

Problem 1: Determine whether the vector field \vec{F} given by

$$\vec{F} = \langle y - e^{x+y}, x - e^{x+y} + 1, \frac{1}{z} \rangle \quad (1)$$

is a conservative vector field. If \vec{F} is conservative, find a potential function φ .

Solution: We see that

$$\vec{F} = \langle \mathbf{m}, \mathbf{n}, \mathbf{p} \rangle, \quad \text{with} \quad (2)$$

$$\mathbf{m}(x, y, z) = \mathbf{y} - e^{x+y}, \quad \mathbf{n}(x, y, z) = \mathbf{x} - e^{x+y} + 1, \quad \mathbf{p}(x, y, z) = \frac{1}{z}.$$

$$\text{Since } \frac{\partial \mathbf{m}}{\partial y} = 1 - e^{x+y} = \frac{\partial \mathbf{n}}{\partial x}, \quad \frac{\partial \mathbf{n}}{\partial z} = 0 = \frac{\partial \mathbf{p}}{\partial y}, \quad \frac{\partial \mathbf{m}}{\partial z} = 0 = \frac{\partial \mathbf{p}}{\partial x},$$

we see that \vec{F} is a conservative vector field. We will now find the potential function φ for \vec{F} . We recall that

$$\langle \mathbf{m}, \mathbf{n}, \mathbf{p} \rangle = \vec{F} = \nabla \varphi = \langle \varphi_x, \varphi_y, \varphi_z \rangle. \quad (3)$$

We will now handle the 3 scalar differential equations that arise from (3) in order to find φ (but only up to a constant).

$$\begin{aligned} \varphi_x(x, y, z) &= \mathbf{m}(x, y, z) = \mathbf{y} - e^{x+y} & (4) \\ \rightarrow \varphi(x, y, z) &= \int (y - e^{x+y}) dx = xy - e^{x+y} + h(y, z) \\ x - e^{x+y} + 1 &= \mathbf{n}(x, y, z) = \varphi_y(x, y, z) = x - e^{x+y} + h_y(y, z) \\ \rightarrow h_y(y, z) &= 1 \rightarrow h(y, z) = \int 1 dy = y + g(z) \\ \rightarrow \varphi(x, y, z) &= xy - e^{x+y} + y + g(z) \\ \frac{1}{z} &= \mathbf{p}(x, y, z) = \varphi_z(x, y, z) = g_z(z) = g'(z) \\ \rightarrow g(z) &= \int \frac{1}{z} dz = \ln |z| + C \\ \rightarrow \boxed{\varphi(x, y, z) &= xy - e^{x+y} + y + \ln |z| + C}. \end{aligned}$$

Problem 2: Consider the vector field $\vec{F} = \langle x, -y \rangle$ and the curve C which is the square with vertices $(\pm 1, \pm 1)$ with the counterclockwise orientation.

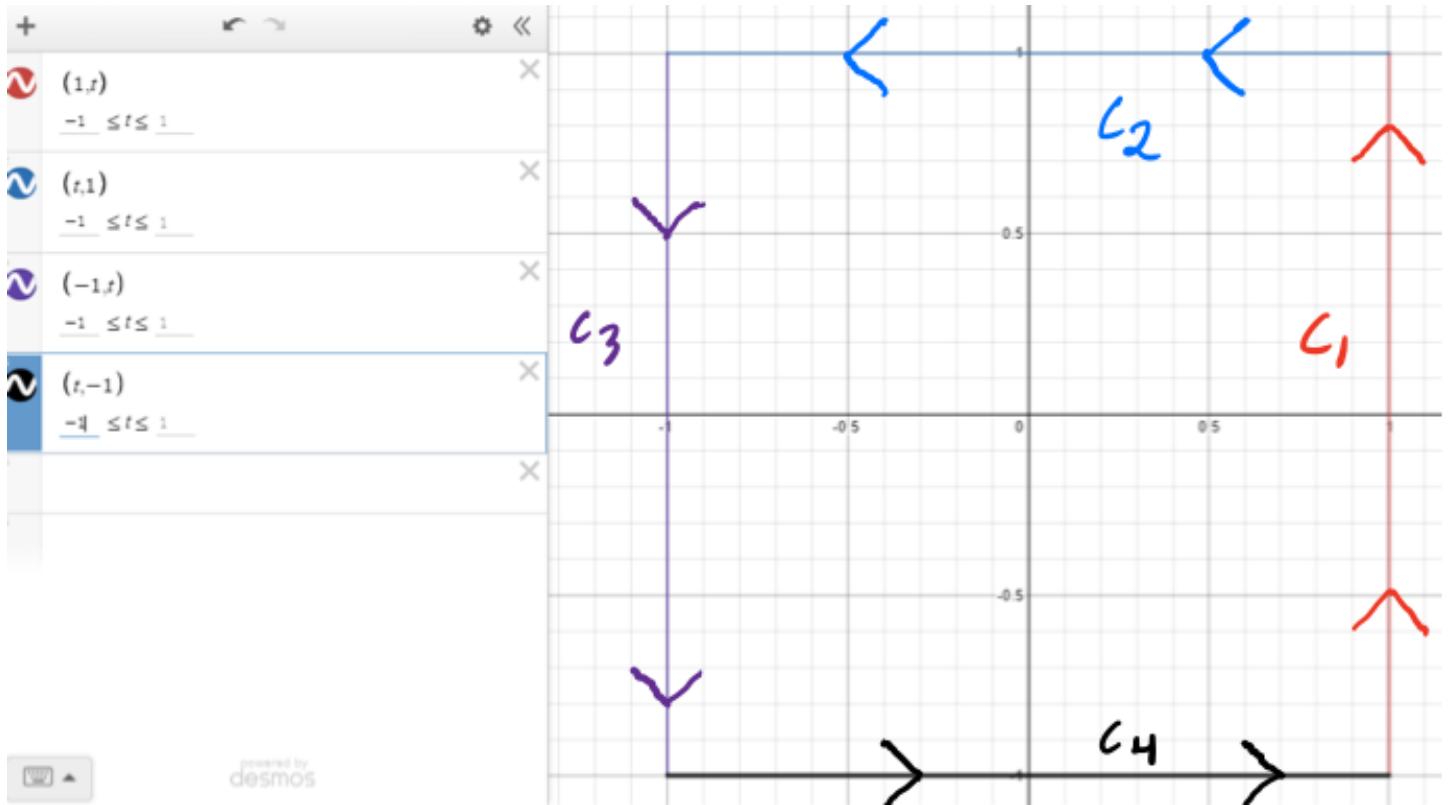


Figure 1: The curve C .

- (a) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by finding a parametrization $\vec{r}(t)$ for the curve C .
- (b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by using the Fundamental Theorem for Line Integrals.

Solution to (a): Letting C_1, C_2, C_3 , and C_4 be as in Figure 1, we see that

$$\int_C \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r} + \int_{C_3} \vec{F} \cdot d\vec{r} + \int_{C_4} \vec{F} \cdot d\vec{r}. \quad (5)$$

Since

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{-1}^1 \langle 1, -t \rangle \cdot \langle 0, 1 \rangle dt = \int_{-1}^1 -tdt = -\frac{1}{2}t^2 \Big|_{-1}^1 = 0, \quad (6)$$

$$\int_{C_2} \vec{F} \cdot d\vec{r} = \int_1^{-1} \langle t, -1 \rangle \cdot \langle 1, 0 \rangle dt = \int_1^{-1} tdt = \frac{1}{2}t^2 \Big|_1^{-1} = 0, \quad (7)$$

$$\int_{C_3} \vec{F} \cdot d\vec{r} = \int_1^{-1} \langle -1, -t \rangle \cdot \langle 0, 1 \rangle dt = \int_1^{-1} -tdt = -\frac{1}{2}t^2 \Big|_1^{-1} = 0, \quad (8)$$

$$\int_{C_4} \vec{F} \cdot d\vec{r} = \int_{-1}^1 \langle t, 1 \rangle \cdot \langle 1, 0 \rangle dt = \int_{-1}^1 t dt = \frac{1}{2}t^2 \Big|_{-1}^1 = 0, \quad (9)$$

we see that

$$\int_C \vec{F} \cdot d\vec{r} = \textcolor{red}{0} + \textcolor{blue}{0} + \textcolor{purple}{0} + 0 = \boxed{0}. \quad (10)$$

Solution to (b): Since

$$\frac{\partial}{\partial y}(x) = 0 = \frac{\partial}{\partial x}(-y), \quad (11)$$

we see that $\vec{F} = \langle x, -y \rangle$ is a conservative vector field. We now have 2 ways in which to finish the problem.

Finish 1: Since \vec{F} is a conservative vector field and C is a (simple, piecewise smooth, oriented) closed curve, and \vec{F} is continuous on C and its interior, we see that

$$\int_C \vec{F} \cdot d\vec{r} = \boxed{0}. \quad (12)$$

Finish 2: We now want to find a potential function $\varphi(x, y)$ for \vec{F} . Since

$$\langle \varphi_x, \varphi_y \rangle = \nabla \varphi = \vec{F} = \langle x, -y \rangle, \quad (13)$$

we see that

$$\varphi_x(x, y) = x \rightarrow \varphi(x, y) = \int x dx = \frac{1}{2}x^2 + g(y) \rightarrow \quad (14)$$

$$\begin{aligned} g'(y) &= \varphi_y(x, y) = -y \\ \rightarrow g(y) &= -\frac{1}{2}y^2 + C \rightarrow \varphi(x, y) = \frac{1}{2}(x^2 - y^2) + C. \end{aligned} \quad (15)$$

Now let P be any point on the curve C . For example, we may take $P = (1, 1)$. Since the curve C can be seen as starting at P and ending at P , the Fundamental Theorem for Line Integrals tells us that

$$\int_C \vec{F} \cdot d\vec{r} = \varphi((1, 1)) - \varphi((1, 1)) = \boxed{0}. \quad (16)$$

Remark: We see that in Finish 2, we did not even need to determine what the function φ was in order to conclude that the final answer is 0.

Problem 3: Evaluate

$$\int_C \langle \sqrt[4]{x+6} + \ln(\ln(\ln(e^{e^e} + 5 + x))) - 1, y^3 + 2 + e^{y^2} \rangle \cdot d\vec{r}, \quad (17)$$

where C is the curve that is shown in the picture below.

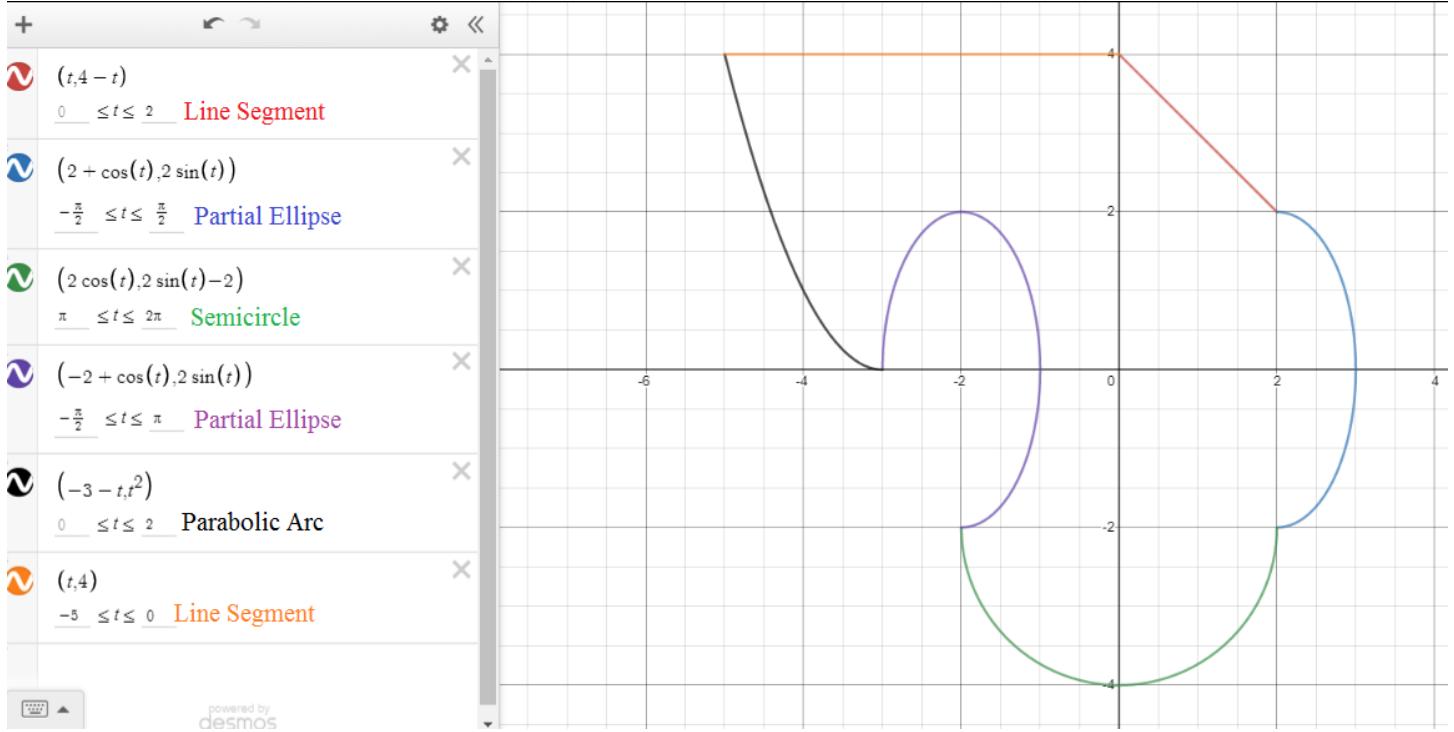


Figure 2: The curve C .

Solution: Letting

$$m(x, y, z) = \sqrt[4]{x+6} + \ln(\ln(\ln(e^{e^e} + 5 + x))) - 1, \text{ and} \quad (18)$$

$$n(x, y, z) = y^3 + 2 + e^{y^2}, \text{ we see that} \quad (19)$$

$$\vec{F} := \langle m, n \rangle, \text{ satisfies} \quad (20)$$

$$\frac{\partial m}{\partial y} = 0 = \frac{\partial n}{\partial x} \quad (21)$$

so \vec{F} is a conservative vector field. We also see that

$$\int_C \langle \sqrt[4]{x+6} + \ln(\ln(\ln(e^{e^e} + 5 + x))) - 1, y^3 + 2 + e^{y^2} \rangle \cdot d\vec{r} = \int_C \vec{F} \cdot d\vec{r}. \quad (22)$$

Since \vec{F} is conservative and C is a (simple, piecewise smooth, oriented) closed curve, and \vec{F} is continuous on C and its interior, we see that

$$\int_C \vec{F} \cdot d\vec{r} = [0]. \quad (23)$$

Challenge for the brave: Letting C once again denote the curve in figure 2, evaluate

$$\int_C \langle y, 0 \rangle \cdot d\vec{r}. \quad (24)$$

Problem 4: Let \vec{F} be the vector field

$$\vec{F} = \langle f(x, y), g(x, y) \rangle = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle.$$

It is a rotational vector field with the graph below

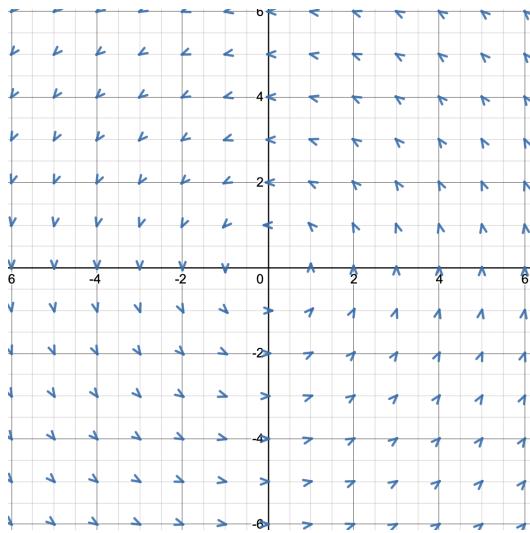


Figure 3: vector field \vec{F}

- (a) Find the domain R of \vec{F} .
- (b) Is the domain R connected? Is R simply connected?
- (c) Show that $\frac{\partial g}{\partial x} = \frac{\partial f}{\partial y}$.
- (d) Let C_a be the parametrized circle $\vec{r}(t) = \langle a \cos(t), a \sin(t) \rangle$, $0 \leq t < 2\pi$ of radius $a > 0$. Show that the integral
$$\int_{C_a} \vec{F} \cdot d\vec{r} = 2\pi.$$
- (e) Is \vec{F} a conservative vector field on R ? If so, please explain. Otherwise, please explain why it doesn't contradict the result in (c).
- (f) Let R_1 be the region $R_1 = \{1 \leq x \leq 2, 1 \leq y \leq 2\}$. Is \vec{F} a conservative vector field on R_1 ? Please explain.

Solution to part (a): The domain of \vec{F} consists of all points in \mathbb{R}^2 at which \vec{F} is defined. We see that the only time that \vec{F} is undefined is when $x^2 + y^2 = 0$, as we cannot divide by 0, but $x^2 + y^2 = 0$ is only satisfied by $(x, y) = (0, 0)$, so the domain of \vec{F} is $R = \mathbb{R}^2 \setminus \{(0, 0)\}$.

Solution to part (b): The domain of R is connected since it is actually path connected¹.

¹Being path connected is a stronger condition than just being connected, but you probably won't study the difference between the 2 notions unless you go on to take a course in real analysis or topology.

Given any 2 points in R , there exists a path consisting of either 1 or 2 straight line segments that connects the 2 points.

Solution to part (c): We see that

$$\frac{\partial g}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) = -\frac{x}{(x^2 + y^2)^2} \cdot 2x + \frac{1}{x^2 + y^2} \quad (25)$$

$$= -\frac{2x^2}{(x^2 + y^2)^2} + \frac{x^2 + y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}, \text{ and} \quad (26)$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right) = -\frac{-y}{(x^2 + y^2)^2} \cdot 2y + \frac{-1}{x^2 + y^2} \quad (27)$$

$$= \frac{2y^2}{(x^2 + y^2)^2} - \frac{x^2 + y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial f}{\partial x}. \quad (28)$$

Solution to part (d): We see that

$$\int_{C_a} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt = \int_0^{2\pi} \vec{F}(a \cos(t), a \sin(t)) \cdot \langle -a \sin(t), a \cos(t) \rangle dt \quad (29)$$

$$= \int_0^{2\pi} \left\langle \frac{-a \sin(t)}{(a \cos(t))^2 + (a \sin(t))^2}, \frac{a \cos(t)}{(a \cos(t))^2 + (a \sin(t))^2} \right\rangle \cdot \langle -a \sin(t), a \cos(t) \rangle dt \quad (30)$$

$$= \int_0^{2\pi} \langle -\sin(t), \cos(t) \rangle \cdot \langle -\sin(t), \cos(t) \rangle dt = \int_0^{2\pi} (\sin^2(t) + \cos^2(t)) dt \quad (31)$$

$$= \int_0^{2\pi} 1 dt = [2\pi]. \quad (32)$$

Solution to part (e): Since C_a is a closed loop inside of R for any radius $a > 0$, and $\int_{C_a} \vec{F} \cdot d\vec{r} = 2\pi \neq 0$, we see (Theorem 15.6 on page 1118) that \vec{F} is not a conservative vector field on R . Our calculations in part (c) cannot be used alongside Theorem 15.3 (on page 1113) to conclude that the vector field \vec{F} is conservative, because Theorem 15.3 requires that the vector field \vec{F} be defined on a simply connected region D .

Solution to part (f): Since the region R_1 is simply connected (it has no holes) and \vec{F} is continuous on R_1 , we may use the result of part (c) to conclude that the vector field \vec{F} is conservative on the region R_1 .

Problem 5: Evaluate the line integral $\int_C \nabla \phi \cdot d\vec{r}$ for $\phi(x, y) = xy$ and $C : \vec{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $0 \leq t \leq \pi$ in two ways.

- (a) Use a parametric description of C and evaluate the integral directly;
- (b) Use the Fundamental Theorem for line integrals.

Solution to (a): We see that $\nabla \phi(x, y) = \langle y, x \rangle$, so

$$\int_C \nabla \phi \cdot d\vec{r} = \int_0^\pi \nabla \phi(\vec{r}(t)) \cdot \vec{r}'(t) dt \quad (33)$$

.....

$$= \int_0^\pi \nabla \phi(\cos(t), \sin(t)) \cdot \langle -\sin(t), \cos(t) \rangle dt \quad (34)$$

.....

$$= \int_0^\pi \langle \sin(t), \cos(t) \rangle \cdot \langle -\sin(t), \cos(t) \rangle dt \quad (35)$$

.....

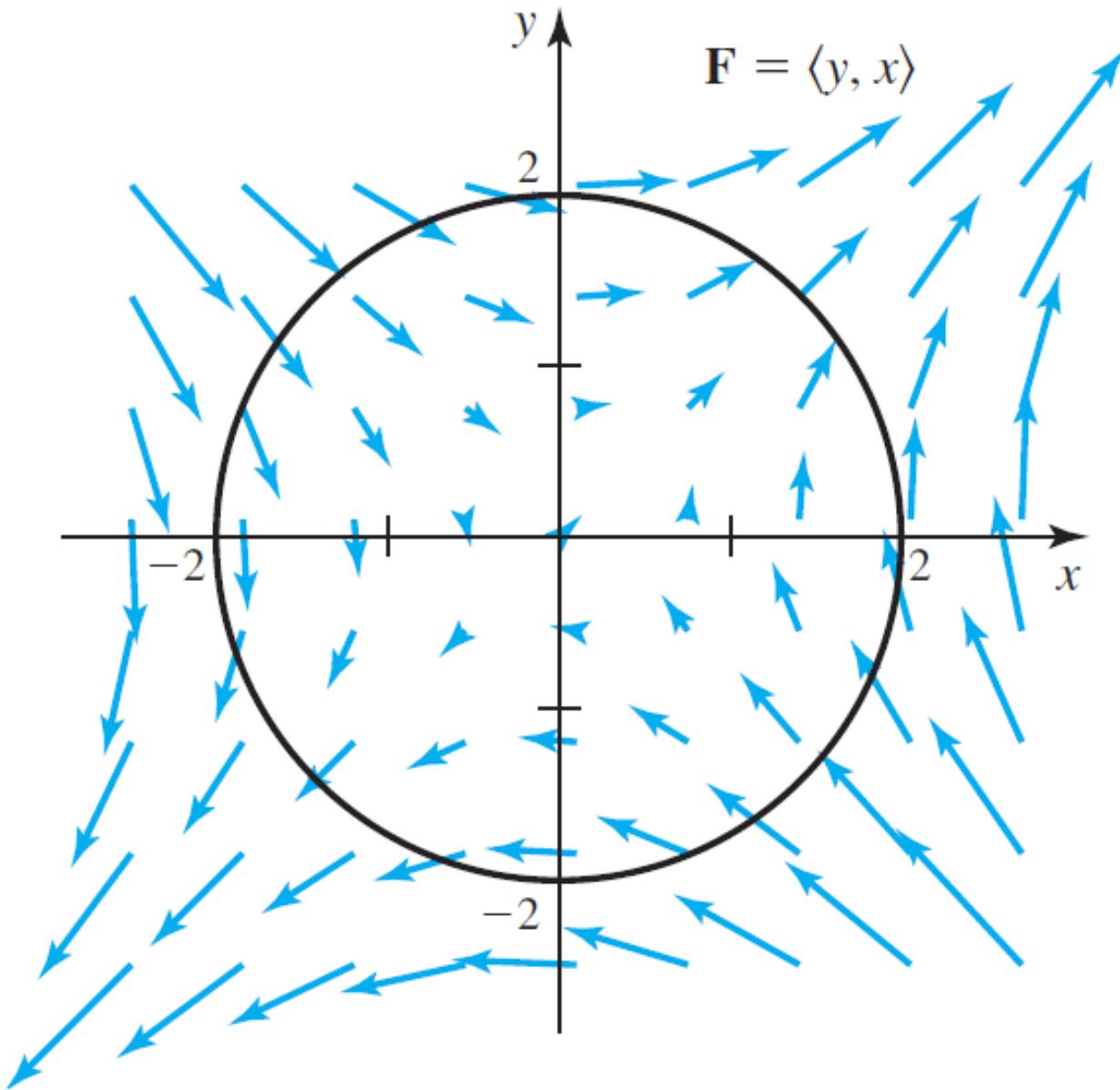
$$= \int_0^\pi (-\sin^2(t) + \cos^2(t)) dt = \int_0^\pi \cos(2t) dt = \frac{1}{2} \sin(2t) \Big|_0^\pi = \boxed{0}. \quad (36)$$

Solution to (b): We see that

$$\int_C \nabla \phi \cdot d\vec{r} = \int_0^\pi \nabla \phi(\vec{r}(t)) \cdot \vec{r}'(t) dt \quad (37)$$

$$= \phi(\vec{r}(\pi)) - \phi(\vec{r}(0)) = \phi(-1, 0) - \phi(1, 0) = 0 - 0 = \boxed{0}. \quad (38)$$

Problem 6: Consider the flow field $\mathbf{F} = \langle y, x \rangle$ shown in the figure below.



- (a) Compute the outward flux across the quarter circle $C: \mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle$, $0 \leq t \leq \frac{\pi}{2}$.
- (b) Compute the outward flux across the quarter circle $C: \mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle$, $\frac{\pi}{2} \leq t \leq \pi$.
- (c) Explain why the flux across the quarter circle in the third quadrant equals the flux computed in part (a).
- (d) Explain why the flux across the quarter circle in the fourth quadrant equals the flux computed in part (b).
- (e) What is the outward flux across the full circle?

Solution to (a): We begin by calculating the unit normal vector $\hat{n}(t)$ at any point on the circle (as opposed to only on the first quadrant). We see that

$$\mathbf{r}'(t) = \langle -2 \sin(t), 2 \cos(t) \rangle \rightarrow |\mathbf{r}'(t)| = \sqrt{(-2 \sin(t))^2 + (2 \cos(t))^2} = 2 \quad (39)$$

$$\rightarrow \hat{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\langle -2 \sin(t), 2 \cos(t) \rangle}{2} = \langle -\sin(t), \cos(t) \rangle \quad (40)$$

$$\rightarrow \hat{n}(t) = \hat{T}(t) \times \hat{k} = \langle \cos(t), -(-\sin(t)) \rangle = \langle \cos(t), \sin(t) \rangle. \quad (41)$$

We now are able to calculate the desired flux as

$$\text{Flux}(C) = \int_C \mathbf{F} \cdot \hat{n} ds = \int_0^{\frac{\pi}{2}} \mathbf{F}(2 \cos(t), 2 \sin(t)) \cdot \langle \cos(t), \sin(t) \rangle \underbrace{2 dt}_{ds} \quad (42)$$

$$= \int_0^{\frac{\pi}{2}} \langle 2 \sin(t), 2 \cos(t) \rangle \cdot \langle 2 \cos(t), 2 \sin(t) \rangle dt \quad (43)$$

$$= \int_0^{\frac{\pi}{2}} (4 \sin(t) \cos(t) + 4 \cos(t) \sin(t)) dt \quad (44)$$

$$= \int_0^{\frac{\pi}{2}} 8 \sin(t) \cos(t) dt = \int_0^{\frac{\pi}{2}} 4 \sin(2t) dt = -2 \cos(2t) \Big|_0^{\frac{\pi}{2}} = \boxed{4}. \quad (45)$$

Solution to (b): Since we have already found $\hat{n}(t)$ in part **a**, we proceed directly to the calculation of the flux, which is also similar to the calculation that we did in part **a**.

$$\text{Flux}(C) = \int_C \mathbf{F} \cdot \hat{n} ds = \int_{\frac{\pi}{2}}^{\pi} \mathbf{F}(2 \cos(t), 2 \sin(t)) \cdot \langle \cos(t), \sin(t) \rangle 2 dt \quad (46)$$

$$= \int_{\frac{\pi}{2}}^{\pi} 8 \sin(t) \cos(t) dt = -2 \cos(2t) \Big|_{\frac{\pi}{2}}^{\pi} = \boxed{-4}. \quad (47)$$

Solution to (c): The symmetry in the given picture shows us that the flux through the circle in quadrant 1 is the same as the flux through the circle in quadrant 3. To be more detailed, we can observe that the map $(x, y) \mapsto (-x, -y)$ will send the first quadrant to the third quadrant, and the map $\theta \mapsto \theta + \pi$ (which is basically the same map) also maps the first quadrant to the third quadrant. It follows that for each $0 \leq t \leq \frac{\pi}{2}$ (remembering that t is essentially the angle θ in this situation) we have

$$\mathbf{F}(\mathbf{r}(t + \pi)) = \mathbf{F}(-\mathbf{r}(t)) = -\mathbf{F}(\mathbf{r}(t)), \text{ and} \quad (48)$$

$$\hat{n}(t + \pi) = -\hat{n}(t), \text{ so} \quad (49)$$

$$\text{Flux(Third Quadrant)} = \int_{\pi}^{\frac{3\pi}{2}} \mathbf{F} \cdot \hat{n} ds = \int_{\pi}^{\frac{3\pi}{2}} \mathbf{F}(\mathbf{r}(t)) \cdot \hat{n} ds = \quad (50)$$

$$= \int_0^{\frac{\pi}{2}} \mathbf{F}(\mathbf{r}(t + \pi)) \cdot \hat{n}(t + \pi) ds = \int_0^{\frac{\pi}{2}} (-\mathbf{F}(\mathbf{r}(t))) \cdot (-\hat{n}(t)) ds \quad (51)$$

$$= \int_0^{\frac{\pi}{2}} \mathbf{F} \cdot \hat{n}(t) ds = \text{Flux(First Quadrant)}. \quad (52)$$

Solution to (d): Once again the symmetry in the given picture shows us that the flux through the circle in quadrant 2 is the same as the flux through the circle in quadrant 4. To be more detailed, we perform calculations similar to those of part (c) to see that

$$\text{Flux(Fourth Quadrant)} = \int_{\frac{3\pi}{2}}^{2\pi} \mathbf{F} \cdot \hat{n} ds = \int_{\frac{3\pi}{2}}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \hat{n} ds \quad (53)$$

$$= \int_{\frac{\pi}{2}}^{\pi} \mathbf{F}(\mathbf{r}(t + \pi)) \cdot \hat{n}(t + \pi) ds = \int_{\frac{\pi}{2}}^{\pi} (-\mathbf{F}(\mathbf{r}(t))) \cdot (-\hat{n}(t)) ds \quad (54)$$

$$= \int_{\frac{\pi}{2}}^{\pi} \mathbf{F} \cdot \hat{n}(t) ds = \text{Flux(Second Quadrant)}. \quad (55)$$

Solution to (e): We could calculate the total flux directly, but to make use of parts **a–d**, we observe that

$$\text{Total Flux} = \int_0^{2\pi} \mathbf{F} \cdot \hat{n} ds \quad (56)$$

$$= \underbrace{\int_0^{\frac{\pi}{2}} \mathbf{F} \cdot \hat{n} ds}_{\text{Q1 Flux}} + \underbrace{\int_{\frac{\pi}{2}}^{\pi} \mathbf{F} \cdot \hat{n} ds}_{\text{Q2 Flux}} + \underbrace{\int_{\pi}^{\frac{3\pi}{2}} \mathbf{F} \cdot \hat{n} ds}_{\text{Q3 Flux}} + \underbrace{\int_{\frac{3\pi}{2}}^{2\pi} \mathbf{F} \cdot \hat{n} ds}_{\text{Q4 Flux}} \quad (57)$$

$$= 4 + (-4) + 4 + (-4) = \boxed{0}. \quad (58)$$

Problem 7: Compute the circulation of $\vec{F} = \langle y - x, x \rangle$ on the curve \mathcal{C} which is given by $\vec{r}(t) = \langle 2 \cos(t), 2 \sin(t) \rangle$ for $0 \leq t \leq 2\pi$.

Solution: We see that

$$\text{Circulation} = \int_C \vec{F} \cdot \hat{T} ds = \int_C \vec{F} \cdot \vec{r}'(t) dt \quad (59)$$

$$= \int_0^{2\pi} \vec{F}(\vec{r}(t)) \cdot \langle -2 \sin(t), 2 \cos(t) \rangle dt \quad (60)$$

$$= \int_0^{2\pi} \langle \underbrace{2 \sin(t)}_y - \underbrace{2 \cos(t)}_x, \underbrace{2 \cos(t)}_x \rangle \cdot \langle -2 \sin(t), 2 \cos(t) \rangle dt \quad (61)$$

$$= \int_0^{2\pi} (-4 \sin^2(t) + 4 \cos(t) \sin(t) + 4 \cos^2(t)) dt \quad (62)$$

$$= {}^2 \int_0^{2\pi} (4 \cos(2t) + 2 \sin(2t)) dt \quad (63)$$

$$= 2 \sin(2t) - \cos(2t) \Big|_0^{2\pi} = \boxed{0}. \quad (64)$$

² $\cos(2t) = \cos^2(t) - \sin^2(t) = 2 \cos^2(t) - 1 = 1 - 2 \sin^2(t)$ and $\sin(2t) = 2 \sin(t) \cos(t)$.