
Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 3/24/2022

Problem 1: Let R be the region bounded by the lines y − x = 0, y − x = 2, y + x =
0, y + x = 2. Use a change of variables to evaluate∫∫

R

√
y2 − x2dA. (1)

Solution: We use the substitution u = y−x and v = y+x as suggested by the defining
equations of the boundary curves. We also see in the picture below that this substitution
results in a simple tesselation of our region R, which shows us that the new region of
integration in the uv-plane is just R′ = {(u, v) | 0 ≤ u ≤ 2, 0 ≤ v ≤ 2}.

Figure 1: A picture of the region R and the tesselation that results from our given change of variables.

Figure 2: A picture of the region of integration in the uv-plane R′.

Page 1



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 3/24/2022

In order to calculate the Jacobian J(u, v), we need to solve for x and y in terms of u and
v. To this end, we see that

u = y − x
v = y + x

→
x = 1

2

(
(y + x)− (y − x)

)
= 1

2(v − u)

y = 1
2

(
(y + x) + (y − x)

)
= 1

2(v + u)
. (2)

We now see that

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
1
2

1
2

1
2

1
2

∣∣∣∣∣∣ = (−1

2
) · 1

2
− 1

2
· 1

2
= −1

2
. (3)

It follows that |J(u, v)| = | − 1
2 | =

1
2 . We now see that

Area(R) =

∫∫
R

√
y2 − x2dA =

∫∫
R′

√
(y − x)(y + x) · |J(u, v)|dA (4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ 2

0

∫ 2

0

√
uv

1

2
dudv =

1

2

∫ 2

0

∫ 2

0

u
1
2v

1
2dudv =

1

2

∫ 2

0

2

3
u

3
2v

1
2

∣∣∣2
u=0

dv (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
1

2

∫ 2

0

2

3
2

3
2v

1
2dv =

2
√

2

3

∫ 2

0

v
1
2dv =

4
√

2

9
v

3
2

∣∣∣2
0

=
16

9
. (6)
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Problem 2: Let R be the region in the first quadrant bounded by the hyperbolas xy = 1
and xy = 4 and the lines y = x and y = 3x. Evaluate∫∫

R

y4dA. (7)

Note that you can also solve this problem in Cartesian coordinates and polar coordinates,
not just a change of variables. Try solving it with all three methods and compare their
difficulties!

Solution 1: Our first solution will use a change of variables. Noting that the line y = x
can be rewritten as y

x = 1 and the line y = 3x can be rewritten as y
x = 3, we decide to use

the change of variables u = xy and v = y
x in order to make our new region of integration in

the uv-place a rectangle. In particular, we see that R′ = {(u, v) : 1 ≤ u ≤ 4, 1 ≤ v ≤ 3}
is the new region of integration.

Figure 3: The original region of integration in the xy-plane R.

Figure 4: The new region of integration in the uv-plane R′.
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In order to calculate the Jacobian J(u, v) we must first solve for x and y in terms of u
and v. To that end, we see that

u = xy
v = y

x

→ x = (x2)
1
2 = (

u

v
)
1
2 = u

1
2v−

1
2 and y = (y2)

1
2 = u

1
2v

1
2 . (8)

We note that we took the positive square roots above since we are working in the first
quadrant of the xy-place, so x and y are both nonnegative. We now see that

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
2u
− 1

2v−
1
2 −1

2u
1
2v−

3
2

1
2u
− 1

2v
1
2

1
2u

1
2v−

1
2

∣∣∣∣∣∣ (9)

=
1

2
u−

1
2v−

1
2 · 1

2
u

1
2v−

1
2 − (−1

2
u

1
2v−

3
2 ) · 1

2
u−

1
2v

1
2 =

1

2
v−1. (10)

Since 1 ≤ v ≤ 3 in our new region of integration R′, we see that 1
2v
−1 ≥ 0 on R′, so

|J(u, v)| = J(u, v) on R′. We now see that∫∫
R

y4dA =

∫∫
R′

(u
1
2v

1
2 )4|J(u, v)|dA =

∫ 4

1

∫ 3

1

u2v2 · 1
2
v−1dvdu (11)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
1

2

∫ 4

1

∫ 3

1

u2vdvdu =
1

2

∫ 4

1

1

2
u2v2

∣∣∣3
v=1

du (12)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ 4

1

2u2du =
2

3
u3
∣∣∣4
1

= 42 . (13)

Solution 2: Our next solution will use polar coordinates. We begin by observing that
in the first quadrant we have

y = x⇔ r sin(θ) = r cos(θ)⇔ sin(θ) = cos(θ)⇔ θ =
π

4
, (14)

y = 3x⇔ r sin(θ) = 3r cos(θ)⇔ tan(θ) = 3⇔ θ = tan−1(3), (15)

1 = xy = r2 cos(θ) sin(θ)⇔ r =

√
1

cos(θ) sin(θ)
, and (16)

4 = xy = r2 cos(θ) sin(θ)⇔ r =

√
4

cos(θ) sin(θ)
. (17)

It follows that
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∫∫
R

y4dA =

∫ tan−1(3)

π
4

∫ √
4

cos(θ) sin(θ)√
1

cos(θ) sin(θ)

(r sin(θ))4rdrdθ (18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ tan−1(3)

π
4

∫ √
4

cos(θ) sin(θ)√
1

cos(θ) sin(θ)

r5 sin4(θ)drdθ (19)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ tan−1(3)

π
4

(
1

6
r6 sin4(θ)

∣∣∣√ 4
cos(θ) sin(θ)√

1
cos(θ) sin(θ)

)
dθ (20)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ tan−1(3)

π
4

21

2

sin(θ)

cos3(θ)
dθ =

21

2

∫ tan−1(3)

π
4

sin(θ)

cos(θ)︸ ︷︷ ︸
u=tan(θ)

· 1

cos2(θ)
dθ︸ ︷︷ ︸

du=sec2(θ)dθ

(21)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2

(
1

2
tan2(θ)

∣∣∣tan−1(3)
π
4

)
=

21

4
(32 − 12) = 42 . (22)

Solution 3: Our last solution will use Cartesian coordinates. We begin by observing
that in the first quadrant we have

xy = 1 and y = x → (x, y) = (1, 1)

xy = 1 and y = 3x → (x, y) = ( 1√
3
,
√

3)

xy = 4 and y = x → (x, y) = (2, 2)

xy = 4 and y = 3x → (x, y) = ( 2√
3
, 2
√

3)

(23)

Now that we have identified the ’corners’ of our region as shown in the picture below, we
are able to set up and evaluate the desired double integral.
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∫∫
R

y4dA =

∫ 1

1√
3

∫ 3x

1
x

y4dydx+

∫ 2√
3

1

∫ 3x

x

y4dydx+

∫ 2

2√
3

∫ 4
x

x

y4dydx (24)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ 1

1√
3

1

5
y5
∣∣∣3x
y= 1

x

dx+

∫ 2√
3

1

1

5
y5
∣∣∣3x
y=x

dx+

∫ 2

2√
3

1

5
y5
∣∣∣ 4x
y=x

dx (25)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
1

5

(∫ 1

1√
3

(243x5 − x−5)dx+

∫ 2√
3

1

242x5dx+

∫ 2

2√
3

(1024x−5 − x5)dx
)

(26)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
1

5

(
(
81

2
x6 +

1

4
x−4
∣∣∣1

1√
3

) + (
121

3
x6
∣∣∣ 2√

3

1
) + (−256x−4 − 1

6
x6
∣∣∣2

2√
3

)
)

(27)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

5

(
(
81

2
+

1

4
− 3

2
− 9

4
) + (

121

3
· (64

27
− 1)) + (−16− 32

3
+ 144 +

32

81
)
)

(28)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

5

(
37 +

121 · 37

81
+ 128− 26 · 32

81

)
= 42 . (29)
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Problem 3: Find the volume of the solid D that is bounded by the planes y − 2x =
0, y − 2x = 1, z − 3y = 0, z − 3y = 1, z − 4x = 0, and z − 4x = 3.

Solution: We use the substitution u = y− 2x, v = z − 3y, and w = z − 4x as suggested
by the defining equations of the boundary curves. We also see in the pictures below that
this substitution results in a simple tesselation of our region R, which shows us that the
new region of integration in the uvw-space is just R′ = {(u, v, w) | 0 ≤ u ≤ 1, 0 ≤ v ≤
1, 0 ≤ w ≤ 3}.

Figure 5: A visualization of the impact of changing the value of y − 2x.

Figure 6: A visualization of the impact of changing the value of z − 3y.
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Figure 7: A visualization of the impact of changing the value of z − 4x.

Figure 8: The region of integration R′ in the uvw-space.

In order to calculate the Jacobian J(u, v, w), we need to solve for x, y, and z in terms of
u, v, and w. To this end, we see that

u = y − 2x
v = z − 3y
w = z − 4x

→ v − w = 4x− 3y (30)

→ (v − w) + 3u = −2x→ x =
1

2
(−3u− v + w) (31)
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→ y = u+ 2x = u− 3u− v + w = −2u− v + w
z = w + 4x = w − 6u− 2v + 2w = −6u− 2v + 3w

. (32)

We now see that

J(u, v, w) =

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
−3

2 −
1
2

1
2

−2 −1 1

−6 −2 3

∣∣∣∣∣∣∣∣∣ (33)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −3

2

∣∣∣∣−1 1
−2 3

∣∣∣∣− (−1

2
)

∣∣∣∣−2 1
−6 3

∣∣∣∣+
1

2

∣∣∣∣−2 −1
−6 −2

∣∣∣∣ (34)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −3

2
(−3 + 2) +

1

2
(−6 + 6) +

1

2
(4− 6) =

1

2
. (35)

It follows that |J(u, v, w)| = 1
2 . We now see that

Volume(D) =

∫∫∫
D

1dV =

∫∫∫
D′

1 · |J(u, v, w)|dV (36)

=

∫ 1

0

∫ 1

0

∫ 3

0

1

2
dudvdw = (1− 0)(1− 0)(3− 0)

1

2
=

3

2
. (37)
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Problem 4: This problem has parts a.-g. spread out across the following pages. Your
solutions to parts a, b, and f need (hand drawn or computer generated) pictures.

Consider the Transformation T from the uv-plane to the xy-plane given by T (u, v) =
(u2 − v2, 2uv).

a. Show that the lines u = a in the uv-plane map to parabolas in the xy-plane that
open in the negative x-direction with vertices1 on the positive x-axis.2 Compare the
images of the lines u = a and u = −a under T .

b. Show that the lines v = b in the uv-plane map to parabolas in the xy-plane that
open in the positive x-direction with vertices on the negative x-axis.3 Compare the
images of the lines v = b and v = −b under T .

c. Evaluate J(u, v).

Solution to part a: We see that T (a, v) = (a2 − v2, 2av). Setting x = a2 − v2 and
y = 2av, we see that v = 1

2ay, so x = a2 − ( 1
2ay)2 = a2 − 1

4a2y
2, or equivalently, x− a2 =

− 1
4a2y

2. Since a2 > 0 and − 1
4a2 < 0 when a 6= 0, we see (as mentioned in the footnote)

that T (a, v) is the parameterization of a parabola that opens in the negative x-direction
and has its vertex on the positive x-axis. We see that T (−a, v) = (a2 − v2,−2av) =
(a2− (−v)2, 2a(−v) = T (a,−v), so T (a, v) and T (−a, v) parameterize the same parabola
in the xy-plane, but the parameterizations are in opposite directions (if a 6= 0). We
also see that T (0, v) = (−v2, 0), which is a parameterization (with repitition) of the
negative x-axis, which can be viewed as a degenerate parabola that opens in the negative
x-direction and has its vertex at (0, 0).

Figure 9: Vertical lines in the uv-plane.

1The vertex of the parabola y = x2 is the point (0, 0) and the vertex of the parabola x = y2 is also (0, 0).
2You have to show that the curve ~r1(v) = (a2 − v2, 2av) represents the same curve as x− c = −by2 for some positive numbers b and c.
3You have to show that the curve ~r2(u) = (u2− b2, 2ub) represents the same curve as x− c = by2 for some positive number b and some negative

number c.
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Figure 10: The parabolas in the xy-plane corresponding to vertical lines in the uv-plane under the transformation T .

Solution to part b: We see that T (u, b) = (u2−b2, 2ub). Setting x = u2−b2 and y = 2ub,
we see that u = 1

2by, so x = ( 1
2by)2−b2 = 1

4b2y
2−b2, or equivalently, x−(−b2) = 1

4b2y
2. Since

−b2 < 0 and 1
4b2 > 0 when b 6= 0, we see (as mentioned in the footnote) that T (u, b) is the

parameterization of a parabola that opens in the postive x-direction and has its vertex
on the negative x-axis. We see that T (u,−b) = (u2− b2,−2ub) = ((−u)2− b2, 2(−u)b) =
T (−u, b), so T (u, b) and T (u,−b) parameterize the same parabola in the xy-plane, but the
parameterizations are in opposite directions (if b 6= 0). We also see that T (u, 0) = (u2, 0),
which is a parameterization (with repitition) of the positive x-axis, which can be viewed
as a degenerate parabola that opens in the positive x-direction and has its vertex at
(0, 0).

Figure 11: Horizontal lines in the uv-plane.
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Figure 12: The parabolas in the xy-plane corresponding to horizontal lines in the uv-plane under the transformation T .

Solution to part c: Since x = u2 − v2 and y = 2uv, we see that

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 2u 2v

−2v 2u

∣∣∣∣∣∣ = 2u · 2u− (−2v) · 2v = 4u2 + 4v2 . (38)

We also observe that |J(u, v)| = J(u, v) = 4u2 + 4v2 since squares are always bigger than
or equal to 0.
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d. Use a change of variables into parabolic coordinates to find the area of the region
R in the xy-plane bounded by the curves x = 4 − 1

16y
2 and x = 1

4y
2 − 1. Sketch a

picture of the new region of integration as well.

Solution to part d: We begin by using parts a and b to see that the parabola x =
4− 1

16y
2 = 22− 1

4·22y
2 in the xy-plane is the image under T of the line u = 2 (or u = −2)

in the uv-plane and the parabola x = 1
4y

2 − 1 = 1
4·12y

2 − 12 in the xy-plane is the image
under T of the line v = 1 (or v = 1) in the uv-plane. Note that for a postive number
p, T (2, p) is on the upper half of the parabola x = 4 − 1

16y
2 and T (2,−p) is on the

lower half. Similarly, for T (p, 1) is on the upper half of the parabola x = 1
4y

2 − 1 and
T (−p, 1) = T (p,−1) is on the lower half. We also recall that T (almost) bijects the closed
right (or left, or upper, or lower) half of the uv-plane to the xy-plane.4 The picture below
puts together all of the previous discussion to show that the region R in the xy-plane is
the image under T of the region rectangle R′ = {(u, v) | 0 ≤ u ≤ 2,−1 ≤ v ≤ 1} in the
uv-plane.

4The map T from the uv-plane to the xy-plane is a one-to-one map if you restrict yourself to an open half of the uv-plane and an appropriate
closed half of an axis (such as the open left half of the plane and the closed upper half of the y-axis), but T is not one-to-one on the entire uv-plane
since T (a, b) = T (−a,−b).
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Area(R) =

∫∫
R

1dA =

∫∫
R′

1 · |J(u, v)|dA =

∫ 2

0

∫ 1

−1
|J(u, v)|dvdu (39)

=

∫ 2

0

∫ 1

−1
(4u2 + 4v2)dvdu =

∫ 2

0

(4u2v +
4

3
v3
∣∣∣1
v=−1

)du =

∫ 2

0

(8u2 +
8

3
)du (40)

=
8

3
u3 +

8

3
u
∣∣∣2
u=0

=
80

3
. (41)
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e. Use a change of variables into parabolic coordinates to find the area of the curved
rectangle R above the x-axis bounded by x = 4 − 1

16y
2, x = 9 − 1

36y
2, x = 1

4y
2 − 1,

and x = 1
64y

2 − 16. Sketch a picture of the new region of integration as well.

Solution to part e: We proceed as we did in part d. We note that x = 4− 1
16y

2 corre-
sponds to u = 2,−2, x = 9− 1

36y
2 corresponds to u = 3,−3, x = 1

4y
2 − 1 corresponds to

v = 1,−1, and x = 1
64y

2 − 16 corresponds to v = 4,−4. Since y = 2uv is positive when u
and v are both positive (or both negative), we obtain the parabolic rectangle above the
x-axis as the image of the region R′ = {(u, v) | 2 ≤ u ≤ 3, 1 ≤ v ≤ 4} under T .
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Figure 13: The new region of integration R′ in the uv-plane.

We now see that

Area(R) =

∫∫
R

1dA =

∫∫
R′

1 · |J(u, v)|dA =

∫ 3

2

∫ 4

1

(4u2 + 4v2)dvdu (42)

=

∫ 3

2

(4u2v +
4

3
v3
∣∣∣4
v=1

)du =

∫ 3

2

(12u2 + 84)du = 4u3 + 84u
∣∣∣3
2

= 160 . (43)
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f. Describe the effect of the transformation (u, v) 7→ (2uv, u2 − v2) on horizontal and
vertical lines in the uv-plane.5

Solution to part f: Let S(u, v) = (2uv, u2 − v2). If P is a parabola that opens in the
negative x-direction and has its vertex on the positive x-axis, then upon reflection over
the line x = y, we obtain a parabola P ′ that opens in the negative y-direction and has
its vertex on the positive y-axis. It follows that the image of the vertical line u = a in
the uv-plane under the transformation S gives a parabola in the xy-plane that opens in
the negative y-direction and has its vertex on the positive y-axis. Similarly, if P is a
parabola that opens in the positive x-direction and has its vertex on the negative x-axis,
then upon reflection over the line x = y, we obtain a parabola P ′ that opens in the
positive y-direction and has its vertex on the negative y-axis. It follows that the image
of the horizontal line v = b in the uv-plane under the transformation S gives a parabola
in the xy-plane that opens in the positive y-direction and has its vertex on the negative
y-axis.

5Remember that the transformation (x, y) 7→ (y, x) reflects points in the xy-plane across the line y = x. It will also help to use the results of
parts a. and b. of this problem.
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Figure 14: Vertical lines in the uv-plane.

Figure 15: The parabolas in the xy-plane corresponding to vertical lines in the uv-plane under the transformation S.
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Figure 16: Horizontal lines in the uv-plane.

Figure 17: The parabolas in the xy-plane corresponding to horizontal lines in the uv-plane under the transformation S.
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g. Show that the parabolas that are the images of the lines u = a and v = b under
T (u, v) = (u2 − v2, 2uv) are orthogonal to eachother.

Solution to part g: We have already seen in parts a and b that T (a, v) is the parabola
x = a2− 1

4a2y
2 and T (u, b) is the parabola x = 1

4b2y
2−b2. We will first find the intersection

points of these 2 parabolas, then we will calculate the slope of the tangent lines at the
intersection points in order to see that the tangent lines (and hence the curves) are
orthogonal.

Figure 18: A picture of T (2, v), T (u, 1), and the tangent lines to both curves at their intersection points.

Figure 19: A zoomed in shot around the intersection point (3, 4) to show that the tangent lines (and hence the curves) are
perpendicular.
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To this end, we see that

x = a2 − 1
4a2y

2

x = 1
4b2y

2 − b2
→ a2 − 1

4a2
y2 =

1

4b2
y2 − b2 → a2 + b2 = (

1

4a2
+

1

4b2
)y2 (44)

→ y2 =
a2 + b2

1
4a2 + 1

4b2

= 4a2b2 → y = ±2ab→ x = a2 − b2. (45)

It follows that T (a, b) = T (−a,−b) = (a2 − b2, 2ab) and T (a,−b) = T (−a, b) = (a2 −
b2,−2ab) are the intersection points of the 2 parabolas. Noting that

x = a2 − 1

4a2
y2 → dx = − 1

2a2
ydy → dy

dx
= −2

a2

y
, and (46)

x =
1

4b2
y2 − b2 → dx =

1

2b2
ydy → dy

dx
= 2

b2

y
, (47)

We see that at the point (a2 − b2, 2ab), the tangent line to the curve x = a2 − 1
4a2y

2 has
a slope of −a

b and the tangent line to the curve x = 1
4b2y

2 − b2 has a slope of b
a . Since

−a
b ·

b
a = −1, we see that the tangent lines at the point (a2−b2, 2ab) are indeed orthogonal

to each other. Similarly, we see that at the point (a2 − b2,−2ab), the tangent line to the
curve x = a2− 1

4a2y
2 has a slope of a

b and the tangent line to the curve x = 1
4b2y

2−b2 has a
slope of − b

a . Since a
b · (−

b
a) = −1, we see that the tangent lines at the point (a2− b2, 2ab)

are indeed orthogonal to each other.
Remark: We see that the parabolas produced by S in part f also share this orthogonality
property since orthogonality is preserved under reflections.
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