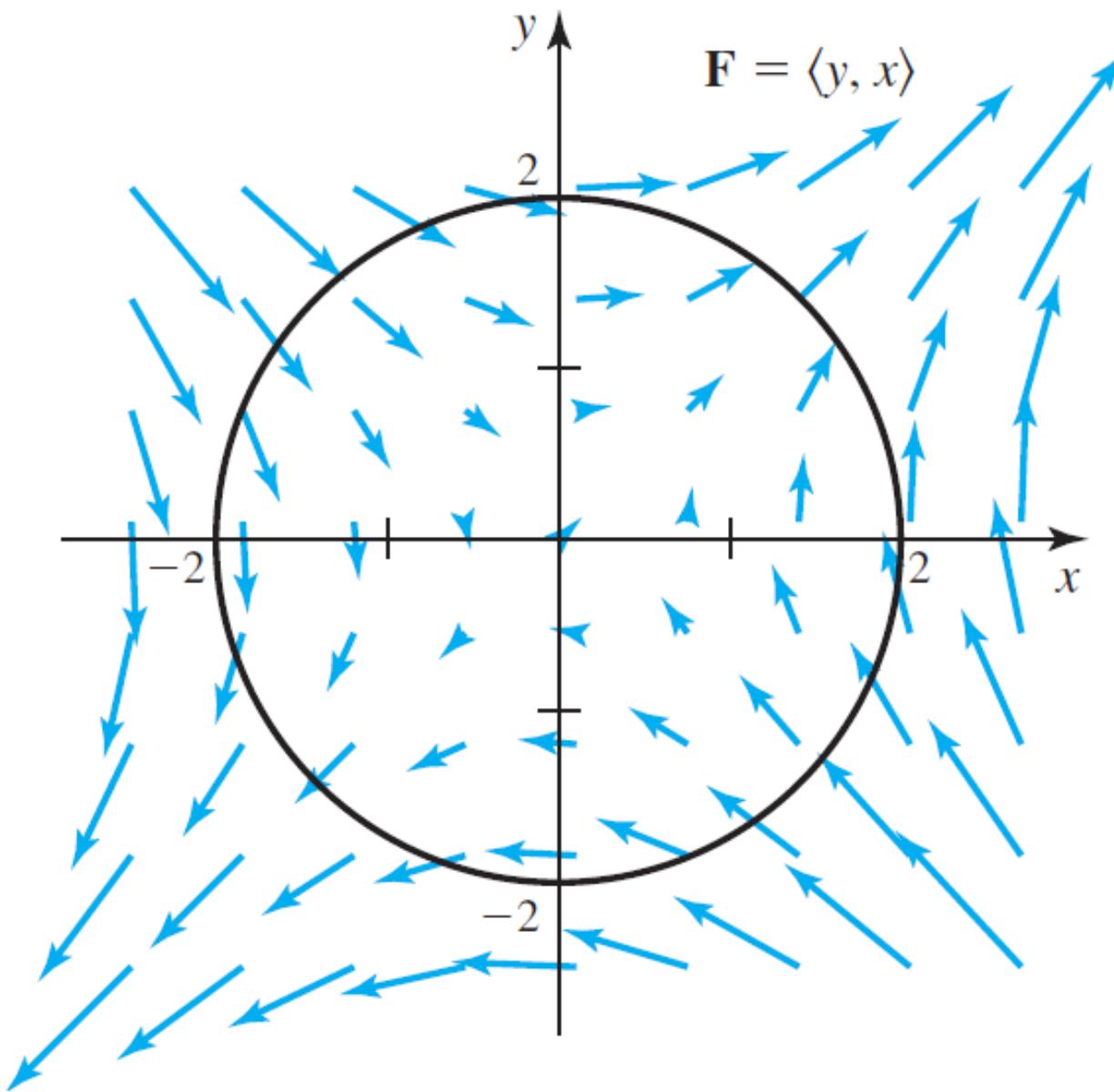


Problem 1(Repeated from last week): Consider the flow field $\mathbf{F} = \langle y, x \rangle$ shown in the figure below.



- Compute the outward flux across the quarter circle $C: \mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle$, $0 \leq t \leq \frac{\pi}{2}$.
- Compute the outward flux across the quarter circle $C: \mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle$, $\frac{\pi}{2} \leq t \leq \pi$.
- Explain why the flux across the quarter circle in the third quadrant equals the flux computed in part a.
- Explain why the flux across the quarter circle in the fourth quadrant equals the flux computed in part b.
- What is the outward flux across the full circle?

Problem 2: An idealized two-dimensional ocean is modeled by the square region $R = [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$, with boundary \mathcal{C} . Consider the stream function $\Psi(x, y) = 4 \cos(x) \cos(y)$ defined on R . Some of the level curves of Ψ are shown in the figure below.

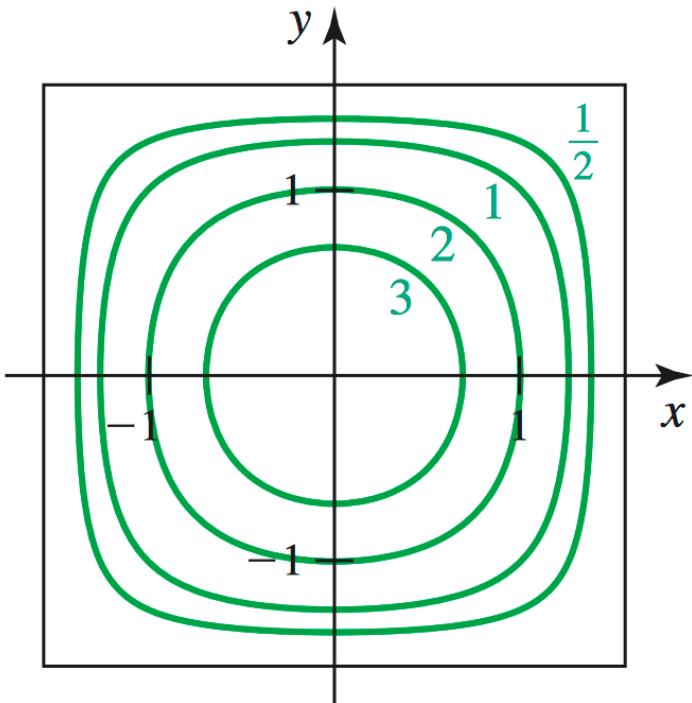
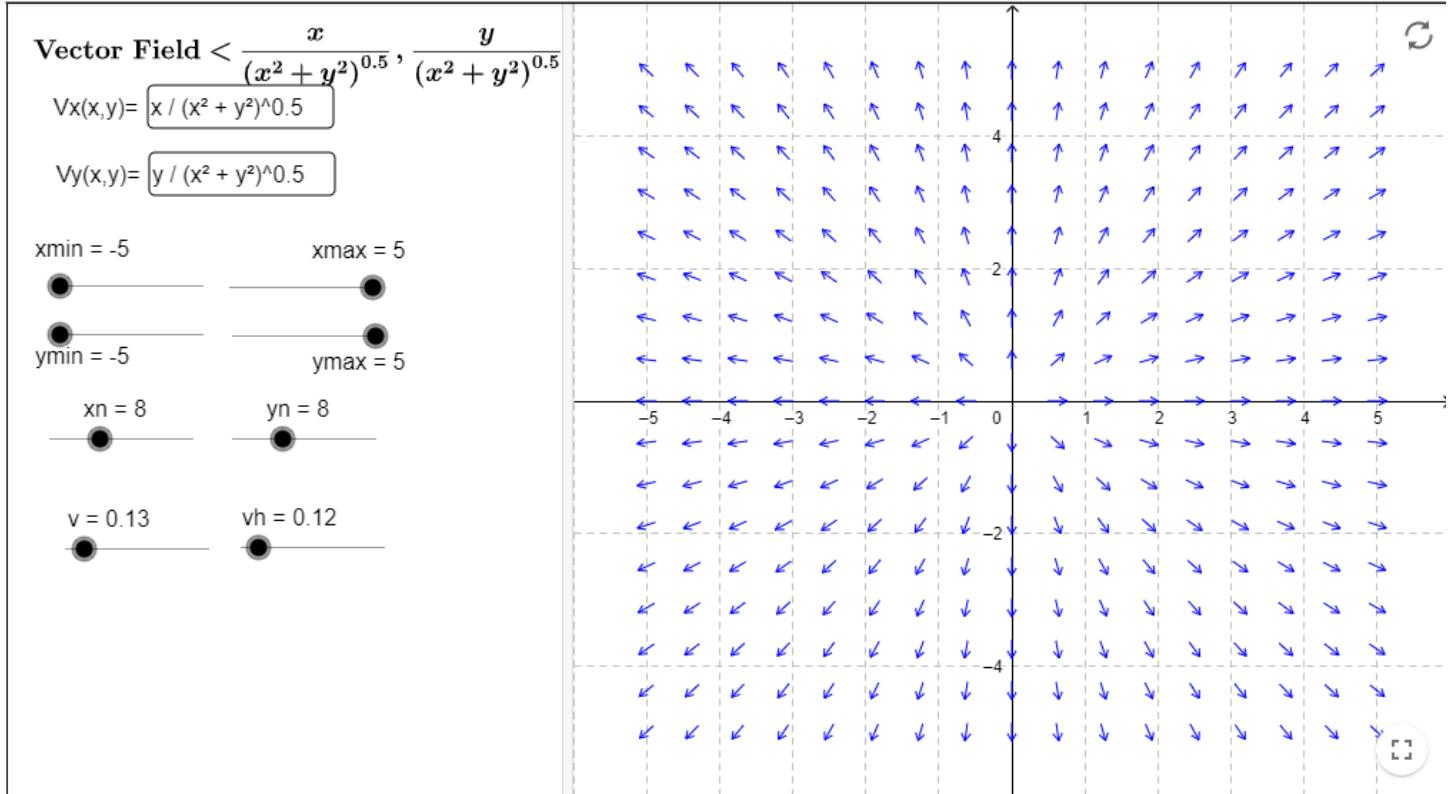


Figure 1: Some level curves of the stream function $\Psi(x, y)$.

- (a) The horizontal (east-west) component of the velocity is $u = \Psi_y$ and the vertical (north-south) component of the velocity is $v = -\Psi_x$. Sketch a few representative velocity vectors and show that the flow is counterclockwise around the region.
- (b) Is the velocity field source free? Explain.
- (c) Is the velocity field irrotational? Explain.
- (d) Find the total outward flux across \mathcal{C} .
- (e) Find the circulation on \mathcal{C} assuming counterclockwise orientation.

Problem 3: Consider the radial field $\vec{F}(x, y) = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}} = \frac{\vec{r}}{|\vec{r}|}$ shown below.



(a) Explain why the conditions of Green's Theorem do not apply to \vec{F} on a region R containing the origin.

(b) Let R be the unit disk centered at the origin and compute

$$\iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA. \quad (1)$$

(c) Evaluate the line integral in the flux form of Green's Theorem applied to the region R and the vector field \vec{F} .

(d) Do the results of parts (b) and (c) agree? Explain.

