

Problem 1: Let R be the region bounded by the lines $y - x = 0$, $y - x = 2$, $y + x = 0$, $y + x = 2$. Use a change of variables to evaluate

$$\iint_R \sqrt{y^2 - x^2} dA. \quad (1)$$

Solution: We use the substitution $u = y - x$ and $v = y + x$ as suggested by the defining equations of the boundary curves. We also see in the picture below that this substitution results in a simple tessellation of our region R , which shows us that the new region of integration in the uv -plane is just $R' = \{(u, v) \mid 0 \leq u \leq 2, 0 \leq v \leq 2\}$.

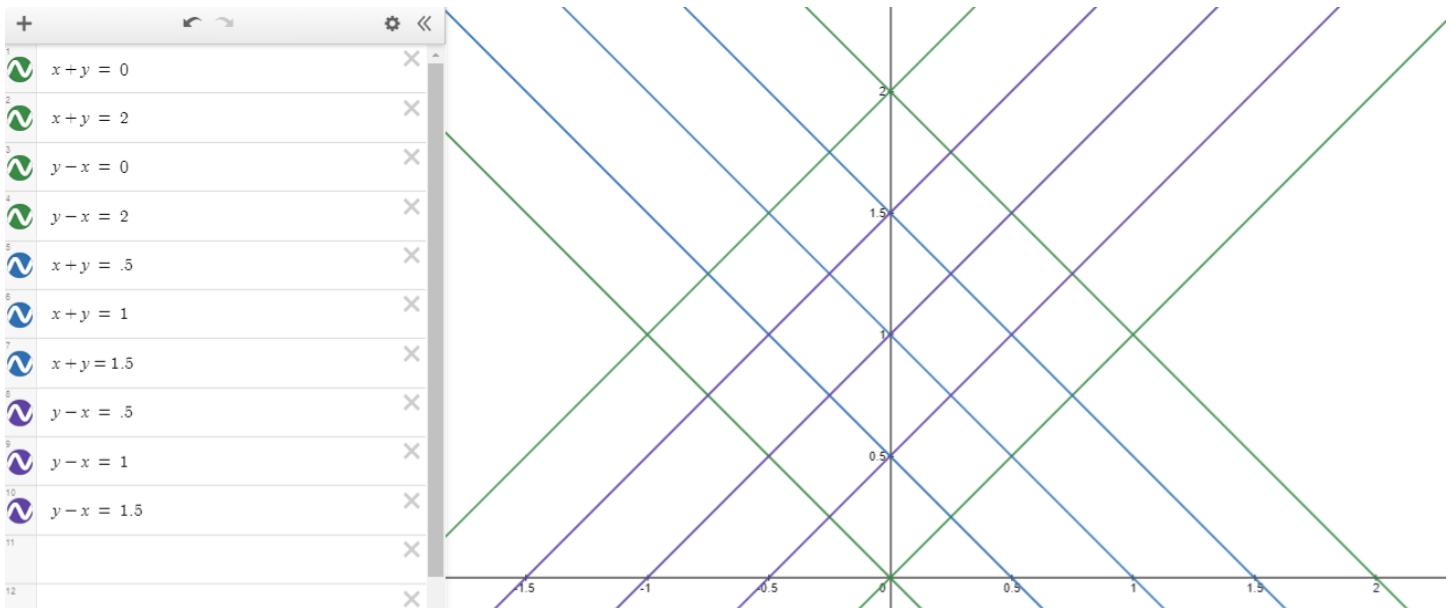


Figure 1: A picture of the region R and the tessellation that results from our given change of variables.

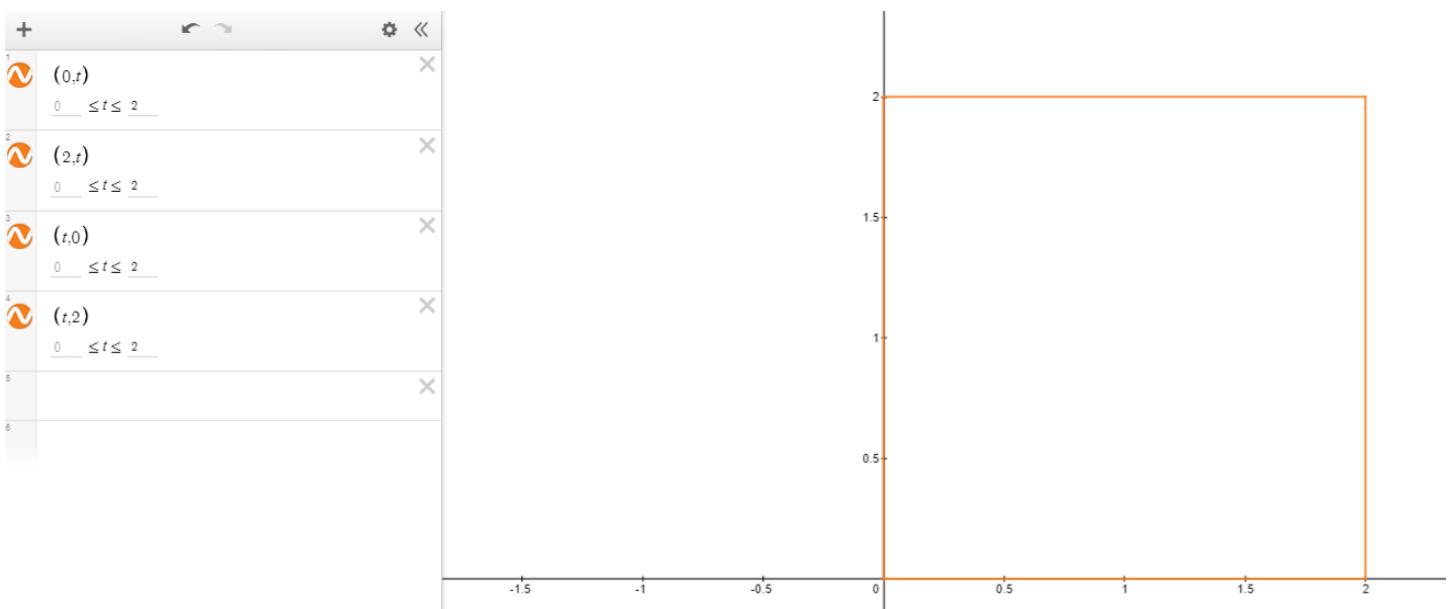


Figure 2: A picture of the region of integration in the uv -plane R' .

In order to calculate the Jacobian $J(u, v)$, we need to solve for x and y in terms of u and v . To this end, we see that

$$\begin{aligned} u &= y - x & x &= \frac{1}{2}((y+x) - (y-x)) = \frac{1}{2}(v-u) \\ v &= y + x & y &= \frac{1}{2}((y+x) + (y-x)) = \frac{1}{2}(v+u) \end{aligned} \quad (2)$$

We now see that

$$J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \left(-\frac{1}{2}\right) \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = -\frac{1}{2}. \quad (3)$$

It follows that $|J(u, v)| = \left| -\frac{1}{2} \right| = \frac{1}{2}$. We now see that

$$\text{Area}(R) = \iint_R \sqrt{y^2 - x^2} dA = \iint_{R'} \sqrt{(y-x)(y+x)} \cdot |J(u, v)| dA \quad (4)$$

.....

$$= \int_0^2 \int_0^2 \sqrt{uv} \frac{1}{2} dudv = \frac{1}{2} \int_0^2 \int_0^2 u^{\frac{1}{2}} v^{\frac{1}{2}} dudv = \frac{1}{2} \int_0^2 \frac{2}{3} u^{\frac{3}{2}} v^{\frac{1}{2}} \Big|_{u=0}^2 dv \quad (5)$$

.....

$$= \frac{1}{2} \int_0^2 \frac{2}{3} 2^{\frac{3}{2}} v^{\frac{1}{2}} dv = \frac{2\sqrt{2}}{3} \int_0^2 v^{\frac{1}{2}} dv = \frac{4\sqrt{2}}{9} v^{\frac{3}{2}} \Big|_0^2 = \boxed{\frac{16}{9}}. \quad (6)$$

Problem 2: Let R be the region in the first quadrant bounded by the hyperbolas $xy = 1$ and $xy = 4$ and the lines $y = x$ and $y = 3x$. Evaluate

$$\iint_R y^4 dA. \quad (7)$$

Note that you can also solve this problem in Cartesian coordinates and polar coordinates, not just a change of variables. Try solving it with all three methods and compare their difficulties!

Solution 1: Our first solution will use a change of variables. Noting that the line $y = x$ can be rewritten as $\frac{y}{x} = 1$ and the line $y = 3x$ can be rewritten as $\frac{y}{x} = 3$, we decide to use the change of variables $u = xy$ and $v = \frac{y}{x}$ in order to make our new region of integration in the uv -place a rectangle. In particular, we see that $R' = \{(u, v) : 1 \leq u \leq 4, 1 \leq v \leq 3\}$ is the new region of integration.

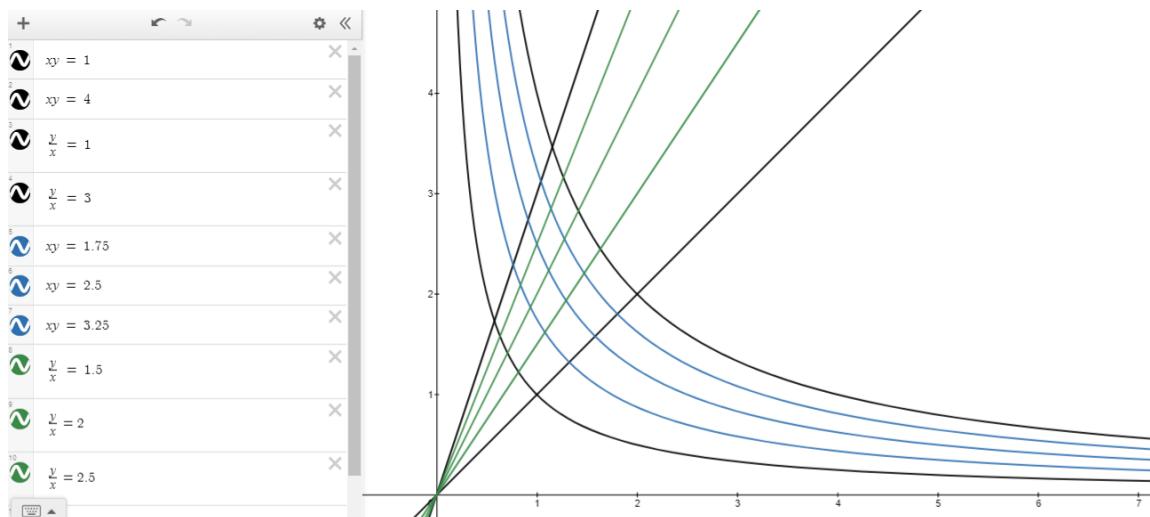


Figure 3: The original region of integration in the xy -plane R .

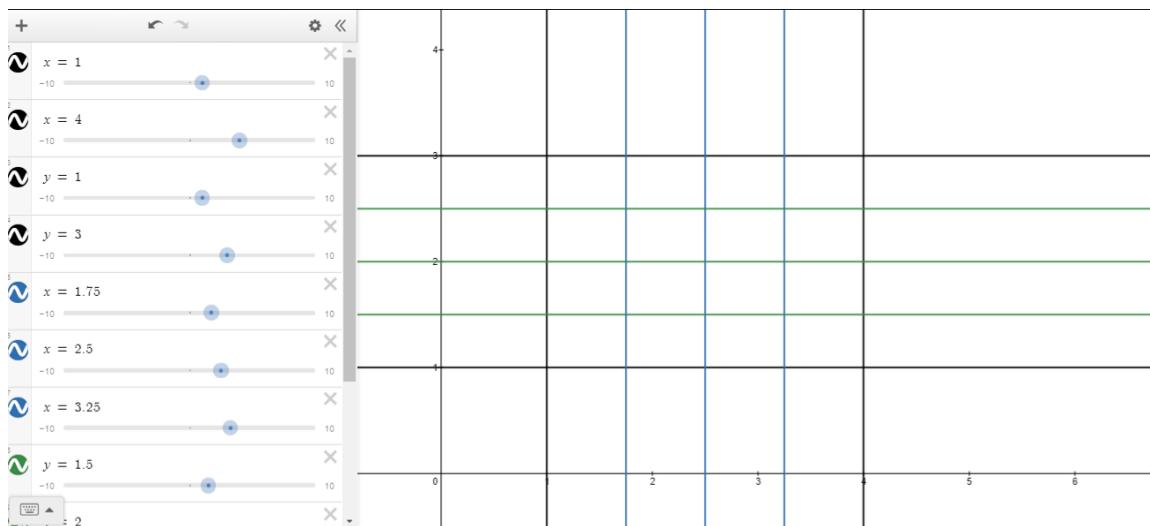


Figure 4: The new region of integration in the uv -plane R' .

In order to calculate the Jacobian $J(u, v)$ we must first solve for x and y in terms of u and v . To that end, we see that

$$\begin{aligned} u &= xy \\ v &= \frac{y}{x} \end{aligned} \rightarrow x = (x^2)^{\frac{1}{2}} = \left(\frac{u}{v}\right)^{\frac{1}{2}} = u^{\frac{1}{2}}v^{-\frac{1}{2}} \text{ and } y = (y^2)^{\frac{1}{2}} = u^{\frac{1}{2}}v^{\frac{1}{2}}. \quad (8)$$

We note that we took the positive square roots above since we are working in the first quadrant of the xy -place, so x and y are both nonnegative. We now see that

$$J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}u^{-\frac{1}{2}}v^{-\frac{1}{2}} & -\frac{1}{2}u^{\frac{1}{2}}v^{-\frac{3}{2}} \\ \frac{1}{2}u^{-\frac{1}{2}}v^{\frac{1}{2}} & \frac{1}{2}u^{\frac{1}{2}}v^{-\frac{1}{2}} \end{vmatrix} \quad (9)$$

$$= \frac{1}{2}u^{-\frac{1}{2}}v^{-\frac{1}{2}} \cdot \frac{1}{2}u^{\frac{1}{2}}v^{-\frac{1}{2}} - \left(-\frac{1}{2}u^{\frac{1}{2}}v^{-\frac{3}{2}}\right) \cdot \frac{1}{2}u^{-\frac{1}{2}}v^{\frac{1}{2}} = \frac{1}{2}v^{-1}. \quad (10)$$

Since $1 \leq v \leq 3$ in our new region of integration R' , we see that $\frac{1}{2}v^{-1} \geq 0$ on R' , so $|J(u, v)| = J(u, v)$ on R' . We now see that

$$\iint_R y^4 dA = \iint_{R'} (u^{\frac{1}{2}}v^{\frac{1}{2}})^4 |J(u, v)| dA = \int_1^4 \int_1^3 u^2v^2 \cdot \frac{1}{2}v^{-1} dv du \quad (11)$$

.....

$$= \frac{1}{2} \int_1^4 \int_1^3 u^2v dv du = \frac{1}{2} \int_1^4 \frac{1}{2}u^2v^2 \Big|_{v=1}^3 du \quad (12)$$

.....

$$= \int_1^4 2u^2 du = \frac{2}{3}u^3 \Big|_1^4 = \boxed{42}. \quad (13)$$

Solution 2: Our next solution will use polar coordinates. We begin by observing that in the **first quadrant** we have

$$y = x \Leftrightarrow r \sin(\theta) = r \cos(\theta) \Leftrightarrow \sin(\theta) = \cos(\theta) \Leftrightarrow \theta = \frac{\pi}{4}, \quad (14)$$

$$y = 3x \Leftrightarrow r \sin(\theta) = 3r \cos(\theta) \Leftrightarrow \tan(\theta) = 3 \Leftrightarrow \theta = \tan^{-1}(3), \quad (15)$$

$$1 = xy = r^2 \cos(\theta) \sin(\theta) \Leftrightarrow r = \sqrt{\frac{1}{\cos(\theta) \sin(\theta)}}, \text{ and} \quad (16)$$

$$4 = xy = r^2 \cos(\theta) \sin(\theta) \Leftrightarrow r = \sqrt{\frac{4}{\cos(\theta) \sin(\theta)}}. \quad (17)$$

It follows that

$$\iint_R y^4 dA = \int_{\frac{\pi}{4}}^{\tan^{-1}(3)} \int_{\sqrt{\frac{1}{\cos(\theta)\sin(\theta)}}}^{\sqrt{\frac{4}{\cos(\theta)\sin(\theta)}}} (r \sin(\theta))^4 r dr d\theta \quad (18)$$

.....

$$= \int_{\frac{\pi}{4}}^{\tan^{-1}(3)} \int_{\sqrt{\frac{1}{\cos(\theta)\sin(\theta)}}}^{\sqrt{\frac{4}{\cos(\theta)\sin(\theta)}}} r^5 \sin^4(\theta) dr d\theta \quad (19)$$

.....

$$= \int_{\frac{\pi}{4}}^{\tan^{-1}(3)} \left(\frac{1}{6} r^6 \sin^4(\theta) \Big|_{\sqrt{\frac{1}{\cos(\theta)\sin(\theta)}}}^{\sqrt{\frac{4}{\cos(\theta)\sin(\theta)}}} \right) d\theta \quad (20)$$

.....

$$= \int_{\frac{\pi}{4}}^{\tan^{-1}(3)} \frac{21}{2} \frac{\sin(\theta)}{\cos^3(\theta)} d\theta = \frac{21}{2} \int_{\frac{\pi}{4}}^{\tan^{-1}(3)} \underbrace{\frac{\sin(\theta)}{\cos(\theta)}}_{u=\tan(\theta)} \cdot \underbrace{\frac{1}{\cos^2(\theta)}}_{du=\sec^2(\theta)d\theta} d\theta \quad (21)$$

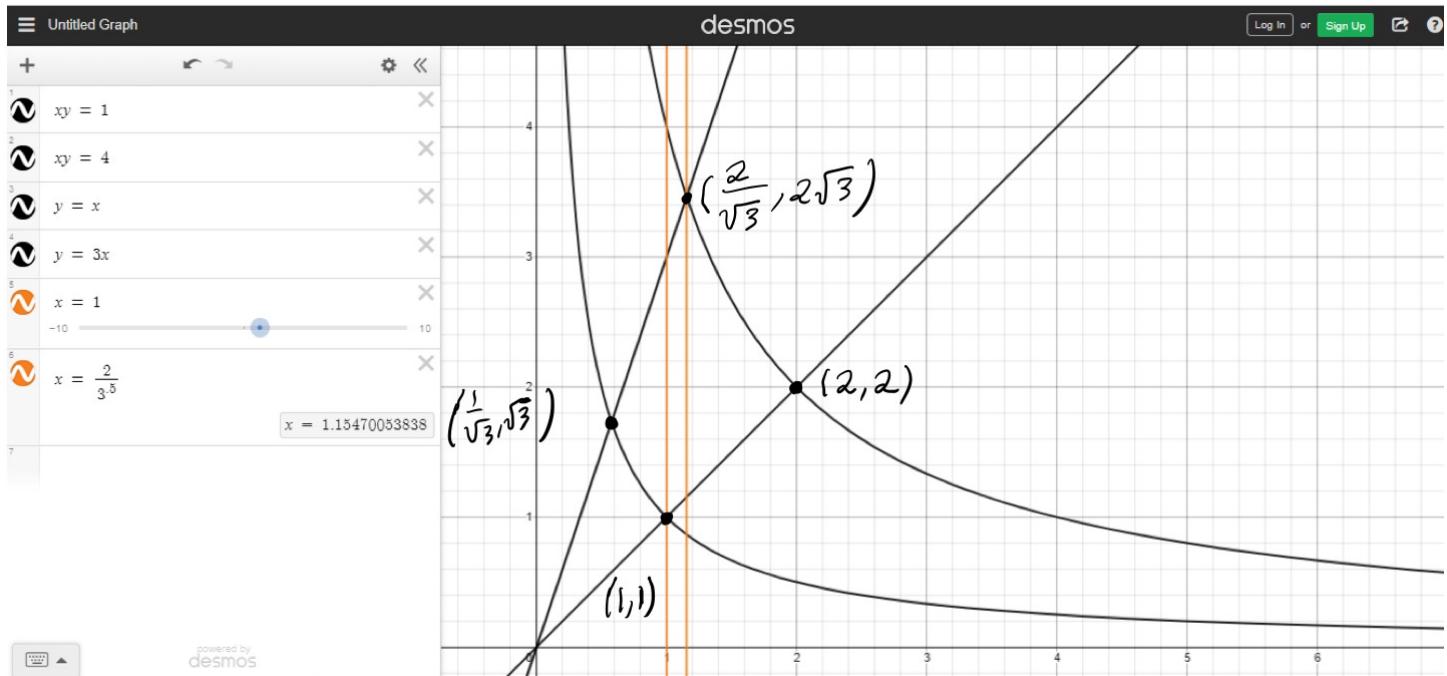
.....

$$\frac{21}{2} \left(\frac{1}{2} \tan^2(\theta) \Big|_{\frac{\pi}{4}}^{\tan^{-1}(3)} \right) = \frac{21}{4} (3^2 - 1^2) = \boxed{42}. \quad (22)$$

Solution 3: Our last solution will use Cartesian coordinates. We begin by observing that in the **first quadrant** we have

$$\begin{aligned} xy &= 1 \quad \text{and} \quad y = x \rightarrow (x, y) = (1, 1) \\ xy &= 1 \quad \text{and} \quad y = 3x \rightarrow (x, y) = \left(\frac{1}{\sqrt{3}}, \sqrt{3}\right) \\ xy &= 4 \quad \text{and} \quad y = x \rightarrow (x, y) = (2, 2) \\ xy &= 4 \quad \text{and} \quad y = 3x \rightarrow (x, y) = \left(\frac{2}{\sqrt{3}}, 2\sqrt{3}\right) \end{aligned} \quad (23)$$

Now that we have identified the 'corners' of our region as shown in the picture below, we are able to set up and evaluate the desired double integral.



$$\iint_R y^4 dA = \int_{\frac{1}{\sqrt{3}}}^1 \int_{\frac{1}{x}}^{3x} y^4 dy dx + \int_1^{\frac{2}{\sqrt{3}}} \int_x^{3x} y^4 dy dx + \int_{\frac{2}{\sqrt{3}}}^2 \int_x^{\frac{4}{x}} y^4 dy dx \quad (24)$$

$$= \int_{\frac{1}{\sqrt{3}}}^1 \frac{1}{5} y^5 \Big|_{y=\frac{1}{x}}^{3x} dx + \int_1^{\frac{2}{\sqrt{3}}} \frac{1}{5} y^5 \Big|_{y=x}^{3x} dx + \int_{\frac{2}{\sqrt{3}}}^2 \frac{1}{5} y^5 \Big|_{y=x}^{\frac{4}{x}} dx \quad (25)$$

$$= \frac{1}{5} \left(\int_{\frac{1}{\sqrt{3}}}^1 (243x^5 - x^{-5}) dx + \int_1^{\frac{2}{\sqrt{3}}} 242x^5 dx + \int_{\frac{2}{\sqrt{3}}}^2 (1024x^{-5} - x^5) dx \right) \quad (26)$$

$$= \frac{1}{5} \left(\left(\frac{81}{2}x^6 + \frac{1}{4}x^{-4} \Big|_{\frac{1}{\sqrt{3}}}^1 \right) + \left(\frac{121}{3}x^6 \Big|_1^{\frac{2}{\sqrt{3}}} \right) + \left(-256x^{-4} - \frac{1}{6}x^6 \Big|_{\frac{2}{\sqrt{3}}}^2 \right) \right) \quad (27)$$

$$\frac{1}{5} \left(\left(\frac{81}{2} + \frac{1}{4} - \frac{3}{2} - \frac{9}{4} \right) + \left(\frac{121}{3} \cdot \left(\frac{64}{27} - 1 \right) \right) + \left(-16 - \frac{32}{3} + 144 + \frac{32}{81} \right) \right) \quad (28)$$

$$\frac{1}{5} \left(37 + \frac{121 \cdot 37}{81} + 128 - \frac{26 \cdot 32}{81} \right) = \boxed{42}. \quad (29)$$

Problem 3: Find the volume of the solid D that is bounded by the planes $y - 2x = 0$, $y - 2x = 1$, $z - 3y = 0$, $z - 3y = 1$, $z - 4x = 0$, and $z - 4x = 3$.

Solution: We use the substitution $u = y - 2x$, $v = z - 3y$, and $w = z - 4x$ as suggested by the defining equations of the boundary curves. We also see in the pictures below that this substitution results in a simple tessellation of our region R , which shows us that the new region of integration in the uvw -space is just $R' = \{(u, v, w) \mid 0 \leq u \leq 1, 0 \leq v \leq 1, 0 \leq w \leq 3\}$.

eq1	$y - 2x = 0$
eq2	$y - 2x = 1$
a	$z - 3y = 1$ $\rightarrow -3y + z = 1$
eq3	$z - 3y = 0$
eq4	$z - 4x = 0$
eq5	$z - 4x = 3$
eq6	$y - 2x = 0.25$
eq7	$y - 2x = 0.5$
eq8	$y - 2x = 0.75$

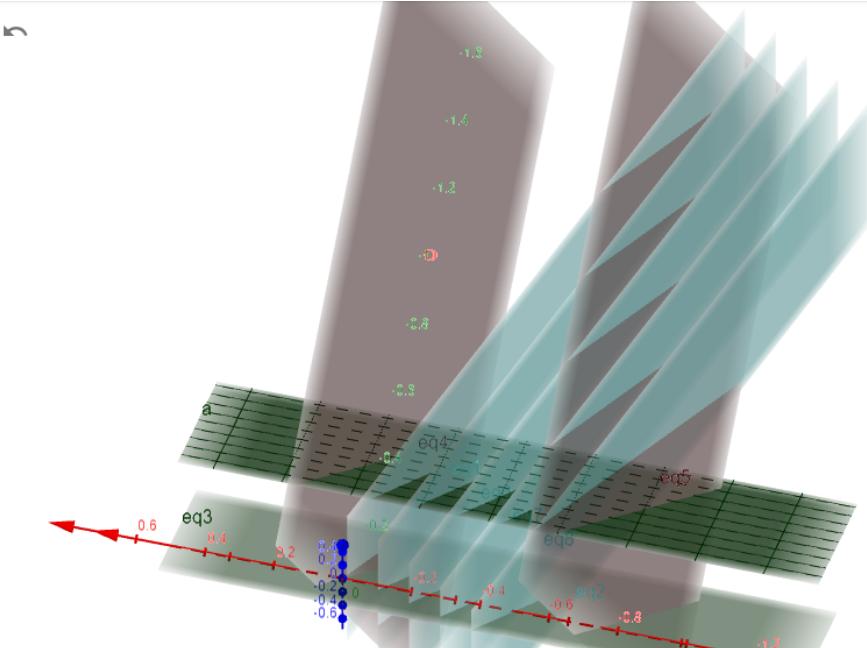


Figure 5: A visualization of the impact of changing the value of $y - 2x$.

eq1	$y - 2x = 0$
eq2	$y - 2x = 1$
a	$z - 3y = 1$ $\rightarrow -3y + z = 1$
eq3	$z - 3y = 0$
eq4	$z - 4x = 0$
eq5	$z - 4x = 3$
eq6	$z - 3y = 0.25$
eq7	$z - 3y = 0.5$
eq8	$z - 3y = 0.75$

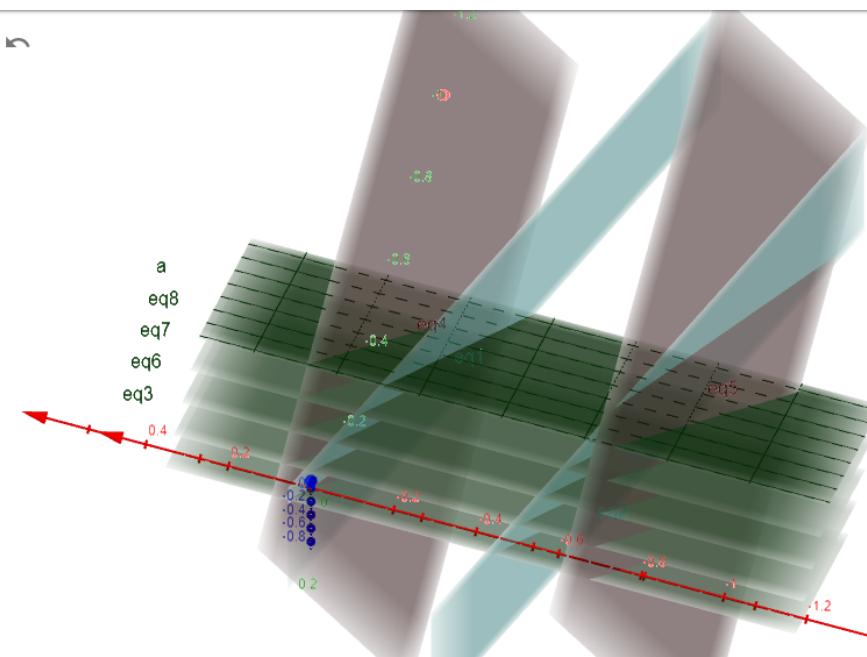
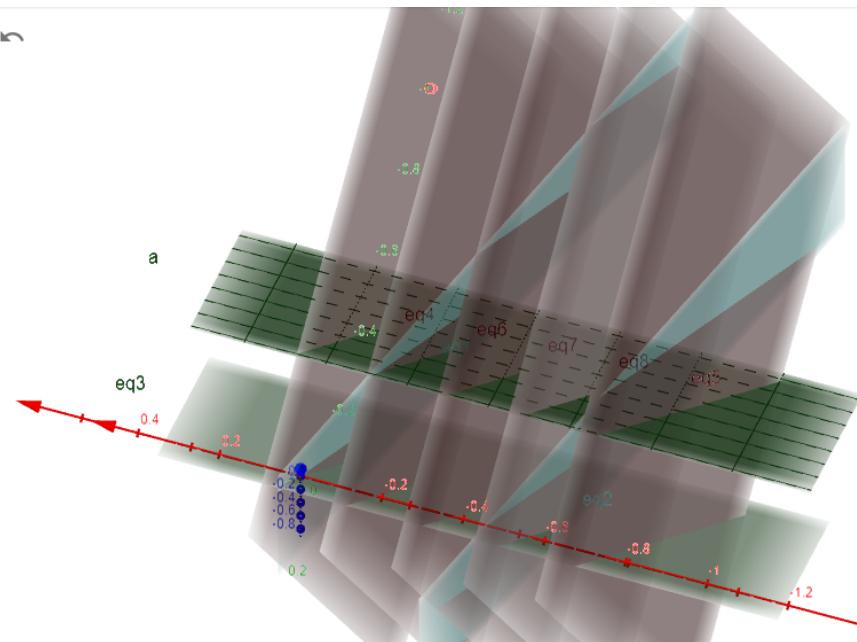
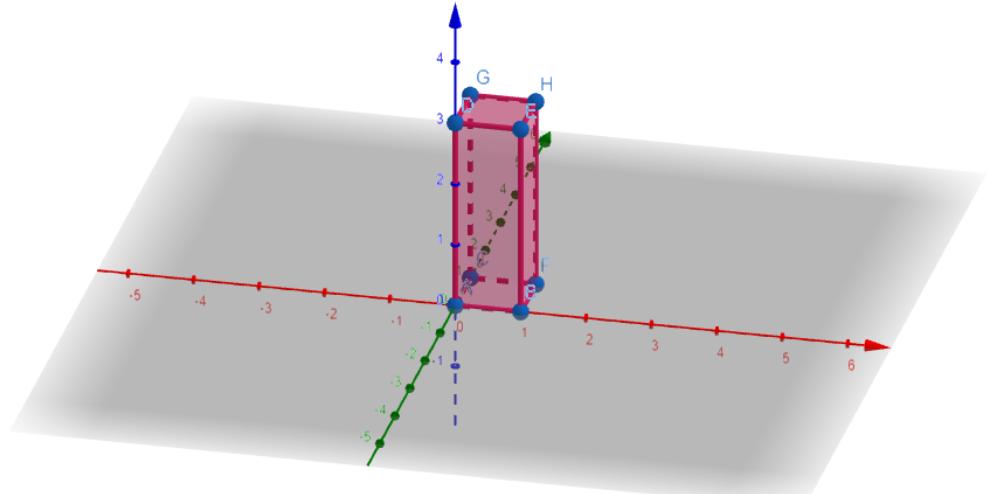


Figure 6: A visualization of the impact of changing the value of $z - 3y$.

eq1	$y - 2x = 0$	⋮
eq2	$y - 2x = 1$	⋮
a	$z - 3y = 1$	⋮
	$\rightarrow -3y + z = 1$	⋮
eq3	$z - 3y = 0$	⋮
eq4	$z - 4x = 0$	⋮
eq5	$z - 4x = 3$	⋮
eq6	$z - 4x = 0.75$	⋮
eq7	$z - 4x = 1.5$	⋮
eq8	$z - 4x = 2.25$	⋮
	⋮	⋮
	⋮	⋮

Figure 7: A visualization of the impact of changing the value of $z - 4x$.

A	$(0, 0, 0)$	⋮	⋮
B	$(1, 0, 0)$	⋮	⋮
C	$(0, 1, 0)$	⋮	⋮
D	$(0, 0, 3)$	⋮	⋮
E	$(1, 0, 3)$	⋮	⋮
F	$(1, 1, 0)$	⋮	⋮
G	$(0, 1, 3)$	⋮	⋮
H	$(1, 1, 3)$	⋮	⋮
a	$a = \text{Prism}(E, H, G, D, B)$	⋮	⋮
	$\rightarrow 3$	⋮	⋮
+	Input...	⋮	⋮

Figure 8: The region of integration R' in the uvw -space.

In order to calculate the Jacobian $J(u, v, w)$, we need to solve for x, y , and z in terms of u, v , and w . To this end, we see that

$$\begin{aligned} u &= y - 2x \\ v &= z - 3y \rightarrow v - w = 4x - 3y \\ w &= z - 4x \end{aligned} \tag{30}$$

$$\rightarrow (v - w) + 3u = -2x \rightarrow x = \frac{1}{2}(-3u - v + w) \tag{31}$$

$$\begin{aligned} \rightarrow \quad \textcolor{orange}{y} &= u + 2x = u - 3u - v + w = \textcolor{orange}{-2u - v + w} \\ \textcolor{green}{z} &= w + 4x = w - 6u - 2v + 2w = \textcolor{green}{-6u - 2v + 3w} \end{aligned} \quad (32)$$

We now see that

$$J(u, v, w) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} -\frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\ -2 & -1 & 1 \\ -6 & -2 & 3 \end{vmatrix} \quad (33)$$

$$= -\frac{3}{2} \begin{vmatrix} -1 & 1 \\ -2 & 3 \end{vmatrix} - \left(-\frac{1}{2}\right) \begin{vmatrix} -2 & 1 \\ -6 & 3 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} -2 & -1 \\ -6 & -2 \end{vmatrix} \quad (34)$$

$$= -\frac{3}{2}(-3 + 2) + \frac{1}{2}(-6 + 6) + \frac{1}{2}(4 - 6) = \frac{1}{2}. \quad (35)$$

It follows that $|J(u, v, w)| = \frac{1}{2}$. We now see that

$$\text{Volume}(D) = \iiint_D 1 dV = \iiint_{D'} 1 \cdot |J(u, v, w)| dV \quad (36)$$

$$= \int_0^1 \int_0^1 \int_0^3 \frac{1}{2} dudvdw = (1-0)(1-0)(3-0)\frac{1}{2} = \boxed{\frac{3}{2}}. \quad (37)$$

Problem 4: This problem has parts **a.-g.** spread out across the following pages. Your solutions to parts **a**, **b**, and **f** need (hand drawn or computer generated) pictures.

Consider the Transformation T from the uv -plane to the xy -plane given by $T(u, v) = (u^2 - v^2, 2uv)$.

- a. Show that the lines $u = a$ in the uv -plane map to parabolas in the xy -plane that open in the negative x -direction with vertices¹ on the positive x -axis.² Compare the images of the lines $u = a$ and $u = -a$ under T .
- b. Show that the lines $v = b$ in the uv -plane map to parabolas in the xy -plane that open in the positive x -direction with vertices on the negative x -axis.³ Compare the images of the lines $v = b$ and $v = -b$ under T .
- c. Evaluate $J(u, v)$.

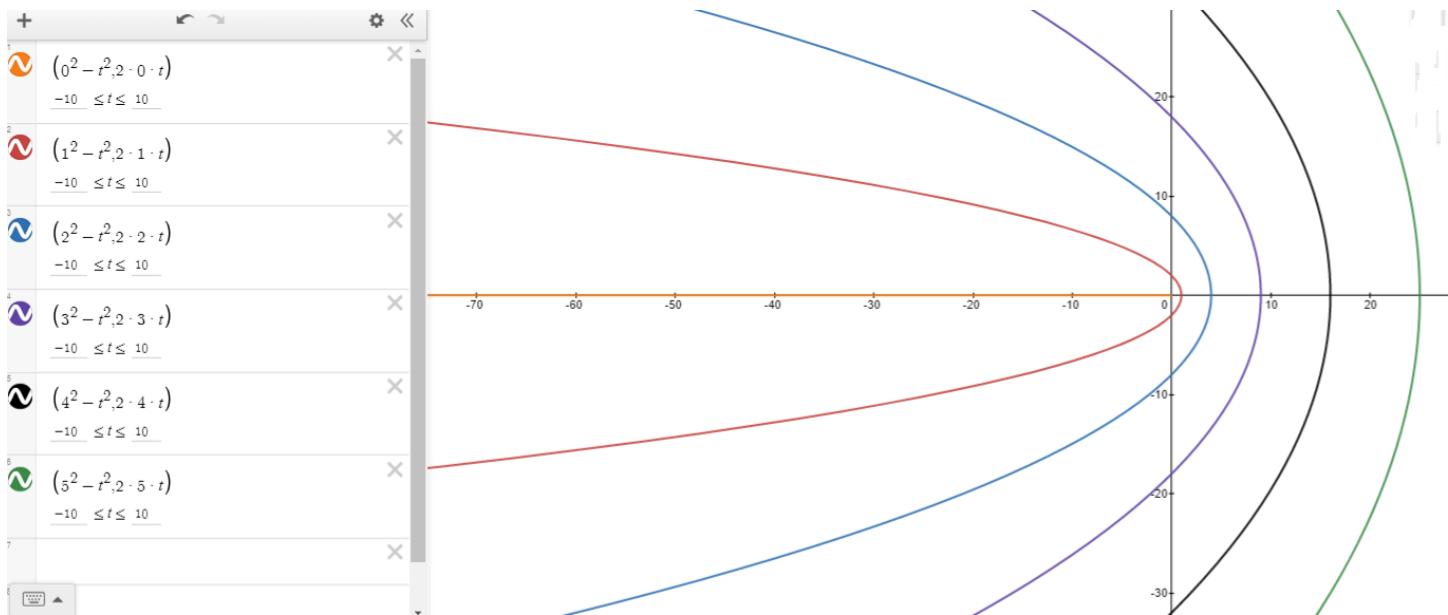
Solution to part a: We see that $T(a, v) = (a^2 - v^2, 2av)$. Setting $x = a^2 - v^2$ and $y = 2av$, we see that $v = \frac{1}{2a}y$, so $x = a^2 - (\frac{1}{2a}y)^2 = a^2 - \frac{1}{4a^2}y^2$, or equivalently, $x - a^2 = -\frac{1}{4a^2}y^2$. Since $a^2 > 0$ and $-\frac{1}{4a^2} < 0$ when $a \neq 0$, we see (as mentioned in the footnote) that $T(a, v)$ is the parameterization of a parabola that opens in the negative x -direction and has its vertex on the positive x -axis. We see that $T(-a, v) = (a^2 - v^2, -2av) = (a^2 - (-v)^2, 2a(-v)) = T(a, -v)$, so $T(a, v)$ and $T(-a, v)$ parameterize the same parabola in the xy -plane, but the parameterizations are in opposite directions (if $a \neq 0$). We also see that $T(0, v) = (-v^2, 0)$, which is a parameterization (with repetition) of the negative x -axis, which can be viewed as a degenerate parabola that opens in the negative x -direction and has its vertex at $(0, 0)$.

Figure 9: Vertical lines in the uv -plane.

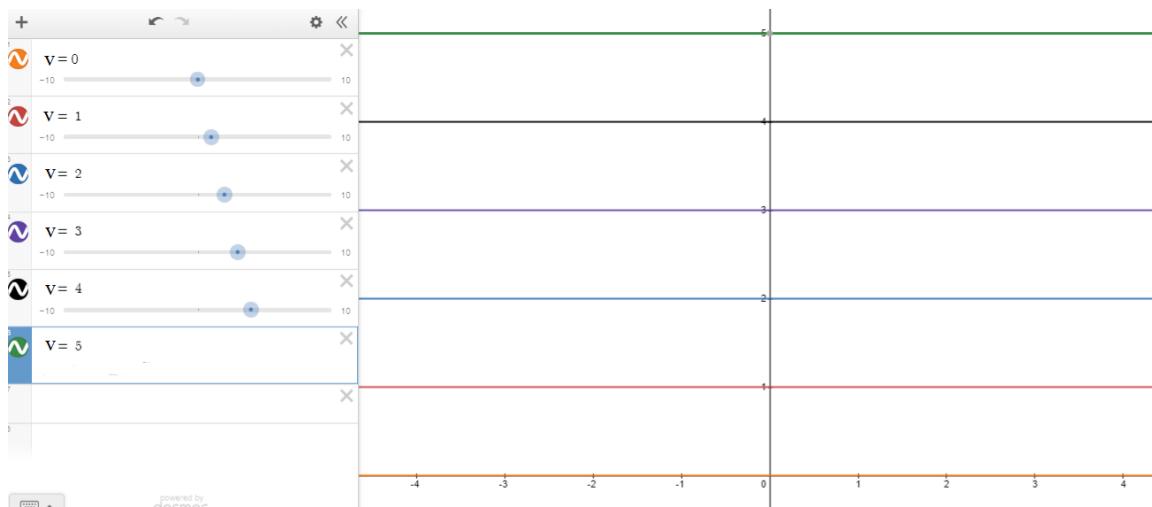
¹The vertex of the parabola $y = x^2$ is the point $(0, 0)$ and the vertex of the parabola $x = y^2$ is also $(0, 0)$.

²You have to show that the curve $\vec{r}_1(v) = (a^2 - v^2, 2av)$ represents the same curve as $x - c = -by^2$ for some positive numbers b and c .

³You have to show that the curve $\vec{r}_2(u) = (u^2 - b^2, 2ub)$ represents the same curve as $x - c = by^2$ for some positive number b and some negative number c .

Figure 10: The parabolas in the xy -plane corresponding to vertical lines in the uv -plane under the transformation T .

Solution to part b: We see that $T(u, b) = (u^2 - b^2, 2ub)$. Setting $x = u^2 - b^2$ and $y = 2ub$, we see that $u = \frac{1}{2b}y$, so $x = (\frac{1}{2b}y)^2 - b^2 = \frac{1}{4b^2}y^2 - b^2$, or equivalently, $x - (-b^2) = \frac{1}{4b^2}y^2$. Since $-b^2 < 0$ and $\frac{1}{4b^2} > 0$ when $b \neq 0$, we see (as mentioned in the footnote) that $T(u, b)$ is the parameterization of a parabola that opens in the positive x -direction and has its vertex on the negative x -axis. We see that $T(u, -b) = (u^2 - b^2, -2ub) = ((-u)^2 - b^2, 2(-u)b) = T(-u, b)$, so $T(u, b)$ and $T(u, -b)$ parameterize the same parabola in the xy -plane, but the parameterizations are in opposite directions (if $b \neq 0$). We also see that $T(u, 0) = (u^2, 0)$, which is a parameterization (with repetition) of the positive x -axis, which can be viewed as a degenerate parabola that opens in the positive x -direction and has its vertex at $(0, 0)$.

Figure 11: Horizontal lines in the uv -plane.

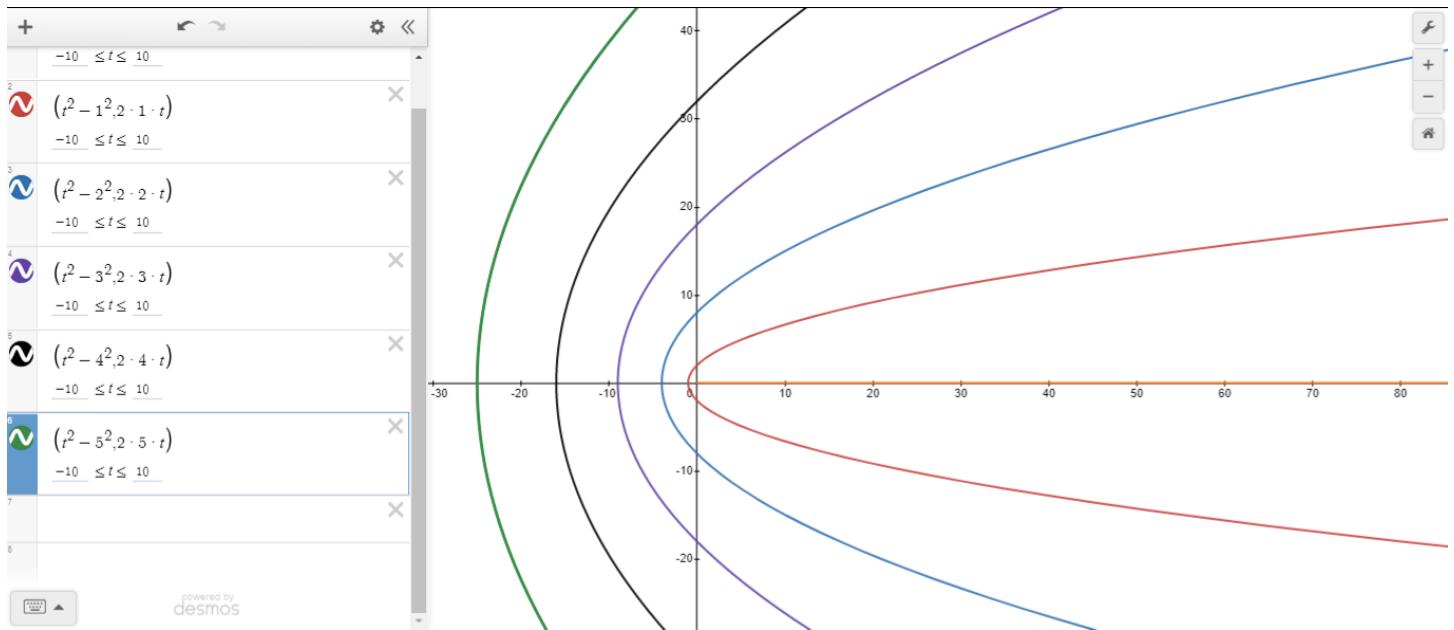


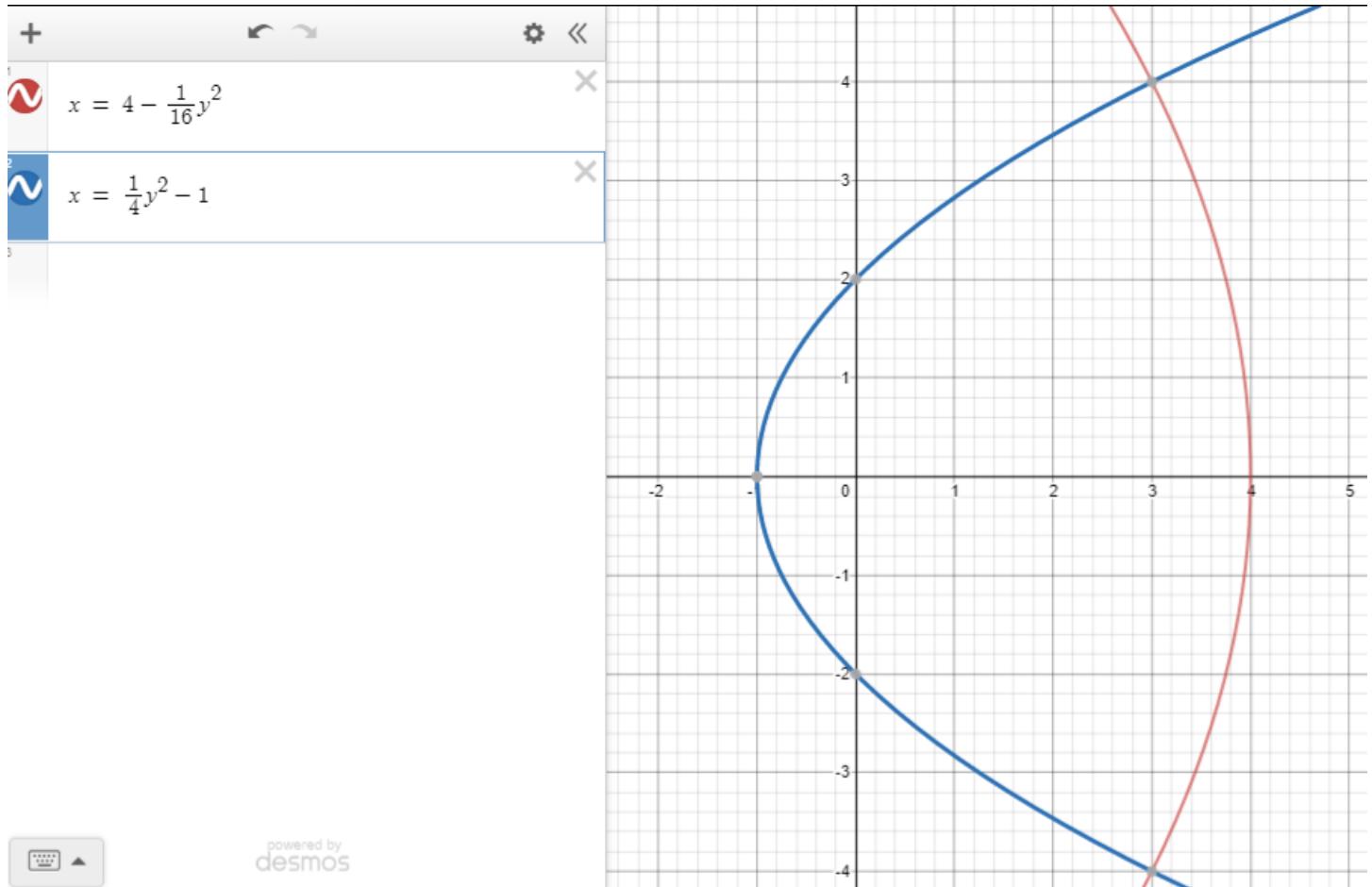
Figure 12: The parabolas in the xy -plane corresponding to horizontal lines in the uv -plane under the transformation T .

Solution to part c: Since $x = u^2 - v^2$ and $y = 2uv$, we see that

$$J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & 2v \\ -2v & 2u \end{vmatrix} = 2u \cdot 2u - (-2v) \cdot 2v = \boxed{4u^2 + 4v^2}. \quad (38)$$

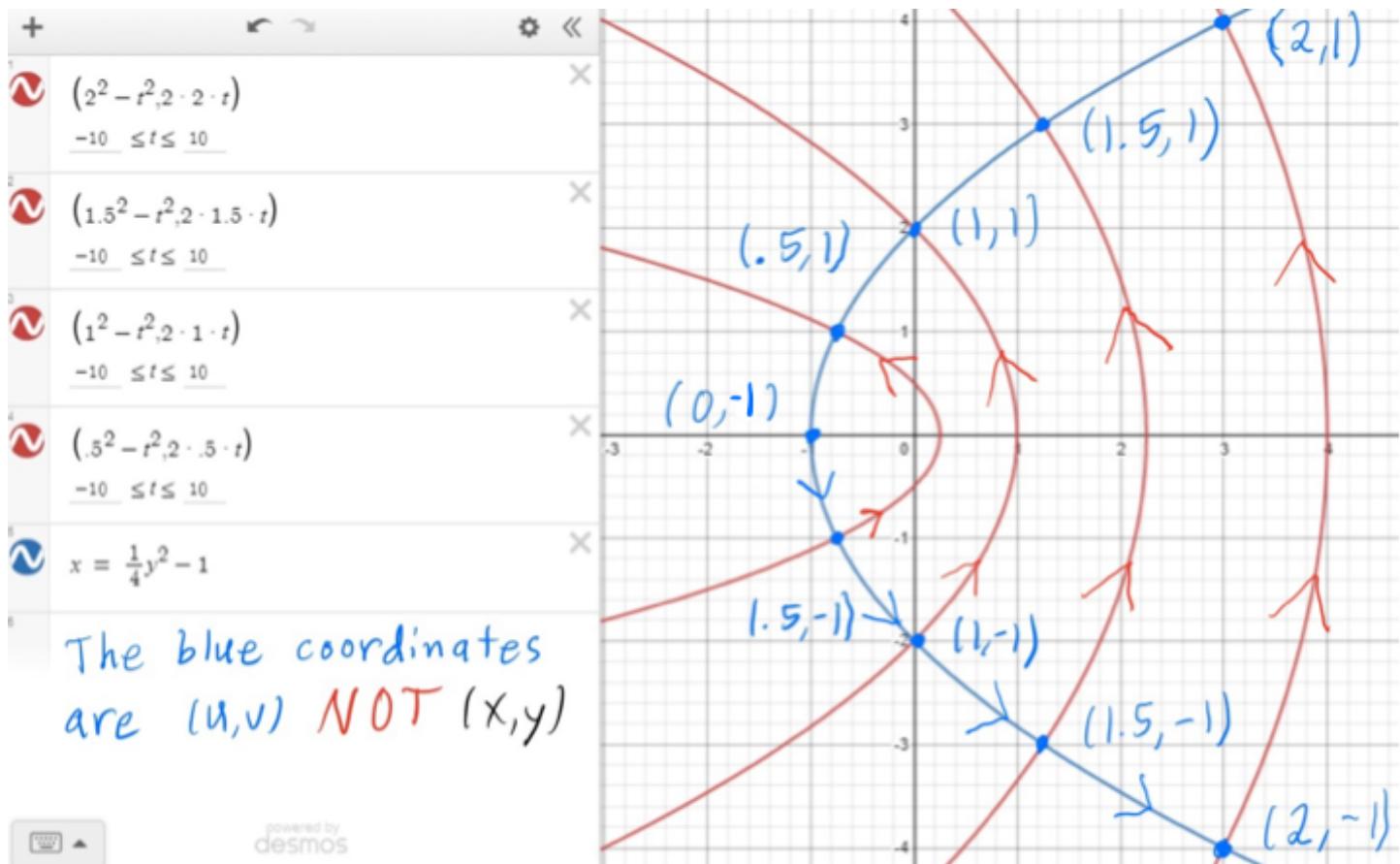
We also observe that $|J(u, v)| = J(u, v) = 4u^2 + 4v^2$ since squares are always bigger than or equal to 0.

d. Use a change of variables into parabolic coordinates to find the area of the region R in the xy -plane bounded by the curves $x = 4 - \frac{1}{16}y^2$ and $x = \frac{1}{4}y^2 - 1$. Sketch a picture of the new region of integration as well.



Solution to part d: We begin by using parts **a** and **b** to see that the parabola $x = 4 - \frac{1}{16}y^2 = 2^2 - \frac{1}{4 \cdot 2^2}y^2$ in the xy -plane is the image under T of the line $u = 2$ (or $u = -2$) in the uv -plane and the parabola $x = \frac{1}{4}y^2 - 1 = \frac{1}{4 \cdot 1^2}y^2 - 1^2$ in the xy -plane is the image under T of the line $v = 1$ (or $v = -1$) in the uv -plane. Note that for a positive number p , $T(2, p)$ is on the upper half of the parabola $x = 4 - \frac{1}{16}y^2$ and $T(2, -p)$ is on the lower half. Similarly, for $T(p, 1)$ is on the upper half of the parabola $x = \frac{1}{4}y^2 - 1$ and $T(-p, 1) = T(p, -1)$ is on the lower half. We also recall that T (almost) bijects the closed right (or left, or upper, or lower) half of the uv -plane to the xy -plane.⁴ The picture below puts together all of the previous discussion to show that the region R in the xy -plane is the image under T of the region rectangle $R' = \{(u, v) \mid 0 \leq u \leq 2, -1 \leq v \leq 1\}$ in the uv -plane.

⁴The map T from the uv -plane to the xy -plane is a one-to-one map if you restrict yourself to an open half of the uv -plane and an appropriate closed half of an axis (such as the open left half of the plane and the closed upper half of the y -axis), but T is not one-to-one on the entire uv -plane since $T(a, b) = T(-a, -b)$.

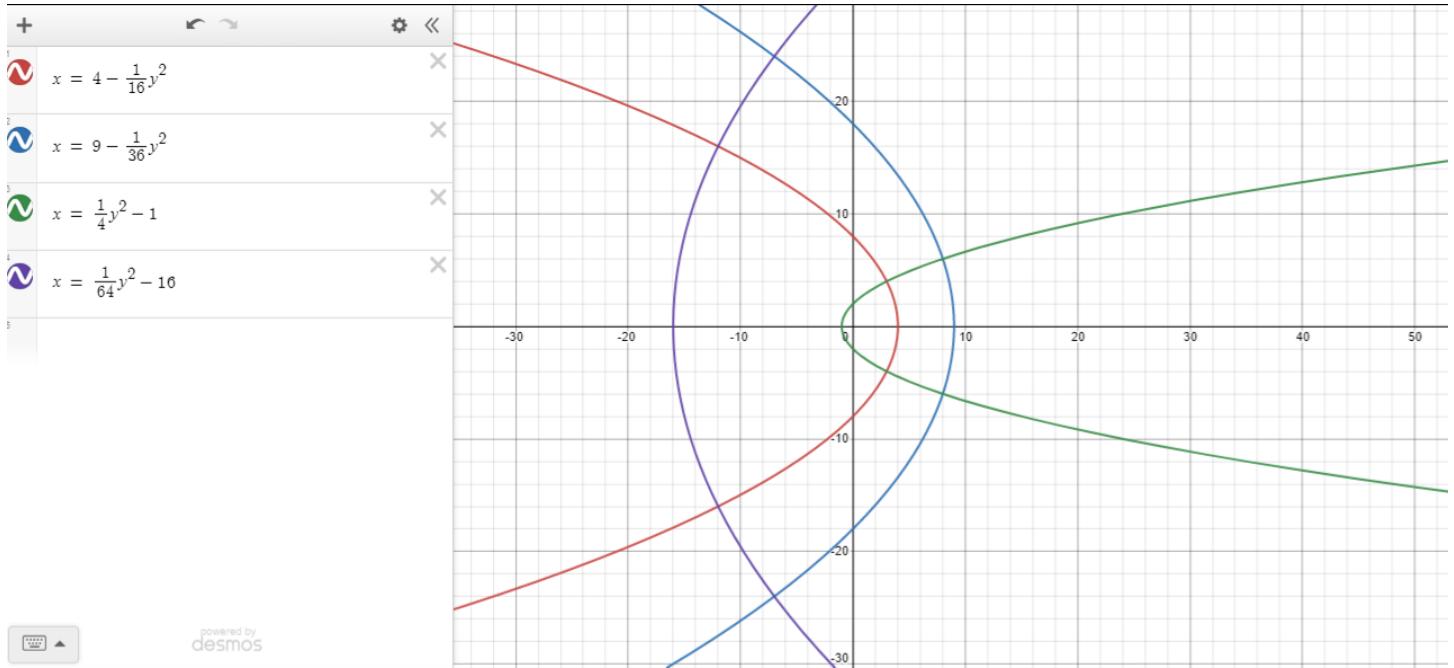


$$\text{Area}(R) = \iint_R 1 dA = \iint_{R'} 1 \cdot |J(u, v)| dA = \int_0^2 \int_{-1}^1 |J(u, v)| dv du \quad (39)$$

$$= \int_0^2 \int_{-1}^1 (4u^2 + 4v^2) dv du = \int_0^2 (4u^2 v + \frac{4}{3}v^3 \Big|_{v=-1}^1) du = \int_0^2 (8u^2 + \frac{8}{3}) du \quad (40)$$

$$= \frac{8}{3}u^3 + \frac{8}{3}u \Big|_{u=0}^2 = \boxed{\frac{80}{3}}. \quad (41)$$

e. Use a change of variables into parabolic coordinates to find the area of the curved rectangle R above the x -axis bounded by $x = 4 - \frac{1}{16}y^2$, $x = 9 - \frac{1}{36}y^2$, $x = \frac{1}{4}y^2 - 1$, and $x = \frac{1}{64}y^2 - 16$. Sketch a picture of the new region of integration as well.



Solution to part e: We proceed as we did in part d. We note that $x = 4 - \frac{1}{16}y^2$ corresponds to $u = 2, -2$, $x = 9 - \frac{1}{36}y^2$ corresponds to $u = 3, -3$, $x = \frac{1}{4}y^2 - 1$ corresponds to $v = 1, -1$, and $x = \frac{1}{64}y^2 - 16$ corresponds to $v = 4, -4$. Since $y = 2uv$ is positive when u and v are both positive (or both negative), we obtain the parabolic rectangle above the x -axis as the image of the region $R' = \{(u, v) \mid 2 \leq u \leq 3, 1 \leq v \leq 4\}$ under T .

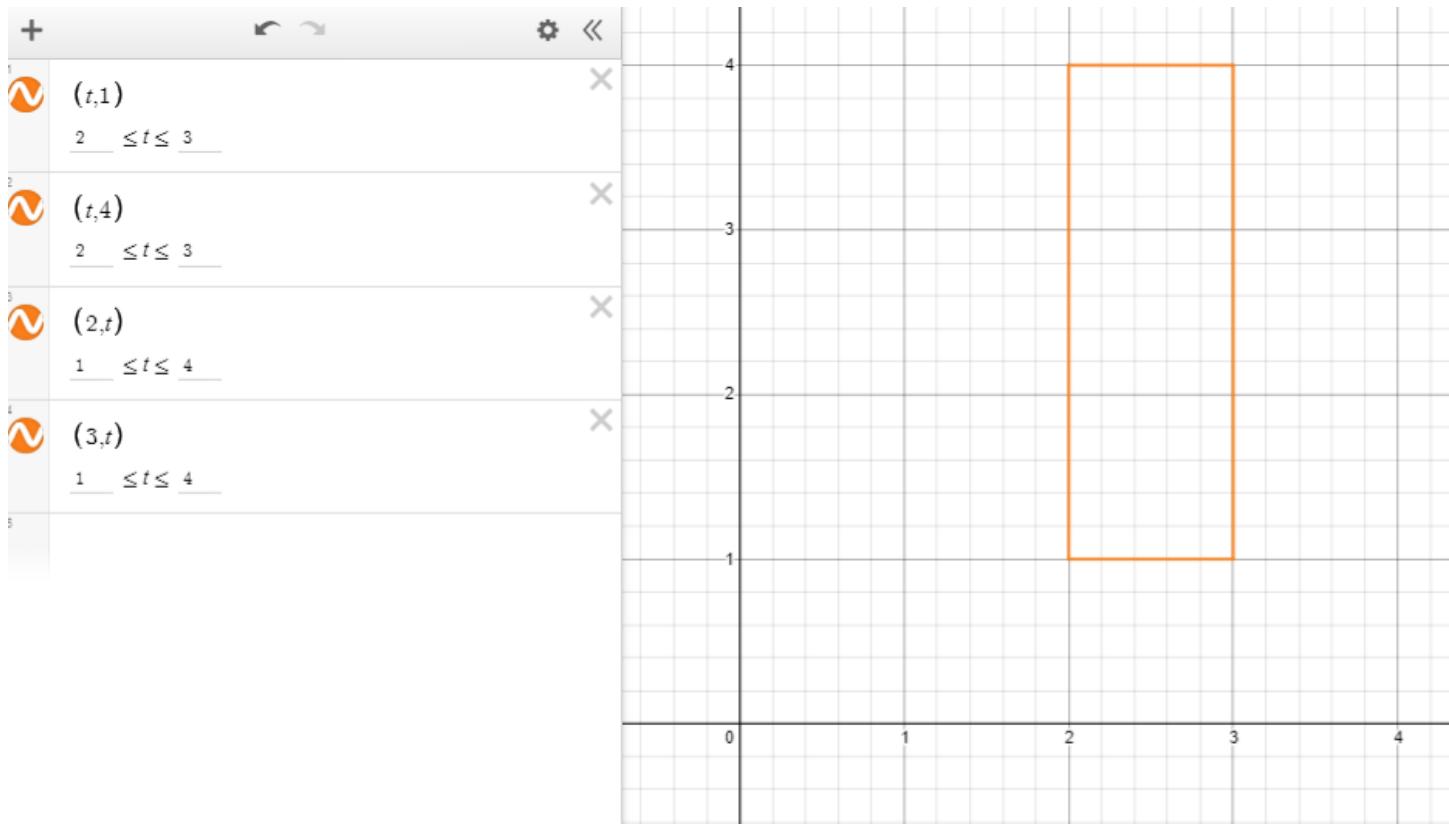


Figure 13: The new region of integration R' in the uv -plane.

We now see that

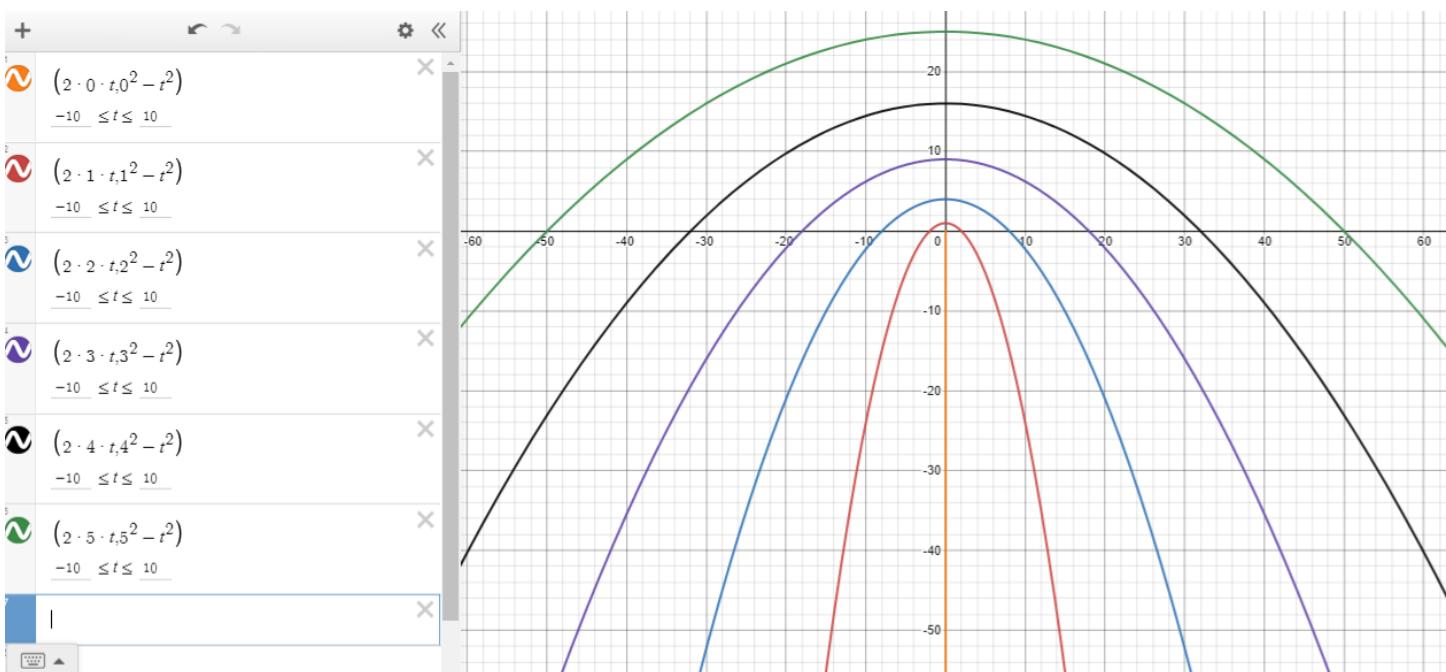
$$\text{Area}(R) = \iint_R 1 dA = \iint_{R'} 1 \cdot |J(u, v)| dA = \int_2^3 \int_1^4 (4u^2 + 4v^2) dv du \quad (42)$$

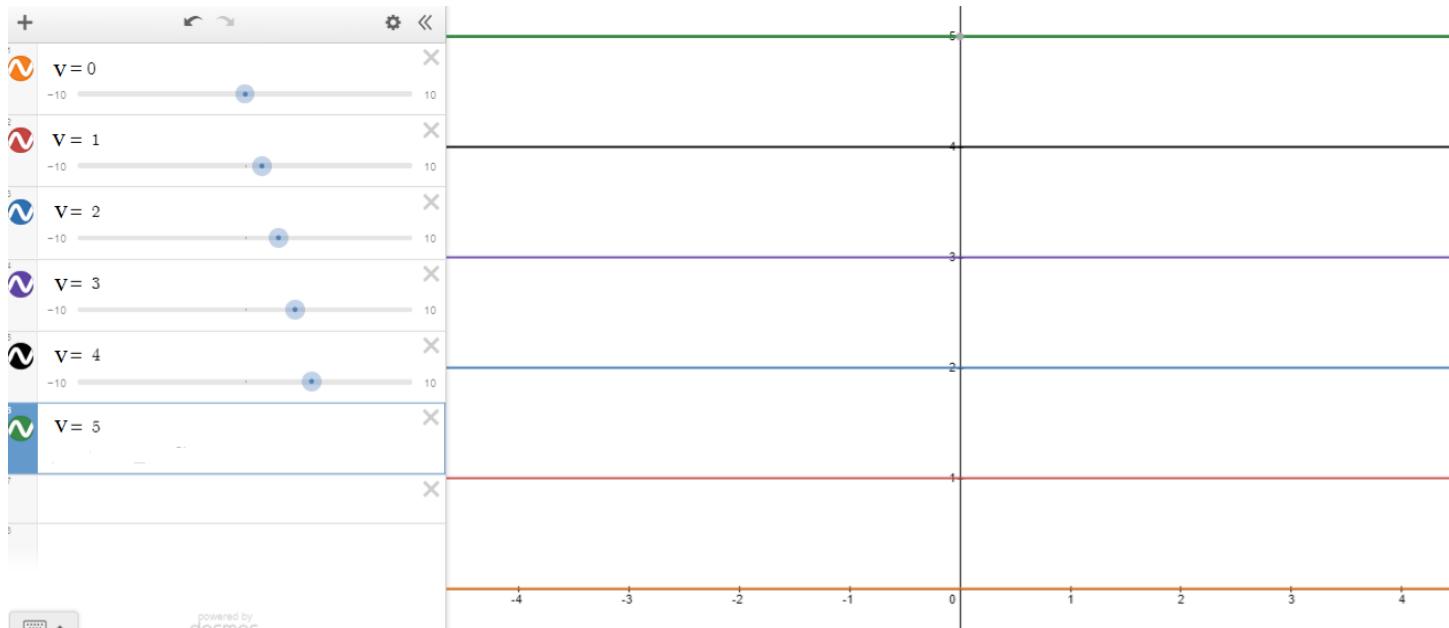
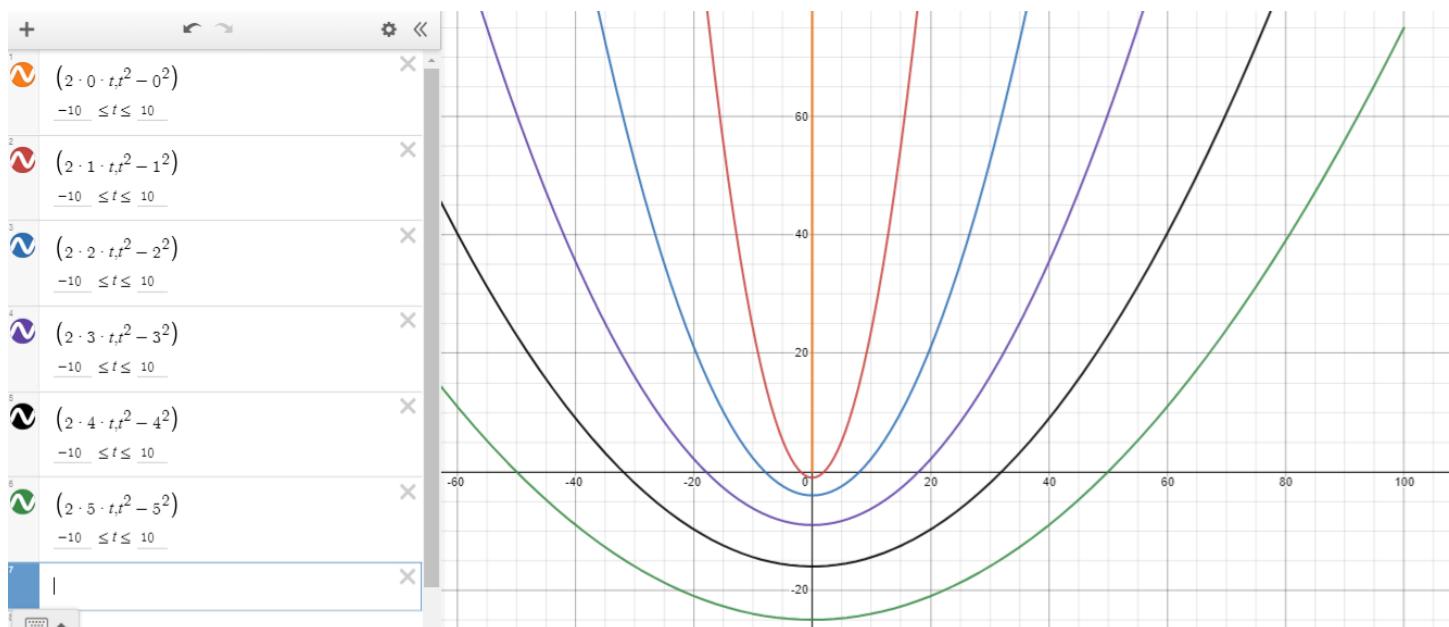
$$= \int_2^3 (4u^2 v + \frac{4}{3}v^3 \Big|_{v=1}^4) du = \int_2^3 (12u^2 + 84) du = 4u^3 + 84u \Big|_2^3 = \boxed{160}. \quad (43)$$

f. Describe the effect of the transformation $(u, v) \mapsto (2uv, u^2 - v^2)$ on horizontal and vertical lines in the uv -plane.⁵

Solution to part f: Let $S(u, v) = (2uv, u^2 - v^2)$. If P is a parabola that opens in the negative x -direction and has its vertex on the positive x -axis, then upon reflection over the line $x = y$, we obtain a parabola P' that opens in the negative y -direction and has its vertex on the positive y -axis. It follows that the image of the vertical line $u = a$ in the uv -plane under the transformation S gives a parabola in the xy -plane that opens in the negative y -direction and has its vertex on the positive y -axis. Similarly, if P is a parabola that opens in the positive x -direction and has its vertex on the negative x -axis, then upon reflection over the line $x = y$, we obtain a parabola P' that opens in the positive y -direction and has its vertex on the negative y -axis. It follows that the image of the horizontal line $v = b$ in the uv -plane under the transformation S gives a parabola in the xy -plane that opens in the positive y -direction and has its vertex on the negative y -axis.

⁵Remember that the transformation $(x, y) \mapsto (y, x)$ reflects points in the xy -plane across the line $y = x$. It will also help to use the results of parts **a.** and **b.** of this problem.

Figure 14: Vertical lines in the uv -plane.Figure 15: The parabolas in the xy -plane corresponding to vertical lines in the uv -plane under the transformation S .

Figure 16: Horizontal lines in the uv -plane.Figure 17: The parabolas in the xy -plane corresponding to horizontal lines in the uv -plane under the transformation S .

g. Show that the parabolas that are the images of the lines $u = a$ and $v = b$ under $T(u, v) = (u^2 - v^2, 2uv)$ are orthogonal to each other.

Solution to part g: We have already seen in parts **a** and **b** that $T(a, v)$ is the parabola $x = a^2 - \frac{1}{4a^2}y^2$ and $T(u, b)$ is the parabola $x = \frac{1}{4b^2}y^2 - b^2$. We will first find the intersection points of these 2 parabolas, then we will calculate the slope of the tangent lines at the intersection points in order to see that the tangent lines (and hence the curves) are orthogonal.

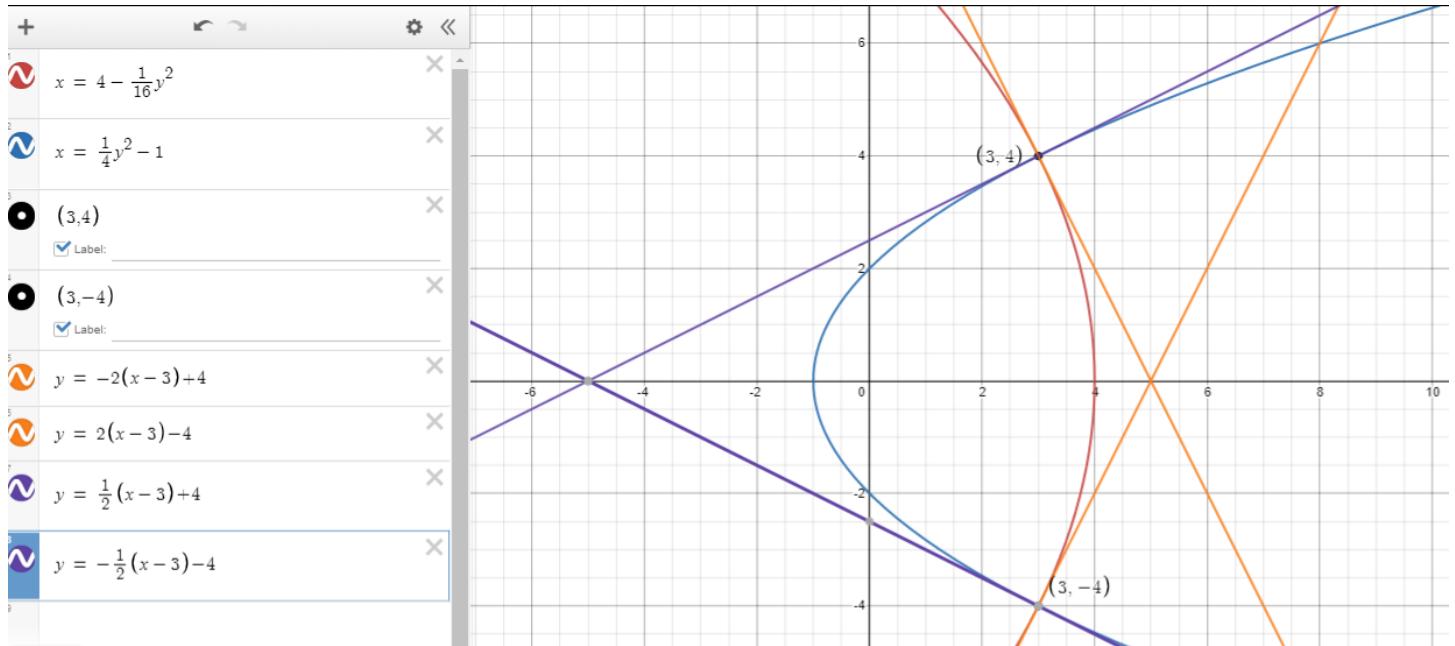


Figure 18: A picture of $T(2, v)$, $T(u, 1)$, and the tangent lines to both curves at their intersection points.

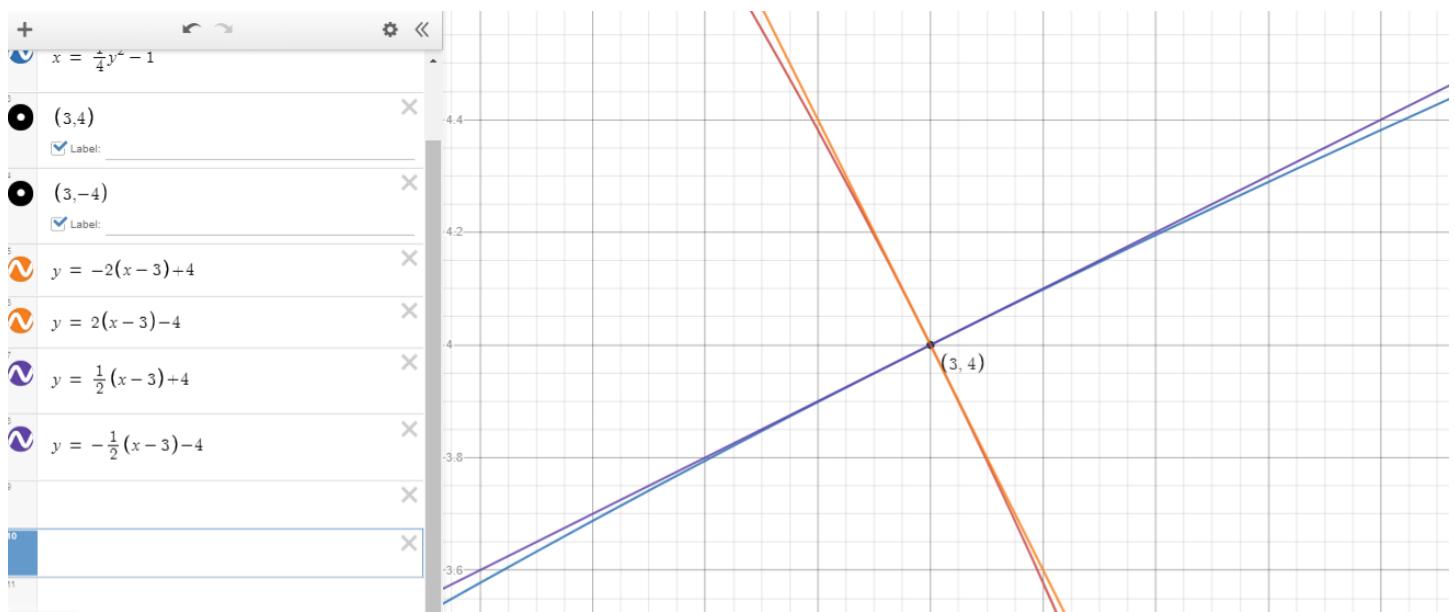


Figure 19: A zoomed in shot around the intersection point $(3, 4)$ to show that the tangent lines (and hence the curves) are perpendicular.

To this end, we see that

$$\begin{aligned} x &= a^2 - \frac{1}{4a^2}y^2 \rightarrow a^2 - \frac{1}{4a^2}y^2 = \frac{1}{4b^2}y^2 - b^2 \rightarrow a^2 + b^2 = \left(\frac{1}{4a^2} + \frac{1}{4b^2}\right)y^2 \end{aligned} \quad (44)$$

$$\rightarrow y^2 = \frac{a^2 + b^2}{\frac{1}{4a^2} + \frac{1}{4b^2}} = 4a^2b^2 \rightarrow y = \pm 2ab \rightarrow x = a^2 - b^2. \quad (45)$$

It follows that $T(a, b) = T(-a, -b) = (a^2 - b^2, 2ab)$ and $T(a, -b) = T(-a, b) = (a^2 - b^2, -2ab)$ are the intersection points of the 2 parabolas. Noting that

$$x = a^2 - \frac{1}{4a^2}y^2 \rightarrow dx = -\frac{1}{2a^2}ydy \rightarrow \frac{dy}{dx} = -2\frac{a^2}{y}, \text{ and} \quad (46)$$

$$x = \frac{1}{4b^2}y^2 - b^2 \rightarrow dx = \frac{1}{2b^2}ydy \rightarrow \frac{dy}{dx} = 2\frac{b^2}{y}, \quad (47)$$

We see that at the point $(a^2 - b^2, 2ab)$, the tangent line to the curve $x = a^2 - \frac{1}{4a^2}y^2$ has a slope of $-\frac{a}{b}$ and the tangent line to the curve $x = \frac{1}{4b^2}y^2 - b^2$ has a slope of $\frac{b}{a}$. Since $-\frac{a}{b} \cdot \frac{b}{a} = -1$, we see that the tangent lines at the point $(a^2 - b^2, 2ab)$ are indeed orthogonal to each other. Similarly, we see that at the point $(a^2 - b^2, -2ab)$, the tangent line to the curve $x = a^2 - \frac{1}{4a^2}y^2$ has a slope of $\frac{a}{b}$ and the tangent line to the curve $x = \frac{1}{4b^2}y^2 - b^2$ has a slope of $-\frac{b}{a}$. Since $\frac{a}{b} \cdot (-\frac{b}{a}) = -1$, we see that the tangent lines at the point $(a^2 - b^2, -2ab)$ are indeed orthogonal to each other.

Remark: We see that the parabolas produced by S in part **f** also share this orthogonality property since orthogonality is preserved under reflections.