

Problem 1: Use a scalar line integral to find the length of the curve

$$\vec{r}(t) = \left\langle 20 \sin\left(\frac{t}{4}\right), 20 \cos\left(\frac{t}{4}\right), \frac{t}{2} \right\rangle, \text{ for } 0 \leq t \leq 2. \quad (1)$$

Problem 2: Find the work required to move an object along the line segment from $(1, 1, 1)$ to $(8, 4, 2)$ through the forcefield \vec{F} given by

$$\vec{F} = \frac{\langle x, y, z \rangle}{x^2 + y^2 + z^2}. \quad (2)$$

Problem 3: Find the average value of

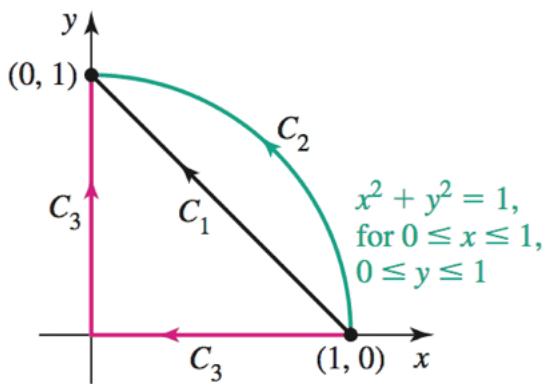
$$f(x, y) = \sqrt{4 + 9y^{2/3}} \quad (3)$$

on the curve $y = x^{3/2}$, for $0 \leq x \leq 5$.

Problem 4: Compute

$$\int_{\mathcal{C}} xe^{yz} ds, \quad (4)$$

where \mathcal{C} is $\vec{r}(t) = \langle t, 2t, -4t \rangle$ for $1 \leq t \leq 2$.


Problem 5: Compute

$$\int_{\mathcal{C}} \frac{xy}{z} ds, \quad (5)$$

where \mathcal{C} is the line segment from $(1, 4, 1)$ to $(3, 6, 3)$.

Problem 6: Consider the rotation field $\vec{F} = \langle -y, x \rangle$, and the three paths shown in the figure.

1. Compute the work required in the presence of the force field \vec{F} to move an object on the curve \mathcal{C}_1 .
2. Compute the work required in the presence of the force field \vec{F} to move an object on the curve \mathcal{C}_2 .
3. Compute the work required in the presence of the force field \vec{F} to move an object on the curve \mathcal{C}_3 .
4. Does it appear that the line integral $\int_{\mathcal{C}} \vec{F} \cdot \vec{T} ds$ is independent of the path, where \mathcal{C} is any path from $(1, 0)$ to $(0, 1)$?

Problem 7: Let $f(x, y) = x$ and consider the segment of the parabola $y = x^2$ joining $O(0, 0)$ and $P(1, 1)$.

1. Let \mathcal{C}_1 be the segment from O to P . Find a parameterization of \mathcal{C}_1 , then evaluate $\int_{\mathcal{C}_1} f ds$.
2. Let \mathcal{C}_2 be the segment from P to O . Find a parameterization of \mathcal{C}_2 , then evaluate $\int_{\mathcal{C}_2} f ds$.
3. Compare the results of (1) and (2).
