period of at most 2π.
Based on the graph of y(t), we see that the period of y(t) is not smaller than
2π, so the period of y(t) must be exactly 2π.
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Problem 11.14: Use the method of undetermined coefficients to find the
general solution to the differential equation

(1178) y′′ + 3y′ = 2t4 + t2e−3t + sin(3t).

Solution: We will first find a particular solution y1(t) for

(1179) y′′ + 3y′ = 2t4,

a particular solution y2(t) for

(1180) y′′ + 3y′ = t2e−3t,

and a particular solution y3(t) for

(1181) y′′ + 3y′ = sin(3t).

Once y1(t), y2(t), and y3(t) are all found, the linearity of equation (1178) lets
us see that y1(t) + y2(t) + y3(t) is a particular solution of (1178). To find y1(t)
we begin with

(1182) y1(t) = a4t
4 + a3t

3 + a2t
2 + a1t + a0

but we then notice that y(t) = 1 is a (nonrepeated) solution to the homogeneous
equation corresponding to equation (1178), so we have to modify this initial
guess to become

(1183) y1(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t.

Since

(1184) y′1(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t + a1 and

(1185) y′′1 (t) = 20a5t
3 + 12a4t

2 + 6a3t + 2a2,
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we see that

(1186) 2t4 = y′′1 + 3y′1

(1187) = (20a5t
3 + 12a4t

2 + 6a3t+ 2a2) + 3(5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+a1)

(1188) = 15a5t
4 +(12a4 +20a5)t3 +(9a3 +12a4)t2 +(6a2 +6a3)t+(3a1 +2a2)

(1189) →

15a5 = 2
12a4 + 20a5 = 0
9a3 + 12a4 = 0
6a2 + 6a3 = 0
3a1 + 2a2 = 0

(1190) → (a1, a2, a3, a4, a5) = (
16

81
,− 8

27
,

8

27
,−2

9
,

2

15
).

To find y2(t) we begin with

(1191) y2(t) = (a0 + a1t + a2t
2)e−3t

but we then notice that y(t) = e−3t is a (nonrepeated) solution to the homo-
geneous equation corresponding to equation (1178), so we have to modify this
initial guess to become

(1192) y2(t) = (a1t + a2t
2 + a3t

3)e−3t.

Since

(1193) y′2(t) = (a1t + a2t
2 + a3t

3)′e−3t + (a1t + a2t
2 + a3t

3)(−3e−3t)

(1194) = (a1 + 2a2t + 3a3t
2)e−3t + (−3a1t− 3a2t

2 − 3a3t
3)e−3t

(1195) =
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)
e−3t and
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(1196) y′′2 (t) =
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)′
e−3t

+
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)

(−3e−3t)

(1197) =
(
(−3a1 + 2a2) + (−6a2 + 6a3)t− 9a3t

2
)
e−3t

+
(
−3a1 + (9a1 − 6a2)t + (9a2 − 9a3)t2 + 9a3t

3
)
e−3t

(1198) =
(

(−6a1 + 2a2) + (9a1 − 12a2 + 6a3)t

+ (9a2 − 18a3)t2 + 9a3t
3
)
e−3t,

we see that

(1199) t2e−3t = y′′2 + 3y′2

(1200) =
(

(−6a1 + 2a2) + (9a1 − 12a2 + 6a3)t

+ (9a2 − 18a3)t2 + 9a3t
3
)
e−3t

+ 3
(
a1 + (−3a1 + 2a2)t + (−3a2 + 3a3)t2 − 3a3t

3
)
e−3t

(1201) =
(
(−3a1 + 2a2) + (−6a2 + 6a3)t− 9a3t

2
)
e−3t

(1202) →
−9a3 = 1

−6a2 + 6a3 = 0
−3a1 + 2a2 = 0

→ (a1, a2, a3) = (− 2

27
,−1

9
,−1

9
).

Lastly, to find y3(t) we use

(1203) y3(t) = A sin(3t) + B cos(3t).

Since
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(1204) y′3(t) = 3A cos(3t)− 3B sin(3t) and

(1205) y′′3 (t) = −9A sin(3t)− 9B cos(3t),

we see that

(1206) sin(3t) = y′′3 + 3y′3 = (−9A sin(3t)− 9B cos(3t))

+ 3(3A cos(3t)− 3B sin(3t))

(1207) = (−9A− 9B) sin(3t) + (9A− 9B) cos(3t)

(1208) → −9A − 9B = 1
9A − 9B = 0

→ (A,B) = (− 1

18
,− 1

18
).

Recalling that the general solution to the equation

(1209) y′′ + 3y′ = 0

is given by y(t) = c1 + c2e
−3t, we see that the general solution to equation

(1178) is

(1210) y(t) = c1 + c2e
−3t − 2

27
te−3t − 1

9
t2e−3t − 1

9
t3e−3t

+
16

81
t− 8

27
t2 +

8

27
t3 − 2

9
t4 +

2

15
t5 − 1

18
sin(3t)− 1

18
cos(3t).

Remark: In the beginning, we could have also directly guessed that the general
form of a particular solution is

(1211) y(t) = (c1 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5)

+ (c2 + b1t + b2t
2 + b3t

3)e−3t + A sin(3t) + B cos(3t),
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but when attempting to calculate the coefficients by hand (instead of using a
computer algebra system) it is useful to break up the work into smaller chunks
as we did here.
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Problem 11.15: Solve the initial value problem

(1212) y′ +
2

t
y =

cos(t)

t2
, y(π) = 0, t > 0.

Solution: We see that this first order differential equation is given to us in
the standard form of

(1213) y′ + p(t)y = g(t),

so our integrating factor is just

(1214) ν(t) = e
∫
p(t)dt = e

∫ 2
t dt = e2 ln(t) = t2,

where we have chosen the constant of integration to be 0 for convenience. Mul-
tiplying both sides of equation (1212) by our integrating factor ν(t) gives us

(1215) cos(t) = t2y′ + 2ty = (t2y)′

(1216) → t2y =

∫
cos(t)dt = sin(t) + C

(1217) → y(t) = y =
sin(t) + C

t2
.

We will now use our initial condition of y(π) = 0 in order to solve for the
constant C. We see that

(1218) 0 = y(π) =
sin(π) + C

π2
=
C

π2
→ C = 0.

In conclusion, we see that the solution to the initial value problem is

(1219)
sin(t)

t2
, t > 0 .
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Problem 11.16: Show that if a and λ are positive constants and b is any
real number, then every solution of the equation

(1220) y′ + ay = be−λt

has the property that y → 0 as t→∞.

Solution: Just as in problem 2.1.16, we see that the differential equation is
already given to us in standard form, so our integrating factor is

(1221) ν(t) = e
∫
adt = eat,

where we have once again chosen our constant of integration to be 0 for con-
venience. Multiplying both sides of equation (1221) by our integrating factor
ν(t) gives us

(1222) be(a−λ)t = be−λteat = eaty′ + aeaty = (eaty)′

(1223) → eaty =

∫
be(a−λ)tdt =

{
b

a−λe
(a−λ)t + C if a 6= λ

bt + C if a = λ

(1224) y(t) = y =

{
b

a−λe
−λt + Ce−at if a 6= λ

bte−at + Ce−at if a = λ
.

Since a > 0, we see that

(1225) lim
t→∞

Ce−at = lim
t→∞

bte−at = 0,

so when a = λ we have

(1226) lim
t→∞

y(t) = 0.

Similarly, since λ > 0, we see that if a 6= λ then

(1227) lim
t→∞

b

a− λ
e−λt = 0,

which shows us that in this case we also have
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(1228) lim
t→∞

y(t) = 0.
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Problem 11.17: Solve the initial value problem

(1229) y′ =
3x2 − ex

2y − 5
, y(0) = 1.

Solution: This differential equation is not linear, but it is separable, so we
will separate the variables and integrate in order to solve it. In this case, all we
have to do to separate the variables is multiple both sides of equation (1229)
by (2y − 5) to obtain

(1230) (2y − 5)y′ = 3x2 − ex

(1231) → (2y − 5)dy = (3x2 − ex)dx

(1232)

∫
(2y − 5)dy =

∫
(3x2 − ex)dx

(1233) y2 − 5y = x3 − ex + C.

To solve for C, we use the initial condition y(0) = 1 to obtain

(1234) 12 − 5× 1 = 03 − e0 + C

(1235) → C = 1− 5 + e0 = −3

(1236) → y2 − 5y = x3 − ex − 3.

We currently have an implicit relationship betwen x and y. Luckily, in this
case we can just apply the quadratic formula to obtain an explicit relationship
between x and y. We see that

(1237) y2 − 5y + (ex + 3− x3) = 0

(1238) → y =
5±

√
25− 4(ex + 3− x3)

2
=

5±
√

13− 4ex + 4x3

2
.
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Recalling that y(0) = 1, we see that

(1239) y(x) =
5−
√

13− 4ex + 4x3

2
.

We see that the solution is defined when

(1240) 13− 4ex + 4x3 ≥ 0.

We see that inequality (1240) holds when x ∈ (−1, 1) (the details of this are
left as an exercise to the reader), so we know that our solution exists on this
interval. The solution actually exists on an interval larger than (−1, 1), but it
is difficult to calculate the entire interval on which the solution exists, so we
will settle for this approximation.
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Problem 11.18:
Part a: Verify that y1(t) = 1 − t and y2(t) = −t2

4 are both solutions of the
initial value problem

(1241) y′ =
−t +

√
t2 + 4y

2
, y(2) = −1.

Where are these solutions valid?

Part b: Explain why the existence of two solutions of the given problem
does not contradict the uniqueness part of Theorem 2.4.2 of the 10th edition of
’Elementary Differential Equations’ by W.E. Boyce and R.C. DiPrima.

Part c: Show that y(t) = ct + c2, where c is an arbitrary constant, satisfies
the differential equation in part (a) for t ≥ −2c. If c = −1, then the initial
condition is also satisfied and the solution y = y1(t) is obtained. Show that
no other choice of c gives a second solution. Note that no choice of c gives the
solution y = y2(t).

Solution to (a): We see that y1(2) = y2(2) = −1. We also see that

(1242) y′1 = −1 and

(1243)
−t +

√
t2 + 4(1− t)

2
=
−t +

√
t2 − 4t + 4

2
=
−t +

√
(t− 2)2

2

(1244)
∗
=
−t + (t− 2)

2
= −1,

so y1(t) is indeed a solution to the initial value problem in equation (1241) that
is valid for t ∈ [2,∞) (as seen from equation (*)). Lastly, we see that

(1245) y′2 = − t
2

and

(1246)
−t +

√
t2 + 4(−t2

4 )

2
=
−t
2
,
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so y2(t) is also a solution to the initial value problem in equation (1241) that is
valid for all t ∈ (−∞,∞).

Solution to (b): We see that in this problem we have

(1247) f = f (t, y) =
−t +

√
t2 + 4y

2
,

so

(1248)
∂f

∂y
=

1√
t2 + 4y

.

Since ∂f
∂y (2,−1) is not defined, ∂f

∂y is not continuous in any open rectangle con-

taining (2,−1), so the conditions of Theorem 2.4.2 are not satisfied, which
means that we cannot apply the uniqueness part of Theorem 2.4.2.

Solution to (c): Letting c be any real number and letting y(t) = ct+ c2 we
see that

(1249) y′ = c and

(1250)
−t +

√
t2 + 4(ct + c2)

2
=
−t +

√
t2 + 4ct + 4c2

2
=
−t +

√
(t + 2c)2

2

(1251)
∗
=
−t + t + 2c

2
= c,

so y(t) is a solution to the differential equation in (1241). In order to satisfy
the initial condition of y(2) = −1, we see that we must have

(1252) − 1 = 2c + c2 → 0 = 1 + 2c + c2 = (1 + c)2 → c = −1.

When c = −1, we see that we do indeed recover the solution y1(t). Furthermore,
we see that y2(t) is a solution to the initial value problem in equation (1241)
that does not come from y(t) for any choice of c.
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Problem 11.19: Solve the differential equation

(1253)
dy

dx
=
x2 + xy + y2

x2
.

Solution: Letting

(1254) F (x, y) =
x2 + xy + y2

x2
,

we see that for any real number c we have

(1255) F (cx, cy) =
(cx)2 + (cx)(cy) + (cy)2

(cx)2
=
c2x2 + c2xy + c2y2

c2x2

(1256) =
x2 + xy + y2

x2
= F (x, y),

so equation (1254) is a homogeneous equation. Letting v = y
x, we see that

(1257) v′ =
dv

dx
=
y′

x
− y

x2
=
y′

x
− v

x

(1258) → xv′ + v = y′.

We may now rewrite equation (1254) as a differential equation in v. Observe
that

(1259) xv′ + v = y′ =
x2 + xy + y2

x2
=
x2

x2
+
xy

x2
+
y2

x2

(1260) = 1 +
y

x
+ (

y

x
)2 = 1 + v + v2

(1261) → xv′ = 1 + v2.

We see that equation (1261) is a separable differential equation, so we may go
ahead and solve it by separating the variables. We see that

(1262)
dv

1 + v2
=
dx

x
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(1263) →
∫

dv

1 + v2
=

∫
dx

x

(1264) → tan−1(v) = ln(x) + C.

(1265) → tan−1(
y

x
) = ln(x) + C

(1266) → y

x
= tan(ln(x) + C)

(1267) → y(x) = y = x tan(ln(x) + C) ,

Since there were no initial values, we did not need to solve for C, but we do need
to find an interval on which the solution is valid. We see that we need x 6= 0
in order for equation (1254) to be well defined, x > 0 in order for the ln(x)
in equation (1267) to be well defined, and we need ln(x) + C to be contained
between 2 consecutive odd multiples of π2 in order for the tan in equation (1267)
to be well defined. This last conditions results in the following calculations.

(1268)

ln(x) + C ∈ (
2n− 1

2
π,

2n + 1

2
π)⇔ ln(x) ∈ (

2n− 1

2
π − C, 2n + 1

2
π − C)

(1269) ⇔ x ∈ (e
2n−1

2 π−C, e
2n+1

2 π−C) (for some integer n) .
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Problem 11.20: Find and classify (stable, unstable, semistable) the equilib-
rium points of the differential equation

(1270)
dy

dt
= y(1− y2), −∞ < y0 <∞.

Solution: We first examine the direction field of equation (1270) and examine
some integral curves.

Figure 61. The direction field for equation (1270).
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Figure 62. Some integral curves for equation (1270).

From the integral curves, we see that y = −1 and y = 1 are stable equilibrium
points and y = 0 is an unstable equilibrium point. We will now rigorously
verify that this is the case. Let f (y) = y(1− y2).

We see that if y > 1 then f (y) < 0 and if 0 < y < 1 then f (y) > 0. Since
y′ = f (y), we see that when y is larger than 1, it will decrease, and when y is
between 0 and 1 it will increase, so y = 1 is a stable equilibrium point.

Similarly, when y < −1 we have f (y) > 0 and when −1 < y < 0 we have
f (y) < 0. Since y′ = f (y), we see that when y is smaller than −1 it will
increase, and when y is between −1 and 0 it will decrease, so y = −1 is a stable
equilibrium point.
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Lastly, to see that y = 0 is an unstable equilibrium point, we simply recall that
if y is between 0 and 1 then it will increase towards 1, and if y is between −1
and 0 then it will decrease towards −1.

Page 357



Sohail Farhangi Problems and Solutions Compilation

Problem 11.21: Find and classify (stable, unstable, semistable) the equilib-
rium points of the differential equation

(1271)
dy

dt
= y2(4− y2), −∞ < y0 <∞.

Solution: We first examine the direction field of equation (1271) and examine
some integral curves.

Figure 63. The direction field for equation (1271)
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Figure 64. Some integral curves for equation (1271)

From the integral curves, we see that y = 2 is a stable equilibrium point, y = 0
is a semistable equilibrium point and y = −2 is an unstable equilibrium point.
We will now rigorously verify that this is the case. Let f (y) = y2(4− y2).

We see that if y > 2 then f (y) < 0 and if 0 < y < 2 then f (y) > 0. Since
y′ = f (y), we see that when y is larger than 2, it will decrease, and when y is
between 0 and 2 it will increase, so y = 2 is a stable equilibrium point.

Similarly, when y < −2 we have f (y) < 0 and when −2 < y < 0 we have
f (y) > 0. Since y′ = f (y), we see that when y is smaller than −2 it will
decrease, and when y is between −2 and 0 it will increase, so y = −2 is an
unstable equilibrium point.

Page 359



Sohail Farhangi Problems and Solutions Compilation

Lastly, to see that y = 0 is a semistable equilibrium point, we simply recall that
if y is between 0 and 2 then it will increase towards 2, and if y is between −2
and 0 then it will decrease towards 0.
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Problem 11.22: Find and classify (stable, unstable, semistable) the equilib-
rium points of the differential equation

(1272)
dy

dt
= y2(1− y)2, −∞ < y0 <∞.

Solution: We first examine the direction field of equation (1272) and examine
some integral curves.

Figure 65. The direction field for equation (1272).
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Figure 66. Some integral curves for equation (1272).

From the integral curves, we see that y = 0 and y = 1 are both semistable
equilibrium points. We will now rigorously verify that this is the case. Let
f (y) = y2(1− y)2.

We see that if y > 1 then f (y) > 0 and if 0 < y < 1 then f (y) > 0. Since
y′ = f (y), we see that when y is larger than 1, it will increase, and when y is
between 0 and 1 it will increase, so y = 1 is a semistable equilibrium point.

Similarly, when y < 0 we have f (y) > 0. Since y′ = f (y), we see that when y
is smaller than 0 it will increase, and we already saw that if y is between 0 and
1 it will increase, so y = 0 is also a semistable equilibrium point.
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Lastly, to see that y = 0 is a semistable equilibrium point, we simply recall that
if y is between 0 and 2 then it will increase towards 2, and if y is between −2
and 0 then it will decrease towards 0.
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Problem 11.23: Solve the following initial value problem and find an interval
on which the solution is valid.

(1273) (2x− y) + (2y − x)y′ = 0, y(1) = 3.

Solution: First, we will check whether or not equation (1273) is an exact
equation. Letting M(x, y) = 2x − y and N(x, y) = 2y − x, we see that
My(x, y) = −1 = Nx(x, y), so (1273) is an exact equation. This means that
there exists a function ψ(x, y) for which ψx(x, y) = M(x, y) and ψy(x, y) =
N(x, y). We now see that

(1274) ψ(x, y) =

∫
M(x, y)dx+h(y) =

∫
(2x−y)dx+h(y) = x2−xy+h(y)

(1275) → 2y − x = N(x, y) = ψy(x, y) = −x + h′(y)

(1276) → h′(y) = 2y → h(y) = y2 + c1

(1277) → ψ(x, y) = x2 − xy + y2 + c1.

If y = y(x) is a solution to equation (1273), then

(1278) 0 = (2x− y(x))+(2y(x)− x) y′(x) = M (x, y(x))+N (x, y(x)) y′(x)

(1279) = ψx (x, y(x)) + ψy (x, y(x)) y′(x) =
d

dx
ψ (x, y(x))

(1280) → ψ (x, y(x)) = c2 → x2 − xy + y2 = c3 := c2 − c1.

To determine the value of c3, we simply use the initial condition of y(1) = 3 to
see that

(1281) c3 = 12 − 1 · 3 + 32 = 7.

It follows the the implicit relationship between x and y is given by
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(1282) x2 − xy + y2 = 7.

Luckily, in this case we can explicitly solve for y in terms of x by using the
quadratic formula. We note that

(1283) y2 + (−x)y + (x2 − 7) = 0

(1284) → y(x) = y =
x±

√
x2 − 4(x2 − 7)

2
=
x±
√

28− 3x2

2
.

Once again recalling that y(1) = 3, we see that

(1285) y =
x +
√

28− x2

2
.

We see that the solution is well defined for x ∈ [−
√

28
3 ,
√

28
3 ], and that all

of the terms of equation (1273) are well defined on the interval (−
√

28
3 ,
√

28
3 )

(consider y′), so our solution is valid on (−
√

28

3
,

√
28

3
) .

Remark: We see that in equation (1276) we could have simply taken c1 = 0
and c2 = c3 so that we only ever have to manage 1 constant term. In the future,
we will do this.
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Problem 11.24: Find the general solution of the differential equation

(1286) 1 +

(
x

y
− sin(y)

)
y′ = 0.

Solution: We begin by checking whether or not equation (1286) is an ex-
act equation. Letting M(x, y) = 1 and N(x, y) = x

y − sin(y), we see that

My(x, y) = 0 6= 1
y = Nx(x, y). However, we see thatMy(x, y)−Nx(x, y) = −1

y .

Since My(x, y) − Nx(x, y) is a function of a single variable, we can multiply
equation (1286) by an integrating factor µ(x, y) to turn it into an exact equa-
tion. We recall that an integrating factor µ(x, y) satisfies equation (26) of
chapter 2.6 of the textbook, namely,

(1287) Mµy −Nµx + (My −Nx)µ = 0.

Since My−Nx is a function only of y, we can make equation (1287) a separable
equation if we set µx = 0, which will happen if we assume that µ = µ(y)
is a function only of y instead of a function of x and y. After making this
assumption, we see that

(1288) 0 = Mµy + (My −Nx)µ = µy −
1

y
µ

(1289) → 1

y
=
µy
µ

=

dµ
dy

µ

(1290) → dy

y
=
dµ

µ
→
∫
dy

y
=

∫
dµ

µ

(1291) → ln(y) = ln(u) + c→ y = Aµ.

Since we can take µ to be any solution of equation (1287), we may set A = 1
to obtain µ = y. Multiplying both sides of equation (1286) by y yields

(1292) y + (x− y sin(y)) y′ = 0,
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which is easily checked to be an exact equation. We now proceed as we did in
problem 2.6.13. We see that

(1293) ψ(x, y) =

∫
M(x, y)dx + h(y) =

∫
ydx + h(y) = xy + h(y)

(1294) → x− y sin(y) = N(x, y) = ψy(x, y) = x + h′(y)

(1295) → h′(y) = −y sin(y)→ h(y) = y cos(y)− sin(y)

(1296) → ψ(x, y) = xy + y cos(y)− sin(y).

Using the same reasoning as in equations (1278)-(1280) from problem 2.6.13,
we see that there is a constant c for which

(1297) c = ψ(x, y) = xy + y cos(y)− sin(y) .

We settle for the implicit solution since we are not able to explicitly solve for y
in terms of x.
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Problem 11.25: Use Euler’s method to approximate values of the solution
of the given initial value problem at t = 0.1, 0.2, 0.3, and 0.4 with h = 0.1.

(1298) y′ = 0.5− t + 2y, y(0) = 1.

Solution: We apply Euler’s method as instructed.

(1299) y(0.1) ≈ y(0) + 0.1 · y′(0) = 1 + 0.1 · (0.5− 0 + 2 · 1) = 1.25.

(1300) y(0.2) ≈ y( 0.1︸︷︷︸
t

) + 0.1︸︷︷︸
h

·y′( 0.1︸︷︷︸
t

)

≈ 1.25 + 0.1︸︷︷︸
h

·(0.5− 0.1︸︷︷︸
t

+2 · 1.25) = 1.54.

(1301) y(0.3) ≈ y(0.2)+0.1·y′(0.2) ≈ 1.54+0.1·(0.5−0.2−2·1.54) = 1.878.

(1302) y(0.4) ≈ y(0.3) + 0.1 · y′(0.3)

≈ 1.878 + 0.1 · (0.5− 0.3 + 2 · 1.878) = 2.2736.
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Problem 11.26: A homebuyer takes out a mortgage of $100, 000 with an
interest rate of 9%. What monthly payment is required to pay off the loan in
30 years? In 20 years? What is the total amount paid during the term of the
loan in each of these cases?

Solution: We will assume that at the end of the month the interest is applied
first, and the monthly payment is paid afterwards. Let p denote the monthly
payment of the homebuyer and let un denote the debt that remains at the end
of the nth month after the interest has been applied and the monthly payment
has been paid. By convention, we set u0 = $100, 000. We see that the sequence
un satisfies the recurrence relation

(1303) un+1 = (1 +
0.09

12
)un − p = 1.0075un − p, for n ≥ 0.

Please note that if interest was applied after the monthly payment is paid, then
we would instead have the recurrence

(1304) un+1 = (1 +
0.09

12
)(un − p) = 1.0075un − 1.0075p, for n ≥ 0.

For convenience, let r = 1.0075. This step is not necessary, but I think that it
makes the work we are about to do much cleaner and more understandable. In
order to find a general formula for un, let us calculate u1, u2, and u3 to see if
we can detect a pattern. We see that

(1305) u1 = ru0 − p,

(1306) u2 = ru1 − p = r(ru0 − p)− p = r2u0 − rp− p, and

(1307) u3 = ru2 − p = r(r2u0 − rp− p)− p = r3u0 − r2p− rp− p.

This leads us to the conjecture that
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(1308) un = rnu0 −
n−1∑
j=0

rjp, for n ≥ 0,

and we can verify this conjecture using the method of induction. We see that
the induction hypothesis (equation (1308)) holds for n = 0 by convention. If
the convention is bothersome, then it is also sufficient to note that the induction
hypothesis holds for n = 1. For the inductive step, we will assume that the
hypothesis is true for n = N , and show that this implies that the hypothesis is
true for n = N + 1. We see that

(1309) uN+1 = ruN − p = r(rNu0 −
N−1∑
j=0

rjp)− p

(1310) = rN+1u0 − (r

N−1∑
j=0

rjp)− p = rN+1u0 −
N−1∑
j=0

rj+1p− p

(1311) = rN+1u0 −
N∑
j=1

rjp− p = rN+1u0 −
N∑
j=0

rjp.

Having completed the inductive step, we see that we do indeed have

(1312) un = rnu0 −
n∑
j=1

rjp, for n ≥ 0.

We now observe that for n ≥ 0 we have

(1313) un = rnu0 −
n−1∑
j=0

rjp = rnu0 − p
n−1∑
j=0

rj = rnu0 − p(
rn − 1

r − 1
)

(1314) = (1.0075)n100, 000− p(
1.0075n − 1

.0075
).
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Next, we note that paying off the loan in 30 years corresponds to the equation
u360 = 0, from which we see

(1315) (1.0075)360100, 000− p(
1.0075360 − 1

.0075
) = 0

(1316) → p =
(1.0075)360100, 000

1.0075360−1
.0075

≈ 804.623.

It follows that a monthly payment of p = $804.63 will allow the homebuyer to
pay off the loan in 30 years. Note that the answer is the textbook is p = $804.62,
but rounding down does not make sense in the real world. This means that the
total amount paid during the term of the loan is approximately

(1317) 360 · $804.63 = $289, 666.80.

The exact amount paid over the course of the loan is

(1318) 359 · $804.63 + 1.0075 ∗ u359 = $289, 653.283,

with the method of rounding depending on real world conditions.

Finally, we note that paying off the loan in 20 years corresponds to the equation
u240 = 0, from which we see

(1319) (1.0075)240100, 000− p(
1.0075240 − 1

.0075
) = 0

(1320) → p =
(1.0075)240100, 000

1.0075240−1
.0075

≈ 899.726.

It follows that a monthly payment of p = $899.73 will allow the homebuyer to
pay off the loan in 20 years. This means that the total amount paid during the
term of the loan is approximately

(1321) 240 · $899.73 = $215, 935.20.
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The exact amount paid over the course of the loan is

(1322) 239 · $899.73 + 1.0075 ∗ u239 = $215, 932.499,

with the method of rounding depending on real world conditions.
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Problem 11.27: Consider the differential equation

(1323) y′′ − (2α− 1)y′ + α(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (1323) tend to
zero as t→∞. Also find all values of α (if any) for which all nonzero solutions
become unbounded as t→∞.

Solution: We see that the characteristic polynomial of equation (1323) is

(1324) r2 − (2α− 1)r + α(α− 1),

which has roots

(1325) r =
2α− 1±

√
(2α− 1)2 − 4α(α− 1)

2
=

2α− 1±
√

4

2

(1326) = α− 5

2
, α +

3

2
.

Firstly, we note that the characteristic polynomial of equation (1323) never has
a double root, so the general solution is

(1327) y(t) = c1e
(α−5

2)t + c2e
(α+3

2)t.

The nonzero solutions of equation (1323) will become unbounded as t→∞ if

and only if e(α−5
2)t and e(α+3

2)t each become unbounded as t → ∞. Recalling
that eβt becomes unbounded as t → ∞ if and only if β > 0, we see that the
nonzero solutions of (1323) become unbounded if and only if α− 5

2 > 0, which
occurs precisely when α > 5

2. Next, we see that the solutions of equations
(1323) tend to zero as t→∞ if and only if α− 5

2 and α+ 3
2 are both negative,

which occurs precisely when α < −3
2.
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Problem 11.28: Consider the differential equation

(1328) y′′ + (3− α)y′ − 2(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (1328) tend to
zero as t→∞. Also find all values of α (if any) for which all nonzero solutions
become unbounded as t→∞.

Solution: We see that the characteristic polynomial of equation (1328) is

(1329) r2 + (3− α)r − 2(α− 1),

which has roots

(1330) r =
−(3− α)±

√
(3− α)2 − 4(−2(α− 1))

2

(1331) =
α− 3±

√
α2 + 2α + 1

2
=
α− 3± (α + 1)

2
= α− 2,−2.

Since r = −2 is always a root of the characteristic polynomial, we see that e−2t

is always a solution to equation (1328), so there are no values of α for which
all nonzero solutions become unbounded as t → ∞. Next, we note that the
general solution to equation (1328) is

(1332) y(t) =

{
c1e
−2t + c2e

(α−2)t if α 6= 0

c1e
−2t + c2te

−2t if α = 0
.

In order for all solutions to tend to zero as t→∞ we need α−2 to be negative,
which occurs precisely when α < 2.
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Problem 11.29: As will be shown in Section 16.4, the equation y′′+py′+qy =
f (t), where p and q are constants and f is a specified function, is used to model
both the mechanical oscillators and electrical circuits. Depending on the values
of p and q, the solutions to this equation display a wide variety of behavior.
Consider the equation

y′′ + 9y = 8 sin(t).

(a). (4 points) Verify that the following equations have the given general
solutions

y = c1 sin(3t) + c2 cos(3t) + sin t.

(b). (4 points) Solve the initial value problem with the given initial conditions
y(0) = 0, y′(0) = 2.
(c). (2 points) Graph the solutions to the initial value problem, for t ≥ 0.

Solution to a: We see that for y(t) = c1 sin(3t) + c2 cos(3t) + sin(t) we have

(1333) y′′ + 9y = (c1 sin(3t) + c2 cos(3t) + sin(t)︸ ︷︷ ︸
y(t)

)′′ + 9(c1 sin(3t) + c2 cos(3t) + sin(t)︸ ︷︷ ︸
y(t)

)

(1334) = −9c1 sin(3t)− 9c2 cos(3t)− sin(t)︸ ︷︷ ︸
y′′(t)

+ 9c1 sin(3t) + 9c2 cos(3t) + 9 sin(t)︸ ︷︷ ︸
9y(t)

(1335) = 8 sin(t).

Solution to b: Noting that y′(t) = 3c1 cos(3t)− 3c2 sin(3t) + cos(t), we see
that

(1336)
0 = y(0) = 3c2

2 = y′(0) = 3c1 + 1
→ (c1, c2) = (

1

3
, 0).

(1337) → y(t) =
1

3
sin(3t) + sin(t) .

Solution to c:
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Figure 67. A graph of the solution to the initial value problem.
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Problem 11.30: Find the Wronskian of the differential equation

(1338) t2y′′ − t(t + 2)y′ + (t + 2)y = 0

without solving the equation.

Solution: Firstly, we will divide both sides of equation (1338) by t2 to obtain

(1339) y′′ −
(
t + 2

t

)
y′ +

(
t + 2

t2

)
y = 0.

Since equation (1339) is a second order linear ordinary differential equation of
the form

(1340) y′′ + p(t)y′ + q(t)y = g(t),

we see that a solution is gaurenteed to exist on (−∞, 0) or (0,∞). We also see
that the Wronskian is

(1341) W (t)
∗
= e

∫
−p(t)dt = e

∫ t+2
t dt = e

∫
(1+2

t )dt
∗
= et+2 ln(|t|) = |t|2et = t2et .

We see that the Wronskian is never 0 on (−∞, 0) or (0,∞) so equation (1339)
has a unique solution for any initial values of the form y(t0) = c1 and y′(t0) = c2

with t0 6= 0 and c1, c2 ∈ R.
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Problem 11.31: Given that y1(t) = t is a solution to equation (1338), use the
Wronskian W (t) to find another independent solution y2(t). (Compare with
Problem 11.35)

Solution: We see that

(1342) t2et
∗
= W (t)

∗
= y1y

′
2 − y′1y2 = ty′2 − y2

(1343) → y′2 −
1

t
y2 = tet.

We can solve equation (1343) by multiplying both sides by an integrating factor
I(t), which in this case is given by

(1344) I(t) = e
∫
−1
t dt

∗
= e− ln(|t|) =

1

|t|
.

Since integrating factors are determined up to a constant, we may simply use
I(t) = 1

t instead of I(t) = 1
|t|. Multiplying both sides of (1343) by 1

t , we see

that

(1345) et =
1

t
y′2 −

1

t2
y2 = (

1

t
y2)′

(1346) → 1

t
y2 =

∫
etdt

∗
= et

(1347) → y2(t) = tet .
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Problem 11.32: Solve the initial value problem

(1348) y′′ − 2y′ + 5y = 0, y(
π

2
) = 0, y′(

π

2
) = 2,

then sketch the graph of the solution and describe the behavior as t→∞.

Solution: We see that the characteristic polynomial of equation (1348) is

(1349) r2 − 2r + 5,

which has roots

(1350) r =
2±

√
(−2)2 − 4 · 5

2
=

2±
√
−16

2
= 1± 2i.

It follows that the general solution to equation (1348) is

(1351) y(t) = c′1e
(1+2i)t + c′2e

(1−2i)t,

which can also be more conveniently expressed as

(1352) y(t) = c1e
t cos(2t) + c2e

t sin(2t).

From the initial condition y(π2) = 0 we see that

(1353) 0 = y(
π

2
) = c1e

π
2 cos(π) + c2e

π
2 sin(π) = −c1e

π
2 → c1 = 0.

From the initial condition y′(π2) = 2 we see that

(1354) 2 = y′(
π

2
) =

d

dt
(c2e

t sin(2t))
∣∣∣
t=π

2

= (c2e
t sin(2t) + 2c2e

t cos(2t))
∣∣∣
t=π

2

(1355) = c2e
π
2 sin(π) + 2c2e

π
2 cos(π) = −2c2e

π
2 → c2 = −e−

π
2
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(1356) → y(t) = −e−
π
2et cos(2t) = −et−

π
2 cos(2t) .

We see from the graphs below that the solution y(t) oscillates wildly as t →
∞. Instead of converging to any particular value, the end behavior of y(t) is
unbounded and even oscillates between −∞ and ∞.

Figure 68. The graph of the solution y(t) near the origin.

Figure 69. The graph of the solution y(t) on a larger domain.
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Problem 11.33: Solve the differential equation

(1357) t2y′′ − ty′ + 5y = 0, t > 0.

Solution: Since equation (1357) is an Euler equation, we make the substitu-
tion x = ln(t) and h(x) = y(ex) = y(t). Since t = ex, we may use the chain
rule to see that

(1358)
dh

dx
=
dy

dt
· dt
dx

= ex
dy

dt
= t

dy

dt
, and

(1359)
d2h

dx2
=

d

dx
(
dh

dx
) =

d

dx
(ex

dy

dt
)

(1360) = ex
dy

dt
+ ex

(
d

dx

dy

dt

)
= ex

dy

dt
+ ex

(
d2y

dt2
· dt
dx

)

(1361) = ex
dy

dt
+ ex

(
ex
d2y

dt2

)
= t2

d2y

dt2
+ t

dy

dt
.

We now see that substituting x = ln(t) into equation (1357) yields

(1362) 0 = t2y′′ − ty′ + 5y = (t2y′′ + ty′)− 2ty′ + 5y = h′′ − 2h′ + 5h.

Since we now have t and x as independent variables, it is important to note that
h′ = dh

dx and y′ = dy
dt . This is not the most clear notation, so some people prefer

to be more explicit and only write dh
dx and dy

dt without any use of ′. Regardless
of your preferred convention, be careful to avoid the errors that arise when you
assume y′ = dy

dx and h′ = dh
dt .

We see that the characteristic polynomial of equation (1362) is

(1363) r2 − 2r + 5,

and has roots
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(1364) r =
2±

√
(−2)2 − 4 · 5

2
=

2±
√
−16

2
= 1± 2i.

It follows that the general solution to equation (1362) is

(1365) h(x) = c1e
x cos(2x) + c2e

x sin(2x).

Finally, we see that

(1366) y(t) = h(x) = h(ln(t)) = c1e
ln(t) cos(2 ln(t)) + c2e

ln(t) sin(2 ln(t))

(1367) = c1t cos(2 ln(t)) + c2t sin(2 ln(t)) .
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Problem 11.34: Given a ∈ R, solve the differential equation

(1368) y′′ + 2ay′ + a2y = 0.

Hint: It helps to consider the Wronskian.

Solution: We see that the characteristic polynomial of equation (1368) is

(1369) r2 + 2ar + a2 = (r + a)2.

Since the characteristic polynomial has r = −a as a repeated root, we see that
one solution to equation (1368) is y1(t) = e−at, but the second solution has
yet to be found. To find the second solution, we will proceed as we did in the
Bonus to problem 3.2.29. We see that the Wronskian is given by

(1370) W (t) = e
∫
−2adt = e−2at.

It follows that the second solution y2(t) satisfies the differential equation

(1371) e−2at = W (t) = y1y
′
2 − y′1y2 = e−aty′2 + ae−aty2

(1372) → y′2 + ay2 = e−at.

We can solve equation (1372) by multiplying both sides by an integrating factor
I(t). We see that

(1373) I(t) = e
∫
adt = eat

is a suitable choice of integrating factor. After multiplying both sides of equation
(1372) by eat, we see that

(1374) 1 = eaty′2 + aeaty2 = (eaty2)′

(1375) → eaty2 = t→ y2 = te−at.
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Since y2(t) is indeed an independent solution to y1(t), we see that the general
solution to equation (1368) is

(1376) y(t) = c1e
−at + c2te

−at .

It is clear that this solution is defined on all of (−∞,∞). Furthermore, since the
Wronskian W (t) is never 0, we see that for any t0, b1, b2 ∈ R, there is a unique
solution to equation (1368) when we impose the initial conditions y(t0) = b1

and y′(t0) = b2.
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Problem 11.35: Given that y1(t) = t is a solution to the differential equation

(1377) t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0,

use the method of reduction of order to find a second solution. (Compare with
problem 11.31)

Solution: Let u(t) be such that y2(t) = u(t)y1(t) = tu(t) is a second (inde-
pendent) solution to equation (1377). We see that

(1378) 0 = t2(tu(t))′′ − t(t + 2)(tu(t))′ + (t + 2)tu(t)

(1379) = t2(tu′′(t) + 2u′(t))− t(t + 2)(tu′(t) + u(t)) + (t + 2)tu(t)

(1380) = t3u′′(t)+2t2u′(t)−t3u′(t)−2t2u′(t)−t2u(t)−2tu(t)+t2u(t)+2tu(t)

(1381) = t3u′′(t)− t3u′(t)→ 0 = u′′(t)− u′(t)

(1382) → u′(t) = u′′(t) =
du′(t)

dt
→ dt =

du′(t)

u′(t)

(1383) →
∫
dt =

∫
du′(t)

u′(t)

(1384) → t
∗
= ln(u′(t))→ u′(t) = et

(1385) → u(t) =

∫
etdt

∗
= et.

It follows that a second solution to equation (1377) is y2(t) = tu(t) = tet.
After plugging tet back into equation (1377) to check our work, we see that
y2(t) = tet is indeed a second solution to equation (1377) that is independent
from y1(t) = t.
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Problem 11.36: Use the method of variation of parameters to find the general
solution to the differential equation

(1386) (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1,

given that y1(t) = et and y2(t) = t are solutions to the corresponding homoge-
neous equation.

Solution: We begin by considering solutions to equation (1386) of the form

(1387) y(t) = u1(t)y1(t) + u2(t)y2(t) = etu1(t) + tu2(t),

where u1(t) and u2(t) are functions that are yet to be determined. We see that

(1388) y′(t) = etu′1(t) + etu(t) + tu′2(t) + u2(t).

Viewing u1(t) and u2(t) as free variables, we see that we have 2 degrees of
freedom, but we currently only have 1 constraint, which is that y(t) satisfy
equation (1386). It follows that we can impose a second constraint, so we
impose

(1389) etu′1(t) + tu′2(t) = 0,

from which we see that

(1390) y′(t) = etu1(t) + u2(t).

We now see that

(1391) y′′(t) = etu′1(t) + etu1(t) + u′2(t), so

(1392) 2(t− 1)2e−t = (1− t)y′′ + ty′ − y

(1393) = (1−t)(etu′1(t)+etu1(t)+u′2(t))+t(etu1(t)+u2(t))−(etu1(t)+tu2(t))
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(1394) = etu′1(t)− tetu′1(t) + u′2(t)− tu′2(t)

(1395)
by (1389)

= −tu′2(t) + t2u′2(t) + u′2(t)− tu′2(t) = (t− 1)2u′2

(1396) → u′2(t) = 2e−t
by (1389)→ u′1(t) = −2te−2t

(1397) → u1(t)
∗
= te−2t +

1

2
e−2t and u2(t)

∗
= −2e−t

(1398) → y(t) = te−t +
1

2
e−t − 2te−t = (

1

2
− t)e−t .
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Problem 11.37: Use the method of reduction of order to find the general
solution to the differential equation

(1399) (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1,

given that y1(t) = et is a solution to the corresponding homogeneous equation.

Solution: We search for solutions of the form y(t) = v(t)y1(t) = etv(t).
Noting that

(1400) y′(t) = etv(t) + etv′(t), and

(1401) y′′(t) = etv(t) + 2etv′(t) + etv′′(t),

we see that

(1402) 2(t− 1)2e−t = (1− t)y′′ + ty′ − y

(1403) = (1− t)(etv(t) + 2etv′(t) + etv′′(t)) + t(etv(t) + etv′(t))− etv(t)

(1404) = ((1− t)et + tet − et)︸ ︷︷ ︸
This part will always be 0.

v(t) + (2(1− t)et + tet)v′(t) + etv′′(t)

(1405) = (2et − tet)v′(t) + (1− t)etv′′(t).

(1406) → v′′(t) +

(
2− t
1− t

)
v′(t) = 2(1− t)e−2t.

Since equation (1406) is a first order linear differential equation with respect to
v′(t) (instead of v(t)) and it is in standard form, we can solve it by using an
integrating factor. We see that the integrating factor I(t) is given by

(1407) I(t) = e
∫
p(t)dt = e

∫ 2−t
1−tdt = e

∫
( 1

1−t+1)dt ∗∗= e− ln(1−t)+t =
et

1− t
.
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Multiplying both sides of equation (1406) by I(t) yields

(1408) 2e−t =
et

1− t
v′′(t) +

(2− t)et

(1− t)2
v′(t) = (

et

1− t
v′(t))′

(1409) → et

1− t
v′(t) = −2e−t + c1 → v′(t) = −2(1− t)e−2t + c1(1− t)e−t

(1410) → v(t) = (1− t)e−2t − 1

2
e−2t + c1te

−t + c2

(1411) = (
1

2
− t)e−2t + c1te

−t + c2

(1412) → y(t) = etv(t) = (
1

2
− t)e−t + c1t + c2e

t .

Remark: Observe that the c1t corresponds to the fact that y2(t) = t is
the second solution to the homogeneous equation corresponding to (1399). So
in this case the method of reduction of order has given us more than just a
particular solution to equation (1399)!
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Problem 11.38: A spring–mass system has a spring constant of 3 N/m.
A mass of 2 kg is attached to the spring, and the motion takes place in a
viscous fluid that offers a resistance numerically equal to the magnitude of
the instantaneous velocity. If the system is driven by an external force of
(3 cos(3t) − 2 sin(3t)) N, determine the steady state response. Express your
answer in the form R cos(ωt− δ).

Solution: We know that the general equation governing the motion of a spring
is

(1413) mu′′ + γu′ + ku = F (t),

and we are given that m = 2, k = 3, and F (t) = 3 cos(3t)− 2 sin(3t). To find
the damping constant γ, we recall that the resistance offered by a viscous fluid
with damping constant γ is γu′, and we are told in this case that γu′ = u′ so
γ = 1. It follows that we want to solve the differential equation

(1414) 2u′′ + u′ + 3u = 3 cos(3t)− 2 sin(3t).

We would like to use the method of undetermined coefficients to proceed, but we
should first solve the corresponding homogeneous equation in order to determine
the general form of the solution. We see that the differential equation

(1415) 2u′′ + u′ + 3u = 0

has characteristic polynomial

(1416) 2r2 + r + 3,

which has roots

(1417) r =
−1±

√
12 − 4 · 2 · 3
2·

=
−1±

√
−23

4
.

Since sin(3t) and cos(3t) are not solutions to equation (1415), we see that the
general form of a particular solution to equation (1414) is
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(1418) y(t) = A sin(3t) + B cos(3t).

Observing that

(1419) y′(t) = 3A cos(3t)− 3B sin(3t) and

(1420) y′′(t) = −9A sin(3t)− 9B cos(3t),

we see that

(1421) 3 cos(3t)− 2 sin(3t) = 2u′′ + u′ + 3u

(1422)
= 2(−9A sin(3t)−9B cos(3t))+(3A cos(3t)−3B sin(3t))+3(A sin(3t)+B cos(3t))

(1423) = (3A− 15B) cos(3t) + (−15A− 3B) sin(3t)

(1424) → 3A − 15B = 3
−15A − 3B = −2

→ (A,B) = (
1

6
,−1

6
).

Since we are searching for the steady state solution, we ignore any potential
contribution from equation (1415), as our current solution of

(1425) y(t) = A sin(3t) + B cos(3t) =
1

6
sin(3t)− 1

6
cos(3t)

is already a periodic solution, and any contributions from equation (1415) would
result in a non-periodic solution. All that remains is to express the answer in
the form y(t) = R cos(ω0t − δ). To do this, we proceed as we did in problem
3.7.4. We see that ω0 = 3, and that R is given by

(1426) R =

√
(
1

6
)2 + (−1

6
)2 =

√
2

6
.
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Since

(1427) cos(δ) = − 1√
2

and sin(δ) =
1√
2
,

we see that δ = 3π
4 . We were lucky enough to have δ be a special angle, so we

did not have to work with inverse trig functions this time! In conclusion, the
steady state solution is given by

(1428) y(t) =

√
2

6
cos(3t− 3π

4
) .

Page 392



Sohail Farhangi Problems and Solutions Compilation

Problem 11.39: Find the Laplace transform of the function f : [0,∞) →
[0, 1) that is defined by f (t) = t when 0 ≤ t < 1 and f (t + 1) = f (t).

Solution: Firstly, we note that 0 ≤ f (t) < 1 for every t ∈ [0,∞), we see that
L{f (t)} = F (s) is defined for every s > 0. Using the same notation as the
course textbook we recall that for c ∈ R we have

(1429) uc(t) =

{
0 if t < c

1 if t ≥ c
.
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We now observe that for any j ≥ 0 we have

(1430) uj(t)− uj+1(t) =


0 if t < j

1 if j ≤ t < j + 1

0 if j + 1 ≤ t

.

It follows that we can write

(1431) f (t) =

∞∑
j=0

(uj(t)− uj+1(t))(t− j), so for s > 0 we have

(1432) L{f (t)} =

∫ ∞
0

f (t)e−stdt =

∫ ∞
0

∞∑
j=0

(uj(t)− uj+1(t))(t− j)e−stdt.
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(1433)
∗
=

∞∑
j=0

∫ ∞
0

(uj(t)− uj+1(t))(t− j)e−stdt

We will now calculate each integral in equation (1433). Firstly, we note that

(1434)

∫ ∞
0

uj(t)(t− j)e−stdt = e−sj
∫ ∞

0

uj(t)(t− j)e−s(t−j)dt

(1435) = e−sj
∫ ∞

0

te−stdt = e−sjL{t} =
e−sj

s2
.

We can also deduce the results of equations (1434) and (1435) directly from
Theorem 6.3.1 of the textbook. Next, we note that

(1436)

∫ ∞
0

−uj+1(t)(t− j)e−stdt = −
∫ ∞

0

uj+1(t)(t− (j + 1) + 1)e−stdt

(1437) = −
∫ ∞

0

uj+1(t)(t− (j + 1))e−stdt−
∫ ∞

0

uj+1(t)e−stdt

(1438) = −L{uj+1(t)(t− (j + 1))} − L{uj+1(t) · 1}

(1439)
by Thm. 6.3.1

= −e
−s(j+1)

s2
− e−s(j+1)

s
.

Putting together the results of equations (1434)-(1439) we see that

(1440)

∫ ∞
0

(uj(t)− uj+1(t))(t− j)e−st =
e−sj

s2
− e−s(j+1)

s2
− e−s(j+1)

s
.

Plugging in the results of equation (1440) back into equation (1433) we see that

(1441)

∞∑
j=0

∫ ∞
0

(uj(t)− uj+1(t))(t− j)e−st
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(1442) =

∞∑
j=0

(
e−sj

s2
− e−s(j+1)

s2
− e−s(j+1)

s

)

(1443) =
1

s2
+

∞∑
j=0

−e
−s(j+1)

s
=

1

s2
− 1

s

∞∑
j=0

e−s(j+1)

(1444) =
1

s2
− 1

s

∞∑
j=1

e−sj =
1

s2
− 1

s

(
e−s

1− e−s

)
=

1

s2
− 1

s(es − 1)
.
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Problem 11.40: Solve the initial value problem

(1445) y′′ + 4y = sin(t)− u2π(t) sin(t− 2π); y(0) = 0, y′(0) = 0.

Solution: From Corollary 6.2.2 of the textbook we see that

(1446) L{y′(t)} = sL{y(t)} − y(0) = sL{y(t)}, and

(1447) L{y′′(t)} = s2L{y(t)} − sy(0)− y′(0) = s2L{y(t)}, so

(1448) L{y′′(t) + 4y(t)} = L{y′′(t)} + 4L{y(t)} = s2L{y(t)} + 4L{y(t)}

(1449) = (s2 + 4)L{y(t)}.

We also see that

(1450) L{sin(t)− u2π(t) sin(t− 2π)} = L{sin(t)} − L{u2π(t) sin(t− 2π)}

(1451) = L{sin(t)} − e−2πsL{sin(t)} = (1− e−2πs)L{sin(t)} =
1− e−2πs

s2 + 1
.

We now see that taking the Laplace transform of both sides of equation (1445)
yields

(1452) L{y′′(t) + 4y(t)} = L{sin(t)− u2π(t) sin(t− 2π)}

(1453) → (s2 + 4)L{y(t)} =
1− e−2πs

s2 + 1

(1454) → L{y(t)} =
1− e−2πs

(s2 + 1)(s2 + 4)
.

Page 397



Sohail Farhangi Problems and Solutions Compilation

Now that we have calculated L(y(t)), we want to determine y(t). We first
require preliminary calculations with partial fractions before we can attempt to
calculate the inverse Laplace transform. We see that

(1455)
1

(s2 + 1)(s2 + 4)
=
As + B

s2 + 1
+
Cs + D

s2 + 4

(1456) → 1

(s2 + 1)(s2 + 4)

=
(A + C)s3 + (B + D)s2 + (4A + C)s + (4B + D)

(s2 + 1)(s2 + 4)

(1457) →

A + C = 0
B + D = 0
4A + C = 0
4B + D = 1

→ (A,B,C,D) = (0,
1

3
, 0,−1

3
)

(1458) → 1

(s2 + 1)(s2 + 4)
=

1
3

s2 + 1
+
−1

3

s2 + 4
.

(1459) → L{y(t)} =
1− e−2πs

(s2 + 1)(s2 + 4)
=

1

3

(
1− e−2πs

s2 + 1
− 1− e−2πs

s2 + 4

)
.

Now we observe that

(1460) L−1{1

3

(
1

s2 + 1

)
} =

1

3
sin(t),

(1461)

L−1{1

3

(
−e−2πs

s2 + 1

)
} by Thm. 6.3.1

= −1

3
u2π(t) sin(t− 2π) = −1

3
u2π(t) sin(t),

(1462) L−1{−1

3

(
1

s2 + 4

)
} = −1

6
L−1{ 2

s2 + 4
} = −1

6
sin(2t), and

(1463) L−1{1

3

(
e−2πs

s2 + 4

)
} by Thm. 6.3.1

=
1

6
L−1{2e−2πs

s2 + 4
} =

1

6
u2π(t) sin(2(t−2π))
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(1464) =
1

6
u2π(t) sin(2t− 4π) =

1

6
u2π(t) sin(2t).

It follows that

(1465) y(t) = L−1{1

3

(
1− e−2πs

s2 + 1
− 1− e−2πs

s2 + 4

)
}

(1466) = L−1{1

3

(
1

s2 + 1

)
} + L−1{1

3

(
−e−2πs

s2 + 1

)
}

+ L−1{−1

3

(
1

s2 + 4

)
} + L−1{1

3

(
e−2πs

s2 + 4

)
}

(1467) =
1

3
sin(t)− 1

3
u2π(t) sin(t)− 1

6
sin(2t) +

1

6
u2π(t) sin(2t)

(1468) =
1

3
sin(t)(1− u2π(t))− 1

6
sin(2t)(1− u2π(t))

(1469) =
1

6
(1− u2π(t))(2 sin(t)− sin(2t)) .
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Problem 11.41: Solve the initial value problem

(1470) y(4)+5y′′+4y = 1−u2π(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0.

Hint: It may help to do Problem 11.40 first.

Solution: From Corollary 6.2.2 of the textbook we see that

(1471) L{y′(t)} = sL{y(t)} − y(0) = sL{y(t)},

(1472) L{y′′(t)} = s2L{y(t)} − sy(0)− y′(0) = s2L{y(t)},

(1473) L{y′′′(t)} = s3L{y(t)} − s2y(0)− sy′(0)− y′′(0) = s3L{y(t)}, and

(1474) L{y(4)(t)} = s4L{y(t)} − s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)

= s4L{y(t)}.

We now take the Laplace transform of both sides of equation (1470) and see
that

(1475) L{y(4)(t) + 5y′′(t) + 4y(t)} = L{1− u2π(t)}

(1476) → L{y(4)(t)} + 5L{y′′(t)} + 4L{y(t)} = L{1} − L{u2π(t)}

(1477) → s4L{y(t)} + 5s2L{y(t)} + 4L{y(t)} =
1

s
− e−2πs

s

(1478) → (s4 + 5s2 + 4)L{y(t)} =
1− e−2πs

s

(1479) → L{y(t)} =
1− e−2πs

s(s4 + 5s2 + 4)
=

1− e−2πs

s(s2 + 4)(s2 + 1)
.
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Now under normal circumstances we would attempt to use partial fractions and
obtain a decomposition of the form

(1480)
1

s(s2 + 4)(s2 + 1)
=
As + B

s2 + 1
+
Cs + D

s2 + 4
+
E

s
,

but let us recall that when solving Problem 11.40 we showed that

(1481) L−1{ 1− e−2πs

(s2 + 4)(s2 + 1)
} =

1

6
(1− u2π(t))(2 sin(t)− sin(2t)).

We now see that

(1482)
1− e−2πs

(s2 + 4)(s2 + 1)
= sL{y(t)} = L{y′(t)}

(1483) → y′(t) = L−1{ 1− e−2πs

(s2 + 4)(s2 + 1)
} =

1

6
(1− u2π(t))(2 sin(t)− sin(2t))

(1484) → y(t) =

∫ t

0

1

6
(1− u2π(u))(2 sin(u)− sin(2u))du + c

(1485) =
1

6
(1− u2π(t))

∫ t

0

(2 sin(u)− sin(2u))du

+
1

6
u2π(t)

∫ 2π

0

(2 sin(u)− sin(2u))du + c

(1486) =
1

6
(1− u2π(t))(−2 cos(u) +

1

2
cos(2u))

∣∣∣t
u=0

+
1

6
u2π(t)(−2 cos(u) +

1

2
cos(2u))

∣∣∣2π
u=0

+ c

(1487) =
1

6
(1− u2π(t))(−2 cos(t) +

1

2
cos(2t) +

3

2
) + c.

Recalling that y(0) = 0, we see that c = 0, so our final answer is
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(1488) y(t) =
1

6
(1− u2π(t))(−2 cos(t) +

1

2
cos(2t) +

3

2
) .
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Problem 11.42: Solve the initial value problem

(1489) y′′ + 3y′ + 2y = δ(t− 5) + u10(t); y(0) = 0, y′(0) = 0.

Solution: We recall that

(1490) L{y′(t)} = sL{y(t)} − y(0) = sL{y(t)}, and

(1491) L{y′′(t)} = s2L{y(t)} − sy(0)− y′(0) = s2L{y(t)}.

We now take the Laplace transform of both sides of equation (1489) and see
that

(1492) L{y′′(t) + 3y′(t) + 2y(t)} = L{δ(t− 5) + u10(t)}

(1493) → L{y′′(t)} + 3L{y′(t)} + 2L{y(t)} = L{δ(t− 5)} + L{u10(t) · 1}

(1494) → s2L{y(t)} + 3sL{y(t)} + 2L{y(t)} = e−5s +
e−10s

s

(1495) → L{y(t)} =
e−5s + e−10s

s

s2 + 3s + 2
=

se−5s + e−10s

s(s + 1)(s + 2)
.

We will now use the method of partial fractions in order to break up the final
expression in equation (1495) into simpler components. We see that

(1496)
1

s(s + 1)(s + 2)
=
A

s
+

B

s + 1
+

C

s + 2

(1497) =
A(s + 1)(s + 2) + Bs(s + 2) + Cs(s + 1)

s(s + 1)(s + 2)

(1498) =
(A + B + C)s2 + (3A + 2B + C)s + 2A

s(s + 1)(s + 2)
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(1499) →
A + B + C = 0
3A + 2B + C = 0
2A = 1

→ A =
1

2

(1500) → B + C = −1
2

2B + C = −3
2

→ B = (2B + C)− (B + C) = −1

(1501) → C = −1

2
−B =

1

2
→ (A,B,C) = (

1

2
,−1,

1

2
).

(1502) → 1

s(s + 1)(s + 2)
=

1
2

s
+
−1

s + 1
+

1
2

s + 2
.

We also see that

(1503)
1

(s + 1)(s + 2)
=

1

s + 1
− 1

s + 2
.

It follows that

(1504) L{y(t)} =
se−5s + e−10s

s(s + 1)(s + 2)
=

e−5s

(s + 1)(s + 2)
+

e−10s

s(s + 1)(s + 2)

(1505) =
e−5s

s + 1
− e−5s

s + 2
+

1
2e
−10s

s
+
−e−10s

s + 1
+

1
2e
−10s

s + 2

(1506) → y(t) = L−1{ e
−5s

s + 1
} − L−1{ e

−5s

s + 2
}

+
1

2
L−1{e

−10s

s
} − L−1{e

−10s

s + 1
} +

1

2
L−1{e

−10s

s + 2
}

(1507) = u5(t)e−(t−5)(t− 5)− u5(t)e−2(t−5)(t− 5) +
1

2
u10(t)(t− 10)

− u10(t)e−(t−10)(t− 10) +
1

2
u10(t)e−2(t−10)(t− 10)
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(1508)

= (e−(t−5) − e−2(t−5))u5(t)(t− 5) + (
1

2
− e−(t−10) +

1

2
e−2(t−10))u10(t)(t− 10) .
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Problem 11.43: Solve the initial value problem

(1509) y′′ + 3y′ + 2y = cos(αt); y(0) = 1, y′(0) = 0

by using the Laplace transform and convolution integrals.

Solution: We recall that

(1510) L{y′(t)} = sL{y(t)} − y(0) = sL{y(t)} − 1, and

(1511) L{y′′(t)} = s2L{y(t)} − sy(0)− y′(0) = s2L{y(t)} − s.

We now take the Laplace transform of both sides of equation (1509) and see
that

(1512) L{y′′(t) + 3y′(t) + 2y(t)} = L{cos(αt)}

(1513) → L{y′′(t)} + 3L{y′(t)} + 2L{y(t)} = L{cos(αt)}

(1514) → (s2L{y(t)} − s) + 3(sL{y(t)} − 1) + 2L{y(t)} =
s

s2 + α2

(1515) → (s2 + 3s + 2)L{y(t)} =
s

s2 + α2
+ s + 3

(1516) → L{y(t)} =
1

(s + 1)(s + 2)
(

s

s2 + α2
+ s + 3)

(1517) =
s

(s2 + α2)(s + 1)(s + 2)
+

s + 3

(s + 1)(s + 2)
.

As in the previous problem, we observe that

(1518)
1

(s + 1)(s + 2)
=

1

s + 1
− 1

s + 2
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(1519) → s + 3

(s + 1)(s + 2)
=
s + 3

s + 1
− s + 3

s + 2
= (1 +

2

s + 1
)− (1 +

1

s + 2
)

=
2

s + 1
− 1

s + 2
.

(1520) → L−1{ s + 3

(s + 1)(s + 2)
} = L−1{ 2

s + 1
− 1

s + 2
}

= 2L−1{ 1

s + 1
} − L−1{ 1

s + 2
} = 2e−t − e−2t.

Another consequence of equation (1518) is that

(1521) L−1{ 1

(s + 1)(s + 2)
} = L−1{ 1

s + 1
} − L{ 1

s + 2
} = e−t − e−2t

Since

(1522) L−1{ s

s2 + α2
} = cos(αt), we see that

(1523) L−1{ s

(s2 + α2)(s + 1)(s + 2)
} = L−1{ s

s2 + α2
· 1

(s + 1)(s + 2)
}

(1524) = L−1{ s

s2 + α2
} ∗ L−1{ 1

(s + 1)(s + 2)
}

(1525)
∗
= (cos(αt)) ∗ (e−t − e−2t)

(1526) =

∫ t

0

cos(αu)
(
et−u − e2(t−u)

)
du.

We now see that

(1527) y(t) = L−1{ s

(s2 + α2)(s + 1)(s + 2)
+

s + 3

(s + 1)(s + 2)
}
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(1528) = L−1{ s

(s2 + α2)(s + 1)(s + 2)
} + L−1{ s + 3

(s + 1)(s + 2)
}

(1529) =

∫ t

0

cos(αu)
(
et−u − e2(t−u)

)
du + 2e−t − e−2t .
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Problem 11.44: Show that W (5, sin2(t), cos(2t)) = 0. Can this also be
shown without directly computing the Wronskian?

Solution: We first proceed by direct calculation. Let f (t) = 5, g(t) = sin2(t),
and h(t) = cos(2t). We see that

(1530) f ′(t) = f ′′(t) = 0,

(1531) g′(t) = 2 sin(t) cos(t) = sin(2t)→ g′′(t) = 2 cos(2t), and

(1532) h′(t) = −2 sin(2t)→ h′′(t) = −4 cos(2t), so

(1533) W (5, sin2(t), cos(2t)) = W (f, g, h) =

∣∣∣∣∣∣
f (t) g(t) h(t)
f ′(t) g′(t) h′(t)
f ′′(t) g′′(t) h′′(t)

∣∣∣∣∣∣
(1534) =

∣∣∣∣∣∣
5 sin2(t) cos(2t)
0 sin(2t) −2 sin(2t)
0 2 cos(2t) −4 cos(2t)

∣∣∣∣∣∣
(1535) = 5

∣∣∣∣ sin(2t) −2 sin(2t)
2 cos(2t) −4 cos(2t)

∣∣∣∣− 0 ·
∣∣∣∣ sin2(t) cos(2t)
2 cos(2t) −4 cos(2t)

∣∣∣∣
+ 0 ·

∣∣∣∣sin2(t) cos(2t)
sin(2t) −2 sin(2t)

∣∣∣∣
(1536) = 5

∣∣∣∣ sin(2t) −2 sin(2t)
2 cos(2t) −4 cos(2t)

∣∣∣∣
(1537) = 5 ((sin(2t)) · (−4 cos(2t))− (−2 sin(2t)) · (2 cos(2t)) = 0.

Since W (5, sin2(t), cos(2t)) = 0, we see that 5, sin2(t), and cos(2t) are linearly
dependent. To find the linear dependence relation, we recall that cos(2t) =
1− 2 sin2(t), so
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(1538) − 1

5
· (5) + 2(sin2(t)) + (cos(2t)) = −1 + 2 sin2(t) + (1− 2 sin2(t)) = 0.

The linear dependence relation that is shown between 5, sin2(t), and cos(2t) in
equation (1538) is also sufficient for deducing that W (5, sin2(t), cos(2t)) = 0.
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Problem 11.45: Find the general solution to the differential equation

(1539) y′′′ + y′ = sec(t).

Solution: We see that 1, sin(t), and cos(t) are 3 linearly independent solutions
to the homogeneous equation corresponding to equation (1539). Letting Y (t)
denote the general solution to equation (1539), we recall that

(1540) Y (t) =

y1(t)

∫ t

0

W1(t)g(t)

W (t)
dt + y2(t)

∫ t

0

W2(t)g(t)

W (t)
dt + y3(t)

∫ t

0

W3(t)g(t)

W (t)
dt

(1541)

= 1 ·
∫ t

0

W1(t) sec(t)

W (t)
dt+ sin(t)

∫ t

0

W2(t) sec(t)

W (t)
dt+ cos(t)

∫ t

0

W3(t) sec(t)

W (t)
dt.

Noting that

(1542) W (t) = W (1, sin(t), cos(t)) =

∣∣∣∣∣∣
1 sin(t) cos(t)
0 cos(t) − sin(t)
0 − sin(t) − cos(t)

∣∣∣∣∣∣
(1543) = 1 ·

∣∣∣∣ cos(t) − sin(t)
− sin(t) − cos(t)

∣∣∣∣−0 ·
∣∣∣∣ sin(t) cos(t)
− sin(t) − cos(t)

∣∣∣∣+0 ·
∣∣∣∣sin(t) cos(t)
cos(t) − sin(t)

∣∣∣∣
(1544) =

∣∣∣∣ cos(t) − sin(t)
− sin(t) − cos(t)

∣∣∣∣ = cos(t)(− cos(t))− (− sin(t))(− sin(t)) = −1,

(1545) W1(t) = W1(1, sin(t), cos(t))(t) =

∣∣∣∣∣∣
0 sin(t) cos(t)
0 cos(t) − sin(t)
1 − sin(t) − cos(t)

∣∣∣∣∣∣
(1546) =

∣∣∣∣sin(t) cos(t)
cos(t) − sin(t)

∣∣∣∣ = sin(t)(− sin(t))− cos(t) cos(t) = −1,
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(1547) W2(t) = W2(1, sin(t), cos(t))(t) =

∣∣∣∣∣∣
1 0 cos(t)
0 0 − sin(t)
0 1 − cos(t)

∣∣∣∣∣∣
(1548) = −

∣∣∣∣1 cos(t)
0 − sin(t)

∣∣∣∣ = − (1 · (− sin(t))− 0 · cos(t)) = sin(t), and

(1549) W3(t) = W3(1, sin(t), cos(t)) =

∣∣∣∣∣∣
1 sin(t) 0
0 cos(t) 0
0 − sin(t) 1

∣∣∣∣∣∣
(1550) =

∣∣∣∣1 sin(t)
0 cos(t)

∣∣∣∣ = 1 · cos(t)− 0 · sin(t) = cos(t).

We now see that

(1551) Y (t) =

1 ·
∫ t

0

W1(t) sec(t)

W (t)
dt + sin(t)

∫ t

0

W2(t) sec(t)

W (t)
dt + cos(t)

∫ t

0

W3(t) sec(t)

W (t)
dt

(1552)

=

∫ t

0

−1 · sec(t)

−1
dt + sin(t)

∫ t

0

sin(t) sec(t)

−1
dt + cos(t)

∫ t

0

cos(t) sec(t)

−1
dt

(1553) =

∫ t

0

sec(t)dt− sin(t)

∫ t

0

tan(t)dt− cos(t)

∫ t

0

1dt

(1554) = ln | sec(t) + tan(t)|+ c1− sin(t)(− ln | cos(t)|+ c2)− cos(t)(t+ c3)

(1555) = (ln | sec(t) + tan(t)| + sin(t) ln | cos(t)| − t cos(t))︸ ︷︷ ︸
yp(t)

+ (c1 − c2 sin(t)− c3 cos(t))︸ ︷︷ ︸
yc(t)

.
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Problem 11.46: Let y = φ(x) be a solution to the initial value problem

(1556) y′′ + x2y′ + sin(x)y = 0; y(0) = a0, y
′(0) = a1.

Find φ′′(0), φ′′′(0), and φ(4)(0).

Solution: We proceed by trying to find a series solutions to equation (1556)
centered at x = 0. Letting

(1557) y(x) = φ(x) =

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + · · · ,

we see that φ(n)(0) = n!an, so we only need to determine a2, a3, and a4. We
also note that

(1558) y′(x) =

∞∑
n=0

nanx
n−1 m=n−1

=

∞∑
m=−1

(m + 1)am+1x
m

=

∞∑
m=0

(m + 1)am+1x
m = a1 + 2a2x + 3a3x

2 + 4a4x
3 + 5a5x

4 + · · · ,

(1559) x2y′(x) =

∞∑
m=0

(m + 1)am+1x
m+2 k=m+2

=

∞∑
k=2

(k − 1)ak−1x
k

= a1x
2 + 2a2x

3 + 3a3x
4 + · · · ,

(1560) y′′(x) =

∞∑
n=0

n(n− 1)anx
n−2 j=n−2

=

∞∑
j=−2

(j + 2)(j + 1)aj+2x
j

=

∞∑
j=0

(j+2)(j+1)aj+2x
j = 2a2+6a3x+12a4x

2+20a5x
3+30a6x

4+· · · , and

(1561) sin(x)y(x) = (x−x
3

6
+
x5

120
−· · · )(a0 +a1x+a2x

2 +a3x
3 +a4x

4 + · · · )
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(1562) = x(a0 + a1x + a2x
2 + a3x

3 + · · · )− x3

6
(a0 + a1x + · · · ) + · · ·

(1563) = a0x + a1x
2 + (a2 −

a0

6
)x3 + (a3 −

a1

6
)x4 + · · · .

Combining the results of the previous calculations, we see that

(1564) 0 = y′′ + x2y′ + sin(x)y

=
(
2a2 + 6a3x + 12a4x

2 + 20a5x
3 + 30a6x

4 + · · ·
)
+
(
a1x

2 + 2a2x
3 + 3a3x

4 + · · ·
)

+
(
a0x + a1x

2 + (a2 −
a0

6
)x3 + (a3 −

a1

6
)x4 + · · ·

)
(1565) = (2a2) + (6a3 + a0)x + (12a4 + 2a1)x2 + (20a5 + 3a2 −

a0

6
)x3

+ (30a6 + 4a3 −
a1

6
)x4 + · · ·

(1566) →

2a2 = 0
a0 + 6a3 = 0
2a1 + 12a4 = 0
−a0

6 + 3a2 + 20a5 = 0
−a1

6 + 4a3 + 30a6 = 0

→ (a2, a3, a4) = (0,−a0

6
,−a1

6
)

(1567) → (φ′′(0), φ′′′(0), φ(4)(0)) = (0,−a0,−4a1) .
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Problem 11.47: Solve the differential equation

(1568) y′ + (x + 1)y = x + 1

by finding a series solution and by using an integrating factor, then compare
your answers.

Solution: We will first solve equation (1568) by finding a series solution. We
choose to find a series solution centered at x = −1 for convenience. Letting

(1569)

y(x) =

∞∑
n=0

an(x− (−1))n =

∞∑
n=0

an(x+ 1)n = a0 +a1(x+ 1) +a2(x+ 1)2 + · · ·

we see that

(1570) y′(x) =

∞∑
n=0

nan(x + 1)n−1 m=n−1
=

∞∑
m=0

(m + 1)am+1(x + 1)m, and

(1571) (x + 1)y(x) =

∞∑
n=0

an(x + 1)n+1 k=n+1
=

∞∑
k=1

ak−1(x + 1)k.

Since

(1572) 1 ·(x+1) = y′+(x+1)y =

∞∑
m=0

(m+1)am+1(x+1)m+

∞∑
k=1

ak−1(x+1)k

(1573)
∗
= a1 +

∞∑
n=1

((n + 1)an+1 + an−1) (x + 1)n,

we see that

(1574)
a1 = 0

2a2 + a0 = 1
(n + 1)an+1 + an−1 = 0 for n ≥ 2
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(1575) → a2 =
1− a0

2
, an+1 = − 1

n + 1
an−1 for n ≥ 2

(1576) → a4 = −a2

4
= −1− a0

4 · 2
, a6 = −a4

6
=

1− a0

6 · 4 · 2
, a8 = · · ·

(1577) → an =

{
0 if n is odd.
a0−1

(−2)
n
2 (n2 !)

if n is even and n ≥ 2

It follows that the series solutions to equation (1568) is

(1578) y(x)
m=n

2= a0 + (a0 − 1)

∞∑
m=1

(x + 1)2m

(−2)mm!
= 1 + (a0 − 1)

∞∑
m=0

(x + 1)2m

(−2)mm!
,

where a0 can be determined by an initial condition if one is given.

We will now solve equation (1568) by using an integrating factor. For conve-
nience, we recall that equation (1568) is

(1579) y′ + (x + 1)y = x + 1.

Since the coefficient of y′ is already 1, we see that the integrating factor I(x) is
given by

(1580) I(x) = e
∫
p(x)dx = e

∫
(x+1)dx ∗= e

(x+1)2

2 .

Multiplying both sides of equation (1579) by I(x) yields

(1581) (x + 1)e
(x+1)2

2 = e
(x+1)2

2 y′ + (x + 1)e
(x+1)2

2 y = (e
(x+1)2

2 y)′

(1582) e
(x+1)2

2 y =

∫
(x + 1)e

(x+1)2

2 dx = e
(x+1)2

2 + c
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(1583) → y(x) = 1 + ce−
(x+1)2

2 .

Recalling that

(1584) ex =

∞∑
n=0

xn

n!
, we see that

(1585) y(x) = 1 + ce−
(x+1)2

2 = 1 + c

∞∑
n=0

(−(x+1)2

2 )n

n!
= 1 + c

∞∑
n=0

(x + 1)2n

(−2)nn!
.

By identifying m with n and identifying c with a0−1, we see that both methods
of solution yield the same answer.
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Problem 11.48: Determine a lower bound for the radii of convergence r1 and
r2 of the series solution to the differential equation

(1586) (1 + x3)y′′ + 4xy′ + y = 0,

centered at x1 = 0 and x2 = 2. Then find the series solution to equation (1586)
centered at x2 = 2.

Solution: Firstly, we rewrite equation (1586) in standard form to obtain

(1587) y′′ +
4x

1 + x3
y′ +

1

1 + x3
y = 0.

We see that as long as 1 + x3 6= 0, then all coefficient functions of equation
(1587) are continuous. We see that for

(1588) x ∈ {e
π
3 i, eπi, e

5π
3 i} = {1

2
+

√
3

2
i,−1,

1

2
−
√

3

2
i}, we have

(1589) 1 + x3 = 1 + eπi = 0.

We now see that all coefficient functions in equation (1587) are continuous in a
ball of radius 1 (in the complex plane) centered at the origin, so a series solution
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to equation (1586) centered at x = 0 has a radius of convergence of at least 1.
Similarly, we note that

(1590) |2− (−1)| = 3,

(1591) |2− (
1

2
+

√
3

2
i)| = |3

2
−
√

3

2
i| =

√
(
3

2
)2 + (

√
3

2
)2 =
√

3, and

(1592) |2− (
1

2
−
√

3

2
i)| = |3

2
+

√
3

2
| =

√
(
3

2
)2 + (

√
3

2
)2 =
√

3,

so the coefficient functions in equation (1587) are continuous in a ball of radius√
3 (in the complex plane) centered at 2, so the series solution to equation

(1586) centered at x = 2 has a radius of convergence of at least
√

3.

We will now begin finding the series solution to equation (1586) centered at
x = 2. Firstly, we note that we can rewrite equation (1586) as follows.

(1593) 0 = (1 + x3)y′′+ 4xy′+ y = (1 + (x− 2 + 2)3)y′′+ 4(x− 2 + 2)y′+ y

(1594) = (1 + (x− 2)3 + 6(x− 2)2 + 12(x− 2) + 8)y′′ + 4(x− 2 + 2)y′ + y

(1595) = (x− 2)3y′′+ 6(x− 2)2y′′+ 12(x− 2)y′′+ 9y′′+ 4(x− 2)y′+ 2y′+y.

Since we are working with the series solution for y = y(x) centered at x = 2,
we have

(1596) y(x) =

∞∑
n=0

an(x− 2)n,

(1597) y′(x) =

∞∑
n=0

(n + 1)an+1(x− 2)n,
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(1598) (x− 2)y′(x) =

∞∑
n=1

nan(x− 2)n,

(1599) y′′(x) =

∞∑
n=0

(n + 2)(n + 1)an+2(x− 2)n,

(1600) (x− 2)y′′(x) =

∞∑
n=1

(n + 1)nan+1(x− 2)n

(1601) (x− 2)2y′′(x) =

∞∑
n=2

n(n− 1)an(x− 2)n

(1602) (x− 2)3y′′(x) =

∞∑
n=3

(n− 1)(n− 2)an−1(x− 2)n, so

(1603) 0 = (x−2)3y′′+6(x−2)2y′′+12(x−2)y′′+9y′′+4(x−2)y′+2y′+y.

(1604) =

∞∑
n=3

(n− 1)(n− 2)an−1(x− 2)n + 6

∞∑
n=2

n(n− 1)an(x− 2)n

+ 12

∞∑
n=1

(n + 1)nan+1(x− 2)n + 9

∞∑
n=0

(n + 2)(n + 1)an+2(x− 2)n

+ 4

∞∑
n=1

nan(x− 2)n + 2

∞∑
n=0

(n + 1)an+1(x− 2)n +

∞∑
n=0

an(x− 2)n

(1605)

= (a0+2a1+18a2)+(5a1+28a2+54a3)(x−2)+(21a2+82a3+108a4)(x−2)2

+

∞∑
n=3

(
(n− 1)(n− 2)an−1 + 6n(n− 1)an + 12(n + 1)nan+1

+ 9(n + 2)(n + 1)an+2 + 4nan + 2(n + 1)an+1 + an

)
(x− 2)n
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(1606)

= (a0+2a1+18a2)+(5a1+28a2+54a3)(x−2)+(21a2+82a3+108a4)(x−2)2

+

∞∑
n=3

(
(n− 1)(n− 2)an−1 + (6n2 − 2n + 1)an + (12n2 + 14n + 2)an+1

+ 9(n + 2)(n + 1)an+2

)
(x− 2)n

(1607) →

a0 = y(2)
a1 = y′(2)
a0 + 2a1 + 18a2 = 0
5a1 + 28a2 + 54a3 = 0
21a2 + 82a3 + 108a4 = 0
(n− 1)(n− 2)an−1 + (6n2 − 2n + 1)an
+(12n2 + 14n + 2)an+1 + 9(n + 2)(n + 1)an+2 = 0 for n ≥ 3

(1608) →

a0 = y(2)
a1 = y′(2)
a2 = −1

9a1 − 1
18a0

a3 = −28
54a2 − 5

54a1

a4 = − 82
108a3 − 21

108a2

an+2 = 1
9(n+2)(n+1)

(
(n− 1)(n− 2)an−1

+(6n2 − 2n + 1)an + (12n2 + 14n + 2)an+1

)
for n ≥ 3

.

Once the recurrence in equations (1608) is solved, our solution will be

(1609) y(x) =

∞∑
n=0

an(x− 2)n.
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Problem 12.1: Consider the partial differential equation

(1610)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0.

Show that for a solution u(r, θ) = R(r)Θ(θ) having separated variables, we
must have

(1611) r2R′′(r) + rR′(r)− λR(r) = 0, and

(1612) Θ′′(θ) + λΘ(θ) = 0,

where λ is some constant.

Solution: We begin by plugging u(r, θ) = R(r)Θ(θ) into equation (1610) to
see that

(1613) 0 =
∂2

∂r2
(R(r)Θ(θ)) +

1

r

∂

∂r
(R(r)Θ(θ)) +

1

r2

∂2

∂θ2
(R(r)Θ(θ))

(1614) = R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ)

(1615) → − 1

r2
R(r)Θ′′(θ) = R′′(r)Θ(θ) +

1

r
R′(r)Θ(θ)

(1616) → Θ′′(θ)

Θ(θ)
=
R′′(r) + 1

rR
′(r)

− 1
r2R(r)

∗
= γ.

To derive equation (1611) we use equation (1616) to see that

(1617)
R′′(r) + 1

rR
′(r)

− 1
r2R(r)

= γ → R′′(r) +
1

r
R(r) = − γ

r2
R(r)

(1618) → R′′(r) +
1

r
R′(r) +

γ

r2
R(r) = 0→ r2R′′(r) + rR′(r) + γR(r) = 0.
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To derive equation (1612) we use equation (1616) to see that

(1619)
Θ′′(θ)

Θ(θ)
= γ → Θ′′(θ) = γΘ(θ)→ Θ′′(θ)− γΘ(θ) = 0.

We now see that we can pick our constant λ as λ = −γ.
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Problem 12.2: Consider the partial differential equation

(1620)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ
+
∂2u

∂z2
= 0.

Show that for a solution u(r, θ, z) = R(r)Θ(θ)Z(z) having separated variables,
we must have

(1621) Θ′′(θ) + µΘ(θ) = 0,

(1622) Z ′′(z) + λZ(z) = 0, and

(1623) r2R′′(r) + rR′(r)− (r2λ + µ)R(r) = 0,

where µ and λ are constants.

Solution: We proceed as in problem 6.2.27 and plug u(r, θ, z) = R(r)Θ(θ)Z(z)
into equation (1620) to see that

(1624)
∂2

∂r2
(R(r)Θ(θ)Z(z)) +

1

r

∂

∂r
(R(r)Θ(θ)Z(z)) +

1

r2

∂2

∂θ2
(R(r)Θ(θ)Z(z)) +

∂2

∂z2
(R(r)Θ(θ)Z(z)) = 0

(1625) → R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

We will now try to derive equation (1622) from equation (1625). Beginning
with equation (1625) we see that

(1626) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(1627) −R(r)Θ(θ)Z ′′(z) = R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z)

(1628) → Z ′′(z)

Z(z)
=
R′′(r)Θ(θ) + 1

r
R′(r)Θ(θ) + 1

r2
R(r)Θ′′(θ)

−R(r)Θ(θ)
∗
= −λ

(1629) → Z ′′(z) = −λZ(z)→ Z ′′(z) + λZ(z) = 0.

We will now derive equation (1621) from equation (1625). Beginning with
equation (1625) we see that
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(1630) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(1631) − 1

r2
R(r)Θ′′(θ)Z(z) = R′′(r)Θ(θ)Z(z) +

1

r
R′(r)Θ(θ)Z(z) +R(r)Θ(θ)Z ′′(z)

(1632) → Θ′′(θ)

Θ(θ)
=
R′′(r)Z(z) + 1

r
R′(r)Z(z) +R(r)Z ′′(z)

− 1
r2
R(r)Z(z)

∗
= −µ

(1633) → Θ′′(θ) = −µΘ(θ)→ Θ′′(θ) + µΘ(θ) = 0.

Lastly, we will derive equation (1623) from equation (1625). Beginning with
equation (1625) we see that

(1634) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) +

1

r2
R(r)Θ′′(θ)Z(z) +R(r)Θ(θ)Z ′′(z) = 0.

(1635) R′′(r)Θ(θ)Z(z) +
1

r
R′(r)Θ(θ)Z(z) = − 1

r2
R(r)Θ′′(θ)Z(z)−R(r)Θ(θ)Z ′′(z)

(1636) →
R′′(r) + 1

r
R′(r)

R(r)
=
− 1
r2

Θ′′(θ)Z(z)−Θ(θ)Z ′′(z)

Θ(θ)Z(z)
= − 1

r2

Θ′′(θ)

Θ(θ)
+
−Z ′′(z)

Z(z)
=

µ

r2
+ λ

(1637) → R′′(r) +
1

r
R′(r) = (

µ

r2
+ λ)R(r)→ R′′(r) +

1

r
R′(r)− (

µ

r2
+ λ)R(r) = 0

(1638) → r2R′′(r) + rR′(r)− (µ+ r2λ)R(r) = 0.
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Problem 12.3: Find the values of λ (eigenvalues) for which the following
problem has a nontrivial solution. Also determine the corresponding nontrivial
solutions (eigenfunctions).

(1639) y′′ + λy = 0; 0 < x < π, y(0)− y′(0) = 0, y(π) = 0.

Solution: We begin by examining the characteristic equation for equation
(1639) and see that

(1640) r2 + λ = 0→ r = ±
√
−λ.

We now consider 3 separate cases based on the sign of λ.

Case 1: λ = 0.

In this case we see that r = 0 is a double root of the characteristic equation, so
the general solution to equation (1639) is

(1641) y(t) = c1e
0·t + c2te

0·t = c1 + c2t.

Noting that

(1642) y′(t) = c2,

we proceed to make use of the initial conditions to see that

(1643)
0 = y(0)− y′(0) = c1 − c2

0 = y(π) = c1 + πc2
→ c1 = c2

c1 = −πc2
→ (c1, c2) = (0, 0),

so we only have trivial solutions in this case.

Case 2: λ < 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct real roots of the

characteristic equation, so the general solution to equation (1639) is
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(1644) y(t) = c1e
√
−λt + c2e

−
√
−λt.

Noting that

(1645) y′(t) = c1

√
−λe

√
−λt − c2

√
−λe−

√
−λt,

we proceed to make use of the initial conditions to see that

(1646)
0 = y(0)− y′(0) = c1(1−

√
−λ) + c2(1 +

√
−λ)

0 = y(π) = c1e
√
−λπ + c2e

−
√
−λπ

(1647) →
[

1−
√
−λ 1 +

√
−λ

e
√
−λπ e−

√
−λπ

]
︸ ︷︷ ︸

A

[
c1

c2

]
=

[
0
0

]
. Since

(1648) det(A) = e−
√
−λπ(1−

√
−λ)− e

√
−λπ(1 +

√
−λ) < 0,

we see that det(A) 6= 0, so A is a nonsingular matrix. It follows that equation
(1647) only has the trivial solution of (c1, c2) = (0, 0), so we only have trivial
solutions to equation (1639) in this case as well.

Case 3: λ > 0.

In this case we see that r =
√
−λ and r = −

√
−λ are distinct complex roots

of the characteristic equation, so the general solution to equation (1639) is

(1649) y(t) = c′1e
√
−λt + c′2e

−
√
−λt = c1 cos(

√
λt) + c2 sin(

√
λt).

Noting that

(1650) y′(t) = −c1

√
λ sin(

√
λt) + c2

√
λ cos(

√
λt),

we proceed to make use of the initial conditions to see that
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(1651)
0 = y(0)− y′(0) = c1 − c2

√
λ

0 = y(π) = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(1652) → c1 = c2

√
λ

0 = c1 cos(
√
λπ) + c2 sin(

√
λπ)

(1653) →
c1 = c2

√
λ

0 = c2

(√
λ cos(

√
λπ) + sin(

√
λπ)
) .

In order to have nontrivial solutions to equation (1639) we need to have non-
trivial solutions to system of equations in (1653). We see that c1 = 0 if and
only if c2 = 0, and that c2 will be 0 if

(1654)
√
λ cos(

√
λπ) + sin(

√
λπ) 6= 0.

It follows that we want to find the values of λ for which

(1655)
√
λ cos(

√
λπ) + sin(

√
λπ) = 0,

so that we can find a corresponding c2 6= 0. Sadly, equation (1655) is not
something that can be explicitly solved by hand. Therefore, we let {λn}∞n=1

denote the solutions to equation (1655) as shown in the picture below.
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To be precise, we know that the solutions to equation (1655) exist even though
we cannot write down exactly what they are, so we talk about them by enu-
merating them as {λn}∞n=1.

We note that for any n ≥ 1, if λ = λn, then the second equation in (1653) holds
for any value of c2, so we will have (c1, c2) = (c2

√
λn, c2) is a nontrivial solution

to equation (1639). In conclusion, the eigenvalues of (1639) are {λn}∞n=1 and
the eigen functions corresponding to any given λn are

(1656) y(t) = c
(√

λn cos(
√
λnt) + sin(

√
λnt)

)
; c ∈ R.
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Problem 12.4: Find the values of λ for which the initial value problem given
by

(1657) y′′ − 2y′ + λy = 0; 0 < x < π

(1658) y(0) = y(π) = 0

has nontrivial solutions. Then, for each such λ, find the nontrivial solutions.

Solution: We see that the characteristic polynomial of this equation is r2 −
2r + λ and has roots

(1659) r =
2±
√

4− 4λ

2
= 1±

√
1− λ.

We now consider 3 separate cases depending on the sign of (1− λ).

Case 1: 1− λ = 0.

In this case, λ = 1 and r = 1 is a double root of the characteristic polynomial,
so the general solution to equation 1657 is

(1660) y(t) = c1e
t + c2te

t.

We see that

(1661) 0 = y(0) = c1e
0 + c2 · 0 · e0 = c1, and

(1662) 0 = y(π) = c2 · π · eπ → c2 = 0.

Since (c1, c2) = (0, 0), we see that in this case we only have the trivial solution.

Case 2: 1− λ > 0.

In this case, we see that the general solution to equation 1657 is
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(1663) y(t) = c1e
(1+
√

1−λ)t + c2e
(1−
√

1−λ)t.

We see that

(1664) 0 = y(0) = c1e
(1+
√

1−λ)·0 + c2e
(1−
√

1−λ)·0 = c1 + c2, and

(1665) 0 = y(π) = c1e
(1+
√

1−λ)π + c2e
(1−
√

1−λ)π.

Solving the system of equations given by (1664) and (1665), we see that

(1666)

[
1 1 0

e(1+
√

1−λ)π e(1−
√

1−λ)π 0

]

(1667)
R2−e(1+

√
1−λ)πR1−→

[
1 1 0

0 e(1−
√

1−λ)π − e(1+
√

1−λ)π 0

]

(1668)

1

e(1−
√

1−λ)π−e(1+
√

1−λ)π
R2

−→
[

1 1 0
0 1 0

]
R1−R2−→

[
1 0 0
0 1 0

]
,

so (c1, c2) = (0, 0). We once again see that we only have the trivial solution.

Case 3: 1− λ < 0.

In this case, we see that

(1669) Re(1±
√

1− λ) = 1 and Im(1±
√

1− λ) = ±
√
λ− 1,

so the general solution to equation (1657) is

(1670) y(t) = c1e
t cos(

√
λ− 1t) + c2e

t sin(
√
λ− 1t).

We see that
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(1671) 0 = y(0) = c1e
0 cos(

√
λ− 1 · 0) + c2e

0 sin(
√
λ− 1 · 0) = c1, and

(1672) 0 = y(π) = c2e
π sin(

√
λ− 1π).

If eπ sin(
√
λ− 1π) 6= 0, then we will have that (c1, c2) = (0, 0). Since we are

looking for nontrivial solutions, we want the values of λ for which eπ sin(
√
λ− 1π) =

0, which is the same as the values of λ for which

(1673) sin(
√
λ− 1π) = 0.

Note: The equation for some other problems of this type (such as problem
6.2.13 from the second edition of the textbook) that corresponds to equation
(1673) is not solvable by hand. In such a situation, it is perfectly acceptable
to say ‘Let (λn)∞n=1 be the solutions to equation (1673).’ From then on, you
may work with (λn)∞n=1 as known values. Luckily, equation (1673) is solvable
by hand, so we will just go ahead and solve it.

We recall that the 0′s of sin(x) occur exactly at the integer multiples of π.
Given n ∈ Z, we see that

(1674) n =
√
λ− 1⇔ λ = n2 + 1,

so (n2 + 1)n∈Z is all of the solutions of equation (1673). We now see that for
each integer n, equation (1672) is satisfied by any c2 ∈ R.

Putting together the results of all 3 cases, we see that the initial value problem
given by equations (1657) and (1658) has nontrivial solutions if and only if
λ = n2 + 1 for some integer n. Furthermore, for any such λ = n2 + 1, the
solution to the initial value problem is

(1675) y(t) = cet sin(nt),

where c can be any real number.
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Problem 12.5: Find the fourier series of the function

(1676) f (x) =

{
1 if − 2 < x < 0

x if 0 < x < 2
,

over the interval [−2, 2].

Solution: Since our interval has a radius of L = 2, we see that the basis we will
work with is (sin(2πnx

2L ))∞n=1∪ (cos(2πmx
2L ))∞m=1 which simplifies to (sin(πnx2 ))∞n=1∪

(cos(πmx2 ))∞m=1. We may now let a0, (an)∞n=1, and (bn)∞n=1 be such that

(1677) f (x) ∼ a0 +

∞∑
n=1

an cos(
πnx

2
) +

∞∑
n=1

bn sin(
πnx

2
).

First let us determine the sequence (bn)∞n=1. We note that for each n ≥ 1 we
have

(1678) bn =
1

L

∫ L

−L
f (x) sin(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx
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(1679) =
1

2

∫ 2

−2

f (x) sin(
πnx

2
)dx =

1

2

∫ 0

−2

sin(
πnx

2
)dx+

1

2

∫ 2

0

x sin(
πnx

2
)dx.

We see that

(1680)
1

2

∫ 0

−2

sin(
πnx

2
)dx = − 1

πn
cos(

πnx

2
)
∣∣∣0
x=−2

= − 2

πn
+

2

πn
cos(−πn)

(1681) =

{
0 if n is even

− 2
πn if n is odd

.

Using integration by parts, we also see that

(1682)
1

2

∫ 2

0

x sin(
πnx

2
)dx = − 1

πn
x cos(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

− 2

πn
cos(

πnx

2
)dx

(1683) = − 2

πn
cos(πn) +

(
2

π2n2
sin(

πnx

2
)
∣∣∣2
x=0

)
= − 2

πn
cos(πn)

(1684) =

{
− 2
πn if n is even

2
πn if n is odd

.

Putting all of this together, we see that for n ≥ 1 we have

(1685) bn =
1

2

∫ 0

−2

sin(
πnx

2
)dx+

1

2

∫ 2

0

x sin(
πnx

2
)dx =

{
− 2
πn if n is even

0 if n is odd
.

Now let us determine the sequence (an)∞n=1. We note that for n ≥ 1 we have

(1686) an =
1

L

∫ L

−L
f (x) cos(

2πnx

2L
)dx =

1

2

∫ 2

−2

f (x) cos(
πnx

2
)dx

(1687) =
1

2

∫ 0

−2

cos(
πnx

2
)dx +

1

2

∫ 2

0

x cos(
πnx

2
)dx.
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We see that

(1688)
1

2

∫ 0

−2

cos(
πnx

2
)dx =

1

πn
sin(

πnx

2
)
∣∣∣0
x=−2

= 0.

Using integration by parts, we also see that

(1689)
1

2

∫ 2

0

x cos(
πnx

2
)dx =

1

πn
x sin(

πnx

2
)
∣∣∣2
x=0
−
∫ 2

0

2

πn
sin(

πn

2
)dx

(1690) = − 1

πn

∫ 2

0

sin(
πnx

2
)dx =

2

π2n2
cos(

πnx

2
)
∣∣∣2
x=0

(1691) =
2

π2n2
(cos(πn)− 1) =

{
0 if n is even
−4
π2n2 if n is odd

.

Putting all of this together, we see that for n ≥ 1 we have

(1692)

an =
1

2

∫ 0

−2

cos(
πnx

2
)dx +

1

2

∫ 2

0

x cos(
πnx

2
)dx =

{
0 if n is even

− 4
π2n2 if n is odd

.

Lastly, we see that

(1693) a0 =
1

2L

∫ L

−L
f (x)dx =

1

4

∫ 2

−2

f (x)dx =
1

4

∫ 0

−2

1dx +
1

4

∫ 2

0

xdx

(1694)
1

2
+

(
x2

8

∣∣∣2
x=0

)
= 1.

Finally, we see that

(1695) f(x) ∼ 1 +

(
∞∑
n=1

2

π2n2
((−1)n − 1) cos(

πn

2
x)

)
+

(
∞∑
n=1

1

πn
((−1)n+1 − 1) sin(

πnx

2
)

)
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Problem 12.6: Find the Fourier sine series for

(1696) f (x) = ex, 0 < x < 1.

Solution: The fourier sine series of f (x) is just the fourier series of g(x), the
odd 2-periodic extension of f (x), which is the 2-periodic function defined by
the formula

(1697) g(x) =

{
f (x) if 0 < x < 1

−f (−x) if − 1 < x < 0
.

Below is a graph of g(x) restricted to the interval (−1, 1). The red portion of
the graph is also the graph of f (x).
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Since g(x) is an odd function (by construction, this will always be the case) the
fourier series of g(x) will not have any cosine terms in it. We see that for any
n ≥ 1, we have

(1698) bn =
1

1

∫ 1

−1

g(x) sin(
2nπx

2
)dx

by oddness
=

2

1

∫ 1

0

f (x) sin(nπx)dx

(1699) = 2

∫ 1

0

ex sin(nπx)dx = 2

∫ 1

0

e(1+nπi)x − e(1−nπi)x

2i
dx

(1700) = −i
∫ 1

0

(e(1+nπi)x − e(1−nπi)x)dx = −i
(
e(1+nπi)x

1 + nπi
− e(1−nπi)x

1− nπi

) ∣∣∣1
0

(1701) =

(
e1+nπi

1 + nπi
− e1−nπi

1− nπi

)
−
(

e0

1 + nπi
− e0

1− nπi

)

(1702) =

(
e(cos(nπ) + i sin(nπ))

1 + nπi
− e(cos(nπ) + i sin(−nπ))

1− nπi

)
−
(

1

1 + nπi
− 1

1− nπi

)
(1703) =

e(−1)n − 1

1 + nπi
− e(−1)n − 1

1− nπi
=

2e(−1)n − 2

1 + n2π2

(1704) → f (x) ∼
∞∑
n=1

2e(−1)n − 2

1 + n2π2
sin(nπx) .
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Problem 12.7: Find the Fourier cosine series for

(1705) f (x) = 1 + x, 0 < x < π.

Solution: The fourier cosine series of f (x) is just the fourier series of g(x), the
even 2π-periodic extension of f (x), which is the 2π-periodic function defined
by the formula

(1706) g(x) =

{
f (x) if 0 < x < π

f (−x) if − π < x < 0
.

Below is a graph of g(x) restricted to the interval (−π, π). The blue portion of
the graph is also the graph of f (x).
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Since g(x) is an even function (by construction, this will always be the case)
the fourier series of g(x) will not have any sine terms in it. We see that for any
n ≥ 1, we have

(1707) an =
1

π

∫ π

−π
g(x) cos(

2πnx

2π
)dx

by evenness
=

2

π

∫ π

0

f (x) cos(nx)dx

(1708)

=
2

π

∫ π

0

(1 + x) cos(nx)dx =
2

π
· (1 + x)

sin(nx)

n

∣∣∣π
x=0
− 2

π

∫ π

0

1 · sin(nx)

n
dx

(1709) = 0− 2

π

(
− cos(nx)

n2

∣∣∣π
x=0

)
=

2 cos(nπ)− 2

πn2
=

{
0 if n is even
−4
πn2 if n is odd

.

Similarly, we see that

(1710) a0
∗
=

1

2π

∫ π

−π
g(x)dx =

1

π

∫ π

0

f (x)dx =
1

π

∫ π

0

(1 + x)dx

(1711)
(1 + x)2

2π

∣∣∣π
x=0

=
(π + 1)2 − 1

2π
=
π

2
+ 1.

Putting everything together, we see that

(1712) f (x) ∼ π

2
+ 1 +

∞∑
n=0

− 4

π(2n + 1)2
cos((2n + 1)x) .
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Problem 12.8: Determine the function to which the Fourrier series of

(1713) f (x) = |x|, −π < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 70. Graph of f(x).

Figure 71. Graph of g(x).
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We see that if we define g(nπ) = 1 for every odd integer n (since these are
precisely the points at which g(x) is currently undefined), then g(x) is a contin-
uous function whose derivative is piecewise continuous. It follows from Theorem
6.3.3 (stated below) that the Fourrier series of f (x) converges pointwise (ac-
tually, uniformly) to g(x) (after declaring that g(n) = 1 for every odd integer
n).

Theorem 6.3.3 (Page 504): Let f (or g in this problem) be a continuous
function on (−∞,∞) and periodic of period 2L. If f ′ is piecewise continuous
on [−L,L], then the Fourrier series of f converges uniformly to f on [−L,L]
and hence on any interval. That is, for each ε > 0, there exists an integer N0

(that depends on ε) such that

(1714)

∣∣∣∣∣f (x)−

[
a0

2
+

N∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}]∣∣∣∣∣ < ε,

for all N ≥ N0, and all x ∈ (−∞,∞).

Remark: The astute reader will notice that Theorem 6.3.3 actually gives us
more than what the problem originally asked for since uniform convergence is
better than pointwise convergence.
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Problem 12.9: Determine the function to which the Fourrier series of

(1715) f (x) =

{
0 if − π < x < 0,

x2 if 0 < x < π

converges pointwise.

Note: The graphs for this problem do not have open circles at individual points at which the function is undefined.

Luckily, the precise definition of f(x) or its periodic extension at these endpoints does not change the final answer

to this question.

Solution: We begin by examining a graph of f (x) and a graph of g(x), the
2π-periodic extension of f (x).

Figure 72. Graph of f(x).

Figure 73. Graph of g(x).
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We apply Theorem 6.3.2 (stated below) in order to find the answer.

Theorem 6.3.2 (Page 503): If f and f ′ are piecewise continuous on
[−L,L], then for any x ∈ (−L,L),

(1716)
a0

2
+

∞∑
n=1

{
an cos(

nπx

L
) + bn sin(

nπx

L
)
}

︸ ︷︷ ︸
Fourrier series of f(x)

=
1

2
[f (x+) + f (x−)].

For x = ±L, the series converges to 1
2[f (−L+) + f (L−)].

Noting that L = π in this problem, let us first determine the function that
the Fourrier series of f (x) converges pointwise to on [−π, π]. We see that on
(−π, 0) ∪ (0, π), f (x) is continuous, so the Fourrier series of f (x) converges
pointwise to f (x) for every x ∈ (−π, 0) ∪ (0, π). Since f (0−) = f (0+) = 0,
we see that the Fourrier series of f (x) converges to 0 when x = 0. Since
f (−π+) = 0 and f (π−) = π2, we see that the Fourrier series of f (x) converges
to 1

2π
2 when x = ±π. Recalling that the Fourrier series of f (x) is 2π-periodic,

we first define g(nπ) = 1
2π

2 whenever n is an odd integer and g(nπ) = 0
whenever n is an even integer (so that we may give a definition to g(x) in the
places that it is currently undefined), and then we see that the Fourrier series
of f (x) converges to g(x).
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Problem 12.10: Find the solution u(x, t) to the heat flow problem

(1717)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t > 0,

(1718) µ(0, t) = µ(L, t) = 0, t > 0

(1719) u(x, 0) = f (x), 0 < x < L,

with β = 5, L = π, and the initial value function

(1720) f (x) = 1− cos(2x).

Solution: We know that a general solution to the heat flow problem is

(1721) u(x, t) =

∞∑
n=1

cne
−β(nπL )2t sin(

nπx

L
) =

∞∑
n=1

cne
−5n2t sin(nx).

From equation (1719), we see that

(1722) 1− cos(2x) = u(x, 0) =

∞∑
n=1

cne
−5n2·0 sin(nx) =

∞∑
n=1

cn sin(nx),

So we have to compute the fourier sine series of 1− cos(x)18. Before doing so,
we recall the following helpful trigonometric identity.

(1723) sin(n + m) + sin(n−m) = 2 sin(n) cos(m).

We see that for n ≥ 1, we have

(1724) cn =
2

L

∫ L

0

f (x) sin(nx)dx =
2

π

∫ π

0

(1− cos(2x)) sin(nx)dx

18Sometimes the function f(x) is a sum of sine functions, such as f(x) = 2 sin(3x)− π sin(4x). In cases such as these, we are (luckily) already

given the fourrier sine series of f(x)! We see that c3 = 2, c4 = −π, and cn = 0 for all other n ≥ 1.
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(1725) =
2

π

∫ π

0

sin(nx)dx− 2

π

∫ π

0

sin(nx) cos(2x)dx

(1726)
by (1723)

=
2

π

(
−cos(nx)

n

∣∣∣π
x=0

)
− 2

π

∫ π

0

1

2
(sin((n+2)x)+sin((n−2)x))dx

(1727) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n + 2)x)

n + 2
+
− cos((n− 2)x)

n− 2

∣∣∣π
x=0

)

(1728) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos((n+ 2)π) + 1

n+ 2
+
− cos((n− 2)π) + 1

n− 2

)

(1729) =
2(− cos(nπ) + 1)

nπ
− 1

π

(
− cos(nπ) + 1

n + 2
+
− cos(nπ) + 1

n− 2

)

(1730) =

(
− cos(nπ) + 1

π

)(
2

n
− (

1

n + 2
+

1

n− 2
)

)

(1731) =

(
− cos(nπ) + 1

π

)(
2(n + 2)(n− 2)− n(n− 2)− n(n + 2)

n(n + 2)(n− 2)

)

(1732) =

(
− cos(nπ) + 1

π

)(
−4

n3 − 4n

)
=

4 cos(nπ)− 4

L(n3 − 4n)

(1733) =

{
0 if n is even

− 8
(n3−4n)π

if n is odd
.

It follows that our solution is given by
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(1734) u(x, t) =

∞∑
n=1

− 8

((2n− 1)3 − 4(2n− 1))π
e−5(2n−1)2t sin((2n− 1)x) .
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Problem 12.11: Formally solve the vibrating string problem

(1735)
∂2u

∂t2
= α

∂2u

∂x2
, 0 < x < L, t > 0,

(1736) u(0, t) = u(L, t) = 0, t > 0,

(1737) u(x, 0) = f (x), 0 ≤ x ≤ L,

(1738)
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L,

with α = 4, L = π, and the initial value functions

(1739) f (x) =

∞∑
n=1

1

n2
sin(nx),

(1740) g(x) =

∞∑
n=1

(−1)n+1

n
sin(nx).

Solution: We know that a general solution of the vibrating string problem is

(1741) u(x, t) =
∞∑
n=1

[
an cos(

nπα

L
t) + bn sin(

nπα

L
t)
]

sin(
nπx

L
) =

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx).

From equation (1737), we see that

(1742)

∞∑
n=1

1

n2
sin(nx) = f (x) = u(x, 0)

(1743) =

∞∑
n=1

[an cos(4n · 0) + bn sin(4n · 0)] sin(nx)
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(1744) =

∞∑
n=1

[an · 1 + bn · 0] sin(nx) =

∞∑
n=1

ansin(nx),

so an = 1
n2 for every n ≥ 1. Next, from equation (1738), we see that

(1745)

∞∑
n=1

(−1)n+1

n
sin(nx) = g(x) =

∂u

∂t
(x, 0)

(1746) =
∂

∂t

∞∑
n=1

[an cos(4nt) + bn sin(4nt)] sin(nx)
∣∣∣
t=0

(1747) =

∞∑
n=1

∂

∂t
[an cos(4nt) + bn sin(4nt)] sin(nx)

∣∣∣
t=0

(1748) =

∞∑
n=1

[−4nan sin(4nt) + 4nbn cos(4nt)] sin(nx)
∣∣∣
t=0

(1749) =

∞∑
n=1

[−4nan sin(4n · 0) + 4nbn cos(4n · 0)] sin(nx)

(1750) =

∞∑
n=1

[−4nan · 0 + 4nbn · 1] sin(nx) =

∞∑
n=1

4nbnsin(nx).

The conclusion of equations (1745)− (1750) is

(1751)

∞∑
n=1

(−1)n+1

n
sin(nx) =

∞∑
n=1

4nbnsin(nx),

which shows us that
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(1752)
(−1)n+1

n
= 4nbn → bn =

(−1)n+1

4n2
for all n ≥ 1.

It follows that our solution is given by

(1753) u(x, t) =

∞∑
n=1

[
1

n2
cos(4nt) +

(−1)n+1

4n2
sin(4nt)

]
sin(nx) .
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