
Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 2/24/2022

Problem 1: Determine all critical points of the function f(x, y) = x3 − y3 + xy, then
classify each of the critical points as a local maximum, local minimum, or saddle point.

Solution: To find the criticial points of f , we simply have to find all (x, y) for which
both partial derivatives of f are 0.

fx(x, y) = 0
fy(x, y) = 0

⇔ 3x2 + y = 0
−3y2 + x = 0

⇔ −3x2 = y
3y2 = x

(1)

→ x = 3(−3x2)2 = 27x4 → x = 0,
1

3
→ (x, y) = (0, 0), (

1

3
,−1

3
) . (2)

We now proceed to calculate all of the second derivatives of f as well as the discriminant
function so that we can apply the second derivative test.

fxx(x, y) = 6x
fyy(x, y) = −6y
fxy(x, y) = 1

(3)

→ D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2 = −36xy − 1. (4)

Since D(0, 0) = −1 < 0, we see that (0, 0) is a saddle point .

Since D(13 ,−
1
3) = 3 > 0 and fxx(

1
3 ,−

1
3) = 2 > 0 we see that

(
1

3
,−1

3
) is a local minimum .
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Problem 2: A lidless cardboard box is to be made with a volume of 4 m3. Find the
dimensions of the box that require the least cardboard.

Solution: If the box has a width of w, a length of ` and a height of h, then the volume
V is given by V = wh`. We also see from figure 1 that the amount of cardboard it takes
to make such a box is 2hw + 2h`+ wl.

Figure 1:

It follows that we are trying to optimize the function

f(w, h, `) = 2hw + 2h`+ w` (5)

subject to the constraint

wh` = 4. (6)

Noting that

Page 2



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 2/24/2022

h =
4

w`
, (7)

we now want to optimize the function

g(w, `) = f(w, h, `) = f(w,
4

w`
, `) = 2

4

w`
w + 2

4

w`
`+ w` =

8

`
+

8

w
+ w` (8)

over the first quadrant of R2. We see that

∂g

∂w
= − 8

w2
+ ` and

∂g

∂`
= − 8

`2
+ w, so (9)

∂g
∂w(w, `) = 0
∂g
∂` (w, `) = 0

⇔
− 8
w2 + ` = 0

− 8
`2 + w = 0

⇔ 8 = w`2 = w2`
∗→ w = ` (10)

→ 8 = w3 → (w, h, `) = (2, 1, 2) . (11)

To verify that g(w, `) at the very least attain a local minimum value at (w, `) = (2, 2)
we will use the second derivative test. Technically, this step is not needed as discussed
in the remark after the proof. We note that

∂2g

∂w2
(w, `) =

∂

∂w

∂g

∂w
(w, `) =

∂

∂w
(− 8

w2
+ `) =

16

w3
, (12)

∂2g

∂`2
(w, `) =

∂

∂`

∂g

∂`
(w, `) =

∂

∂`
(− 8

`2
+ w) =

16

`3
, and (13)

∂2g

∂w∂`
(w, `) =

∂

∂w

∂g

∂`
(w, `) =

∂

∂w
(− 8

`2
+ w) = 1, so (14)

D(w, `) =
∂2g

∂w2
(w, `)

∂2g

∂`2
(w, `)− (

∂2g

∂w∂`
(w, `))2

=
16

w3
· 16

`3
− 12 =

256

w3`3
− 1. (15)

Since

D(2, 2) =
256

8 · 8
− 1 = 3 > 0 and

∂2g

∂w2
(2, 2) =

16

23
= 2 > 0, (16)
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the second derivative test tells us that g(w, `) attains a local minimum at the critical
point (2, 2). We will now verify that (2, 2) is actually the global minimum of g(w, `) over
the first quadrant of R2. Consider the closed and bounded region region R = [12 , 64]2.

A picture of R.

We note that (2, 2) ∈ R, and that (2, 2) is the only critical point of g(w, `) in R (because
g(w, `) only had 1 critial point anyways). We also see that g(w, `) ≥ 16 > 12 = g(2, 2)
for (w, `) on the boundary of R (this can easily be checked on each of the 4 sides of
the boundary of R separately). By the extreme value theorem, we see that g attains its
absolute minimum over R at the point (2, 2). Since g(w, `) ≥ 16 > 12 for (w, `) that are
in the first quadrant of R2 but outside of R (this fact is left as a challenge to the reader),
we see that g(w, `) does indeed attain its global minimum over the first quadrant of R2

at (2, 2).

Remark: We never actually needed to use the second derivative test to verify that the
global minimum occurred at (2, 2). The second derivative test was only useful for telling
us that (2, 2) was a local minimum, but we never used the fact that (2, 2) was a local
minimum in order to conclude that it was actually a global minimum. I only wrote that
into the solutions since I permitted you to finish the problem by checking that it is a local
minimum instead of a global minimum. Instructors of sophomore level calculus classes
usually allow for this simplification.
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Problem 3: Consider the function f(x, y) = 3 + x4 + 3y4. Show that (0, 0) is a critical
point for f(x, y) and show that the second derivative test is inconclusive at (0, 0). Then
describe the behavior of f(x, y) at (0, 0).
H int: The product of 2 negative numbers is positive.

Solution: We see that

∂f

∂x
(x, y) = 4x3 and

∂f

∂y
(x, y) = 12y3, so (17)

∂f
∂x(x, y) = 0

∂f
∂y (x, y) = 0

⇔
4x3 = 0

12y3 = 0
⇔ (x, y) = (0, 0). (18)

It follows that (0, 0) is the only critical point of f in all of R2. We also note that

∂2f
∂x2 (x, y) = ∂

∂x
∂f
∂x(x, y) = ∂

∂x(4x3) = 12x2,

∂2f
∂y2 (x, y) = ∂

∂y
∂f
∂y (x, y) = ∂

∂y(12y3) = 36y2, and

∂2f
∂x∂y(x, y) = ∂

∂x
∂f
∂y (x, y) = ∂

∂x(12y3) = 0, so

(19)

D(x, y) = ∂2f
∂x2 (x, y)∂

2f
∂y2 (x, y)− ( ∂2f

∂x∂y(x, y))2

= 12x2 · 36y2 − 02 = 432x2y2
. (20)

Since D(0, 0) = 0, we see that the second derivative test is inconclusive. However, we
are still able to describe the behavior of f(x, y) at (0, 0). Note that x4 ≥ 0 for all x ∈ R,
and 3y4 ≥ 0 for all y ∈ R. Furthermore, x4 = 0 if and only if x = 0, and 3y4 = 0 if and
only if y = 0. It follows that x4 + 3y4 ≥ 0 for all (x, y) ∈ R2, and x4 + 3y4 = 0 if and
only if (x, y) = (0, 0). From this we are able to see that f(x, y) = 3 + x4 + 3y4 attains an
absolute minimum at (0, 0).
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Problem 4: Show that the second derivative test is inconclusive when applied to the
function f(x, y) = x4y2 at the point (0, 0). Show that f(x, y) has a local minimum at
(0, 0) by direct analysis.
H int: The product of 2 negative numbers is positive.

Solution: We will first verify that (0, 0) is a critical point. We see that

∂f

∂x
(x, y) = 4x3y2 and

∂f

∂y
(x, y) = 2x4y, so (21)

∂f
∂x(x, y) = 0

∂f
∂y (x, y) = 0

⇔
4x3y2 = 0

2x4y = 0
⇔ x = 0 or y = 0. (22)

It follows that the critical points of f are precisely those points which are on either the
x-axis or the y-axis, and (0, 0) is certainly such a point. Next, we notice that

∂2f
∂x2 (x, y) = ∂

∂x
∂f
∂x(x, y) = ∂

∂x(4x3y2) = 12x2y2,

∂2f
∂y2 (x, y) = ∂

∂y
∂f
∂y (x, y) = ∂

∂y(2x
4y) = 2x4, and

∂2f
∂x∂y(x, y) = ∂

∂x
∂f
∂y (x, y) = ∂

∂x(2x4y) = 8x3y, so

(23)

D(x, y) = ∂2f
∂x2 (x, y)∂

2f
∂y2 (x, y)− ( ∂2f

∂x∂y(x, y))2

= 12x2y2 · 2x4 − (8x3y)2 = −40x6y2.

(24)

Since D(x, y) = 0 whenever x = 0 or y = 0, we see that the second derivative test is
inconclusive for every critical point of f (which includes (0,0)). However, we are still able
to describe the behavior of f(x, y) at any of its critical points by using a direct analysis.
Note that x4y2 ≥ 0 for all (x, y) ∈ R2 (use the hint if this is not obvious to you), and
that x4y2 = 0 whenever x = 0 or y = 0. It follows that f attains its absolute minimum
at any of its critical points.
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Problem 5: Find the absolute minimum and absolute maximum values of the function
f(x, y) = xy over the region R = {(x, y) | (x− 1)2 + y2 ≤ 1}.

Solution: Since R is a closed and bounded region, and f is a continuous function, the
Extreme Value Theorem tells us that f will attain its absolute minimum and absolute
maximum values over the region R. Furthermore, we know that the extreme values of f
will either be attained on the boundary of R, or at a critical point of f in the interior of
R.

We will begin by finding all critical points in the interior of R. Since fx(x, y) = y and
fy(x, y) = x, we immediately see that (0, 0) is the only critical point of f , and it is on
the boundary (not interior) of the region R, but it is still a candidate for where f can
attain one of its extreme values. We note that f(0, 0) = 0.

We will now proceed to find the absolute minimum and absolute maximum values of f on
the boundary of R. Since the boundary of R is given by ∂R = {(x, y) | (x−1)2+y2 = 1},
we will use the method of Lagrange Multipliers to optimize the function f(x, y) = xy

subject to the constraint g(x, y) = (x− 1)2 + y2 − 1 = 0. We note that

∇f(x, y) = 〈y, x〉 and ∇g(x, y) = 〈2x− 2, 2y〉, (25)

so the method of Lagrange Multipliers results in the following system of equations for us
to solve:

g(x, y) = 0
∇f(x, y) = λ∇g(x, y)

⇔
(x− 1)2 + y2 = 1

y = λ(2x− 2)
x = λ2y

(26)

→ λx(2x− 2) = xy = λ2y2 → 0 = 2λ(y2 − x2 + x). (27)

By the zero-product property, we see that we must have λ = 0 or y2 − x2 + x = 0, so we
will consider both cases separately.

Case 1: For our first case let us assume that λ = 0. In this case we see that the last 2
equations from (26) tell us that x = y = 0, since g(0, 0) = 0, we see that we reobtain the
critical point (x, y) = (0, 0).

Case 2: For our next case let us assume that y2 − x2 + x = 0, so y2 = x2 − x. We see
that

1 = y2 + (x− 1)2 = x2 − x+ (x− 1)2 = 2x2 − 3x+ 1 (28)
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→ 2x2 − 3x = 0→ x = 0,
3

2
→ (x, y) = (0, 0), (

3

2
,

√
3

2
), (

3

2
,−
√

3

2
). (29)

Making a table of our critical points and corresponding values of f , we see that

(x, y) f(x, y)

(0, 0) 0

(32 ,
√
3
2 ) 3

√
3

4

(32 ,−
√
3
2 ) −3

√
3

4

so f attains its absolute maximum value of 3
√
3

4 at the point (32 ,
√
3
2 ) and f attains its

absolute minimum value of −3
√
3

4 at the point (32 ,−
√
3
2 ).
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Problem 6: Find the absolute minimum and absolute maximum values of the function

f(x, y) = x2 + 4y2 + 1 (30)

over the region
R = {(x, y) : x2 + 4y2 ≤ 1}. (31)

You should know how to solve this type of problem using lagrange multipliers, but you
can avoid using lagrange multipliers (and even avoid parameterization of the boundary)
in this particular problem if you think about it carefully.

Figure 2: The interior of the R is shaded in red and the boundary of R is blue.

Solution: Since the region R is a closed and bounded region, and the function f is
continuous, the extreme value theorem tells us that the absolute minimum and absolute
maximum values of f must be achieved on the boundary of R or at a critical point in
the interior of R. We first find all of the critical points of f . We see that

fx(x, y) = 0
fy(x, y) = 0

⇔ 2x = 0
8y = 0

⇔ (x, y) = (0, 0). (32)

We see that (0, 0) ∈ R and that f(0, 0) = 1. Next we will determine the absolute
minimum and absolute maximum values of f on the boundary of R. Since the boundary
of R is given by x2 + 4y2 = 1, we see that f(x, y) = 2 for every (x, y) on the boundary of
R, so we immediately see that f achieves its absolute minimum value of 1 at (0, 0) and
its absolute maximum value of 2 at any (x, y) on the boundary of R.
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If we were not lucky enough to instatly notice that f(x, y) = 2 for every (x, y) on the
boundary of R, then we would try to handle the boundary by using the method of
Lagrange multipliers. More specifically, we would try to optimize the function f(x, y) =
1 + x2 + 4y2 subject to the constraint g(x, y) = x2 + 4y2 − 1 = 0. Noting that

∇g(x, y) = 〈2x, 8y〉 and ∇f(x, y) = 〈2x, 8y〉 (33)

the method of Lagrange multipliers gives us the system of equations

g(x, y) = 0
∇f(x, y) = λ∇g(x, y)

⇔ g(x, y) = 0
〈2x, 8y〉 = λ〈2x, 8y〉 (34)

⇔
g(x, y) = 0

2x = 2λx
8y = 8λy

. (35)

Letting λ = 1, we see that every point (x, y) on the boundary of R (which is the same
as every point (x, y) satisfying the constraint g(x, y) = 0 also satisfies the system of
equations given to us by the method of Lagrange multipliers. This seems bad at first
since the boundary has infinitely many points, so it looks like the method of Lagrange
multipliers did not help us in our search for the absolute minimum and absolute maximum
values that occur on the boundary. However, it turns out that the only time every point
on the boundary of our region R (assuming that R has a piecewise smooth boundary,
which it always will in this class) is a critical point is when f(x, y) is constant on the
region R (as it was in this problem), so the problem turns out to be easier in these cases
since you can determine the value of f(x, y) on the boundary of R by checking the value
at any random point (x, y) on the boundary of R.
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Problem 7: Find the absolute minimum and maximum value of the function

f(x, y) = 2x2 − 4x+ 3y2 + 2 (36)

over the region

R := {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1}. (37)

Hint: There is an easy solution to this problem that doesn’t use calculus if you write
f(x, y) in a more convenient form.

Solution: Note that the interior of R is given by

R◦ = {(x, y) ∈ R2 | (x− 1)2 + y2 < 1} (38)

and the boundary of R is given by

∂R = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1}. (39)

We will first find all critical points in the interior of R. We note that

∂f

∂x
= 4x− 4 and

∂f

∂y
= 6y, so (40)

∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x− 4 = 0

6y = 0
⇔ (x, y) = (1, 0). (41)

We see that (1, 0) is the only critical point of f in all of R2. Since (1, 0) ∈ R, we have
to take this critical point into consideration when searching for our absolute minimum
and maximum values. Now that we have addressed the interior of R, we will proceed to
address the boundary of R. We note that ∂R can be parameterized by ~r(t), where

~r(t) = (1 + cos(t), sin(t)), 0 ≤ t ≤ 2π, (42)

so on ∂R we have

f(x, y) = f(~r(t)) = f(1 + cos(t), sin(t))

= 2(1 + cos(t)− 1)2 + 3 sin2(t) = 2 cos2(t) + 3 sin2(t) = 2 + sin2(t). (43)
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We may now use the (single variable) first derivative test to optimize f(~r(t)) = 2+sin2(t)
on the interval [0, 2π], but we may also directly notice that the maximum is attained for
t ∈ {π2 ,

3π
2 } which corresponds to (x, y) ∈ {(1, 1), (1,−1)} and the minimum is attained

for t ∈ {0, π, 2π} which corresponds to (x, y) ∈ {(0, 0), (2, 0)}. We now evaluate f at all
of the critical points that we have found so far to determine the absolute minimum and
maximum values. Noting that

(x,y) f(x,y)

(1,0) 0

(1,1) 3

(1,-1) 3

(0,0) 2

(2,0) 2

so f(x, y) attains a minimum value of 0 at (1, 0), and f(x, y) attains a maximum value
of 3 at any of {(1, 1), (1,−1)}.

Remark: In this problem, one may also try to address the boundary of R by noting
that (x − 1)2 = 1 − y2 on the boundary, so f(x, y) = 2(x − 1)2 + 3y2 = 2 + y2 on the
boundary.
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Problem 8: Use the method of Lagrange multipliers to find the absolute maximum and
minimum of the function

f(x, y, z) = xyz (44)

subject to the constraint

x2 + 2y2 + 4z2 = 9. (45)

Solution: We will present two different solutions to this problem. The method of setting
up the system of equations from the method of Lagrange multipliers is the same in both
solutions, but the method of solving the resulting system will be different.

We see that the region defined by the constraint is a closed and bounded region with no
boundary, so the method of Lagrange multipliers will give us the complete list of critical
points that we need to check in order to determine the absolute minimum and absolute
maximum values of f subject to the constraint.

We see that

x2 + 2y2 + 4z2 = 9⇔ x2 + 2y2 + 4z2 − 9 = 0, (46)

so we may take our constraint function to be g(x, y, z) = x2 + 2y2 + 4z2− 9. We see that

~∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉 = 〈yz, xz, xy〉, and (47)

~∇g(x, y, z) = 〈gx(x, y, z), gy(x, y, z), gz(x, y, z) = 〈2x, 4y, 8z〉. (48)
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We now want to find all (x, y, z, λ) (although we don’t really care about the value of λ)
such that

g(x, y, z) = 0
~∇f(x, y, z) = λ~∇g(x, y, z)

(49)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔ x2 + 2y2 + 4z2 − 9 = 0
〈yz, xz, xy〉 = λ〈2x, 4y, 8z〉 (50)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔

x2 + 2y2 + 4z2 − 9 = 0
yz = 2λx
xz = 4λy
xy = 8λz

(51)

Finish 1: We will now use the method of cross multiplication to solve the system of
equations in (51). This method will be computationally intensive, but is ’standard’ and
does not require any ’tricky insights’. By cross multiplying the second and third equations
in (51) we see that

4λy2z = 2λx2z → 0 = 4λy2z − 2λx2z = 2λz(2y2 − x2), (52)

so by the zero product property we see that either λ = 0, z = 0, or 2y2− x2 = 0. We will
handle each case separately.

Case 1 (λ = 0): By plugging λ = 0 back into (51) we see that

x2 + 2y2 + 4z2 − 9 = 0
yz = 0
xz = 0
xy = 0

. (53)

Using the zero product property once again on the second, third, and fourth equations of
(53), we see that 2 of x, y, and z must be 0. In conjunction with the first equation of (51)
(the constraint equation) we see that (x, y, z, λ) ∈ {(0, 0,±3

2 , 0), (0,± 3√
2
, 0, 0), (±3, 0, 0, 0)}

are the solutions that we obtain from this case.

Case 2 (z = 0): By plugging z = 0 back into (51) we see that
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x2 + 2y2 − 9 = 0
0 = 2λx
0 = 4λy
xy = 0

. (54)

Since we are done with case 1, we may also assume that λ 6= 0. It now follows from the
second and third equations in (54) that x = y = 0, but this contradicts the first equation
in (54), so we obtain no additional solutions in this case.

Case 3 (2y2 − x2 = 0): In this case we see that x2 = 2y2 so x = ±
√

2y, which means
that we have 2 subcases to handle. For our first subcase, we plug x =

√
2y back into

(51) to obtain

2y2 + 2y2 + 4z2 − 9 = 0

yz = 2
√

2λy√
2yz = 4λy√
2y2 = 8λz

. (55)

By cross-multiplying the third and fourth equations in (55) we see that

8
√

2λyz2 = 4
√

2λy3 → 0 = 8
√

2λyz2 − 4
√

2λy3 = 4
√

2λy(2z2 − y2). (56)

Since we are no longer in case 1, we may assume that λ 6= 0, so either y = 0 or 2z2−y2 = 0.
If y = 0, then x =

√
2y = 0, and we reobtain the solution (x, y, z) = (0, 0, 32). If

2z2 − y2 = 0, then y2 = 2z2. Plugging this back into the first equation of (55) yields

12z2 = 9→ z = ±
√

3

2
, (57)

so we obtain the solutions

(x, y, z) ∈ {(
√

3,

√
3√
2
,

√
3

2
), (−
√

3,−
√

3√
2
,

√
3

2
),

(−
√

3,−
√

3√
2
,−
√

3

2
), (
√

3,

√
3√
2
,−
√

3

2
)}. (58)

For our second subcase we let x = −
√

2y and a similar calculation yields the additional
solutions
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(x, y, z) ∈ {(−
√

3,

√
3√
2
,

√
3

2
), (
√

3,−
√

3√
2
,

√
3

2
),

(
√

3,−
√

3√
2
,−
√

3

2
), (−
√

3,

√
3√
2
,−
√

3

2
)}. (59)

Now that we have found all solutions to the system of equations in (51), we see that

(x,y,z) f(x,y,z) (x,y,z) f(x,y,z)

(0,0,32) 0 (
√

3,
√
3√
2
,−
√
3
2 ) −3

√
3

2
√
2

(0, 3√
2
,0) 0 (

√
3,−

√
3√
2
,
√
3
2 ) −3

√
3

2
√
2

(3,0,0) 0 (
√

3,−
√
3√
2
,−
√
3
2 ) 3

√
3

2
√
2

(0,0,−3
2) 0 (−

√
3,
√
3√
2
,
√
3
2 ) −3

√
3

2
√
2

(0,− 3√
2
,0) 0 (−

√
3,
√
3√
2
,−
√
3
2 ) 3

√
3

2
√
2

(-3,0,0) 0 (−
√

3,−
√
3√
2
,
√
3
2 ) 3

√
3

2
√
2

(
√

3,
√
3√
2
,
√
3
2 ) 3

√
3

2
√
2

(−
√

3,−
√
3√
2
,−
√
3
2 ) −3

√
3

2
√
2

In conclusion, we see that the absolute minimum value of f(x, y, z) subject to g(x, y, z) =

0 is −3
√
3

2
√
2

and the absolute maximum value of f(x, y, z) subject to g(x, y, z) = 0 is 3
√
3

2
√
2
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Finish 2: We will now use the symmetry that appears in the system of equations in (51)
in order to solve the system more quickly. Observe that

x2 + 2y2 + 4z2 − 9 = 0
yz = 2λx
xz = 4λy
xy = 8λz

→

x2 + 2y2 + 4z2 − 9 = 0
xyz = 2λx2

xyz = 4λy2

xyz = 8λz2

(60)

→ λx2 = 2λy2 = 4λz2. (61)

We now have 2 cases to consider based on whether or not λ = 0.
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Case 1 (λ = 0): In this case, we plug λ = 0 into the system of equations appearing in
the left hand portion of (60) (the original system of equations that we started with) to
see that

x2 + 2y2 + 4z2 − 9 = 0
yz = 0
xz = 0
xy = 0

→ (x, y, z) ∈ {(x, 0, 0), (0, y, 0), (0, 0, z)}. (62)

→ (x, y, z) ∈ {(±3, 0, 0), (0,± 3√
2
, 0), (0, 0,±3

2
)}. (63)

Case 2 (λ 6= 0): In this case, we see that we can divide the equations appearing in (61)
by λ and plug to result back into our constraint equation to obtain

x2 = 2y2 = 4z2 → 9 = x2 + 2y2 + 4z2 = 3x2 → x = ±
√

3, and (64)

(x, y, z) ∈ {(x, x√
2
,
x

2
), (x,− x√

2
,
x

2
), (x,

x√
2
,−x

2
), (x,− x√

2
,−x

2
)}. (65)

Putting together all of our results from cases 1 and 2, we once again find all solutions to
the system of equations in (60) as

(x,y,z) f(x,y,z) (x,y,z) f(x,y,z)

(0,0,32) 0 (
√

3,
√
3√
2
,−
√
3
2 ) −3

√
3

2
√
2

(0, 3√
2
,0) 0 (

√
3,−

√
3√
2
,
√
3
2 ) −3

√
3

2
√
2

(3,0,0) 0 (
√

3,−
√
3√
2
,−
√
3
2 ) 3

√
3

2
√
2

(0,0,−3
2) 0 (−

√
3,
√
3√
2
,
√
3
2 ) −3

√
3

2
√
2

(0,− 3√
2
,0) 0 (−

√
3,
√
3√
2
,−
√
3
2 ) 3

√
3

2
√
2

(-3,0,0) 0 (−
√

3,−
√
3√
2
,
√
3
2 ) 3

√
3

2
√
2

(
√

3,
√
3√
2
,
√
3
2 ) 3

√
3

2
√
2

(−
√

3,−
√
3√
2
,−
√
3
2 ) −3

√
3

2
√
2

In conclusion, we see that the absolute minimum value of f(x, y, z) subject to g(x, y, z) =

0 is −3
√
3

2
√
2

and the absolute maximum value of f(x, y, z) subject to g(x, y, z) = 0 is 3
√
3

2
√
2
.
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Problem 9: What point on the plane x + y + 4z = 8 is closest to the origin? Give an
argument showing that you have found an absolute minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane x+ y + 4z = 8 we have

z = 2− 1

4
x− 1

4
y, (66)

from which we see that

d((x, y, z), (0, 0, 0)) =
√

(x− 0)2 + (y − 0)2 + (z − 0)2 (67)

=

√
x2 + y2 + (2− 1

4
x− 1

4
y)2 =

√
4− x− y +

1

8
xy +

17

16
x2 +

17

16
y2. (68)

We recall that if f(x, y) is any nonnegative function, then f(x, y) and f 2(x, y) have their
(local and global) minimums and maximums occur at the same values of (x, y). It follows
that we want to optimize the function

f(x, y) = 4− x− y +
1

8
xy +

17

16
x2 +

17

16
y2. (69)

Since any global minimum of f(x, y) is also a local minimum, we see that the global
minimum of f (if it exists) is at a critical point. We now begin finding the critical points
of f . We see that

0 = fx(x, y) = 17
8 x+ 1

8y − 1

0 = fy(x, y) = 17
8 y + 1

8x− 1
→ 0 = (

17

8
x+

1

8
y − 1)− (

17

8
y +

1

8
x− 1) (70)

= 2x− 2y → x = y → x = y =
4

9
. (71)

We see that (49 ,
4
9) is the only critical point. We will now use the second derivative test

to verify that (49 ,
4
9) is a local minimum. We see that

fxx(x, y) = 17
8

fyy(x, y) = 17
8

fxy(x, y) = 1
8

→ D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 (72)

=
17

8
· 17

8
− (

1

8
)2 =

9

2
→ D(

4

9
,
4

9
) =

9

2
> 0. (73)
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Since we also see that fxx(
4
9 ,

4
9) = 17

8 > 0, the second derivative test tells us that (49 ,
4
9)

is indeed a local minimum of f(x, y). It remains to show that f(x, y) attains its global
minimum at (49 ,

4
9). Firstly, we note that f(49 ,

4
9) = 32

9 . Since 32
9 < 25 (I picked 25

randomly, I just needed some larger number), let us consider the region R of (x, y) for

which (x, y, 2− 1

4
x− 1

4
y︸ ︷︷ ︸

z

) has a distance of at most 5 from the origin. This is the same

as R = {(x, y) | f(x, y) ≤ 25}.

Since R is a closed and bounded region, and f(x, y) is a continuous function function,
we know that f attains an absolute minimum on R. The point (49 ,

4
9) is inside of R, so

the minimum of f is not attained on the boundary of R (as that is where the distance
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to the origin is exactly 5). Since the minimum of f on R is attained on the interior, we
see that it must be obtained at a critical point of f(x, y), so it is attained at (49 ,

4
9). For

any point (x, y) outside of R, we have f(x, y) > 25 (by the very definition of R), so the
global minimum of f(x, y) is 32

9 and is attained at (49 ,
4
9). It follows that the point on the

plane x+ y + 4z = 8 that is closest to the origin is (
4

9
,
4

9
,
16

9
) .
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Problem 10: Use Lagrange multipliers to find the dimensions of the right circular
cylinder of minimum surface area (including the circular ends) with a volume of 32π in3.

Solution: We recall that a cylinder of radius r and height h has a volume of V = πr2h

and a surface area (including the 2 circular ends) of S = 2πr2 + 2πrh. It follows that
we want to optimize the function f(r, h) = 2πr2 + 2πrh subject to the constraint 0 =
g(r, h) = πr2h− 32π. Since

∇f(r, h) = 〈4πr + 2πh, 2πr〉 and ∇g(r, h) = 〈2πrh, πr2〉, we obtain (74)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4πr + 2πh = 2πλrh
2πr = πλr2

πr2h = 32π

r 6=0→
2r + h = λrh

2 = λr
r2h = 32

→
2r + h = 2h

2 = λr
r2h = 32

(75)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→
2r = h

2 = λr
r2h = 32

→
2r = h

2 = λr
2r3 = 32

→ r =
3
√

16 = 2
3
√

2→ h = 4
3
√

2. (76)

Since the cylinder does not have a maximum surface area when subjected to the constraint
V = 32π, we see that the critical point that we found has to correspond to a local
minimum. The extreme/boundary cases occur when either r →∞ or h →∞, in which
case we also have S → ∞. It follows that f(r, h) attains a minimum value of 24π 3

√
4

when (r, h) = (2
3
√

2, 4
3
√

2) .
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Problem 11: Economists model the output of manufacturing systems using production
functions that have many of the same properties as utility functions. The family of Cobb-
Douglas production functions has the form P = f(K,L) = CKaL1−a, where K represents
capital, L represents labor, and C and a are positive real numbers with 0 < a < 1. If the
cost of capital is p dollars per unit, the cost of labor is q dollars per unit, and the total
available budget is B, then the constraint takes the form pK + qL = B. Find the values
of K and L that maximize the production function

P = f(K,L) = 10K
1
3L

2
3 (77)

subject to
30K + 60L = 360, (78)

assuming K ≥ 0 and L ≥ 0.

Solution: We see that the region defined by the constraint is the line segment from
(K,L) = (0, 6) to (K,L) = (12, 0), which is a closed and bounded region with boundary.

The method of Lagrange multipliers will give us all of the critical points in the interior
of the line segment, and we will then compare the values of f at the critical points
with the values of f at the boundary (the 2 end points of the line segment) in order to
find the absolute maximum and absolute minimum values. We begin by identifying our
constraint function g(K,L), its gradient field ∇g(K,L), and the gradient field ∇f(K,L)
of our optimization function as

g(K,L) = 30K + 60L− 360,∇g(K,L) = 〈30, 60〉, and (79)

∇f(K,L) = 〈10

3
K−

2
3L

2
3 ,

20

3
K

1
3L−

1
3 〉. (80)
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The method of Lagrange multipliers gives us the system of equations

g(K,L) = 0
∇f(K,L) = λ∇g(K,L)

(81)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔ 30K + 60L− 360 = 0

〈103 K
− 2

3L
2
3 , 203 K

1
3L−

1
3 〉 = λ〈30, 60〉 (82)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔
30K + 60L− 360 = 0

10
3 K

− 2
3L

2
3 = 30λ

20
3 K

1
3L−

1
3 = 60λ

(83)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ 20

3
K−

2
3L

2
3 = 60λ =

20

3
K

1
3L−

1
3 → K = L (84)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ 0 = 30K + 60L− 360 = 90L− 360→ L = 4→ (K,L) = (4, 4) . (85)

Since (4, 4) is the only critical point given to use by the method of Lagrange multipliers
and

f(4, 4) = 10 · 4
1
34

2
3 = 10 · 4 = 40 > 0 = f(12, 0) = f(0, 6), (86)

we see that the production function attains its absolute maximum value (subject to the
given constraint) of 40 at (4, 4).

Page 23



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 2/24/2022

Problem 12: Given the production function P = f(K,L) = KaL1−a and the budget
constraint pK + qL = B, where a, p, q, and B are given, show that P is maximized when
K = aB/p and L = (1 − a)B/q. (Recall that p, q,K, L ≥ 0 and 0 < a < 1 in order for
the model to make sense in the real world and for the production function f to be well
defined.)

Solution: We see that the region defined by the constraint is the line segment from
(K,L) = (0, Bq ) to (K,L) = (Bp , 0), which is a closed and bounded region with boundary.
The method of Lagrange multipliers will give us all of the critical points in the interior
of the line segment, and we will then compare the values of f at the critical points
with the values of f at the boundary (the 2 end points of the line segment) in order to
find the absolute maximum and absolute minimum values. We begin by identifying our
constraint function g(K,L), its gradient field ∇g(K,L), and the gradient field ∇f(K,L)
of our optimization function as

g(K,L) = pK + qL−B,∇g(K,L) = 〈p, q〉, and (87)

∇f(K,L) = 〈aKa−1L1− a, (1− a)KaL−a〉. (88)

The method of Langrange multipliers gives us the system of equations

g(K,L) = 0
∇f(K,L) = λ∇g(K,L)

(89)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔ pK + qL−B = 0
〈aKa−1L1− a, (1− a)KaL−a〉 = λ〈p, q〉 (90)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⇔
pK + qL−B = 0
aKa−1L1− a = pλ

(1− a)KaL−a = qλ
(91)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ qaKa−1L1−a = pqλ = p(1− a)KaL−a (92)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ qaL = p(1− a)K → L =
p(1− a)

qa
K (93)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ 0 = pK + qL−B = pK +
p(1− a)

a
K −B → K =

Ba

p
(94)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

→ L
(By (93))

=
B(1− a)

q
, so (95)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(K,L) = (
Ba

p
,
B(1− a)

q
) (96)

is the only critical point obtained by the method of Lagrange multipliers. We see that
K,L > 0 at this critical point, so

f(K,L) > 0 = f(0,
B

q
) = f(

B

p
, 0). (97)

Since the value of f at the (only) critical point is larger than the values of f on the
boundary (the end points) we see that f attains its absolute maximum value at the
critical point as desired.
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