
Sohail Farhangi Math 2153 Recitation Handout for 2/17/2022

Problem 1: Below is a contour plot of some function z = f(x, y) along with 4 vectors.

Figure 1: Contour plot of z = f(x, y).

Which of the vectors in the above plot could possibly be a gradient vector of the function
f(x, y)? Please circle all that apply.

(A) (B) (C) (D) (E) None of the given vectors

Explanation: The gradient vector of a function f(x, y) is normal to the level curves
(the curves of the form f(x, y) = c, with c a constant) and points in the direction of
maximum increase. We see that vector A is normal to a level curve of f , but points in
the direction of decrease and is therefore not a gradient vector. We see that vectors B
and C are tangent to a level curve, not normal to the level curve, so neither of them can
be a gradient vector. We see that vector D is normal to a level curve of f and points in
the direction of increase, so D could be a gradient vector of f .
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Problem 2: Consider the function f(x, y) = x2 + y2 and and the point P = (2, 3).

(a) Find the unit vector that points in direction of maximum decrease of the function f
at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of the vector
~u = 〈3, 2〉.

Solution to (a): We see that ∇f(x, y) = 〈fx(x, y), fy(x, y)〉 = 〈2x, 2y〉. We see that
−∇f(2, 3) = 〈−4,−6〉 is a vector that points in the direction of maximum decrease of f
at the point P . Since |〈−4,−6〉| =

√
52 = 2

√
13, we see that

〈−4,−6〉
|〈−4,−6〉|

=
1

2
√

13
〈−4,−6〉 = 〈 −2√

13
,
−3√

13
〉 (1)

is the direction of maximum decrease of f at the point P .

Solution to (b): We see that |~u| =
√

13, so

~w =
~u

|~u|
= 〈 3√

13
,

2√
13
〉 (2)

is the unit vector that points in the same direction as ~u, so

d~wf(2, 3) = ∇f(2, 3) · ~w = 〈4, 6〉 · 〈 3√
13
,

2√
13
〉 =

24√
13

. (3)
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Problem 3: Consider the function f(x, y) = ln(1 + 4x2 + 3y2) and the point P =
(34 ,−

√
3).

(a) Find the gradient field ∇f(x, y) of f(x, y) and then evaluate it at P .

(b) Find the angles θ (with respect to the x-axis) associated with the directions of max-
imum increase, maximum decrease, and zero change.

(c) Write the directional derivative at P as a function of θ; call this function g(θ).

(d) Find the value of θ that maximizes g(θ) and find the maximum value.

(e) Verify that the value of θ that maximizes g corresponds to the direction of the
gradient vector at P . Verify that the maximum value of g equals the magnitude of
the gradient vector at P .

Solution to (a): We see that

fx(x, y) = 1
1+4x2+3y2

∂
∂x(1 + 4x2 + 3y2) = 8x

1+4x2+3y2

fy(x, y) = 1
1+4x2+3y2

∂
∂y(1 + 4x2 + 3y2) = 6y

1+4x2+3y2

(4)

→ ∇f(x, y) = 〈 8x

1 + 4x2 + 3y2
,

6y

1 + 4x2 + 3y2
〉. (5)

∇f(
3

4
,−
√

3) = 〈 6

1 + 9
4 + 9

,
−6
√

3

1 + 9
4 + 9

〉 = 〈24

49
,
−24
√

3

49
〉 . (6)

Solution to (b): We recall that ∇f(P ) points in the direction of maximum increase
from P . Since ∇f(P ) is in the fourth quadrant, we see that

θmax = tan−1(
−24
√
3

49
24
49

) = tan−1(−
√

3) = −π
3
. (7)

is the angle associated with the direction of maximum increase. Since −∇f(P ) points
in the direction of maximum decrease from P , we see that θmin = θmax + π = 2π

3 is the
angle associated with the direction of maximum decrease. Since the directions of no
change are orthogonal to ∇f(P ) (and to −∇f(P )), we see that θ1 = θmax + π

2 = 5π
6 and

θ2 = θmax − π
2 = −π

6 are the angles associated to the directions of zero change.

Solution to (c): We recall that ~u(θ) = 〈cos(θ), sin(θ)〉 is the unit vector associated with
the angle θ. We also recall that for any unit vector ~u, we have that

d~uf(a, b) = ∇f(a, b) · ~u, so (8)
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g(θ) = d~u(θ)f(P ) = ∇f(P ) · ~u(θ) = 〈24

49
,
−24
√

3

49
〉 · 〈cos(θ), sin(θ)〉 (9)

=
24

49
cos(θ)− 24

√
3

49
sin(θ) . (10)

Solution to (d): We see that

g′(θ) = −24

49
sin(θ)− 24

√
3

49
cos(θ)→ (11)

g′(θ) = 0⇔ −24

49
sin(θ) =

24
√

3

49
cos(θ)⇔ tan(θ) = −

√
3⇔ (12)

θ = −π
3
,
2π

3
(13)

We see that

g′′(θ) = −24

49
cos(θ) +

24
√

3

49
sin(θ) (14)

→ g′′(−π
3

) = −24

49
cos(−π

3
) +

24
√

3

49
sin(−π

3
) = −48

89
< 0. (15)

The second derivative test shows us that g(θ) has a local maximum at θ = −π
3 .

g(−π
3

) =
24

49
cos(−π

3
)− 24

√
3

49
sin(−π

3
) =

48

49
. (16)

we see that g attains its maximum value of 48
49 on [0, 2π] at θ = −π

3 .

Solution to (e): From parts b and d we have already seen that the value of θ that
maximizes g(θ) is the same as the angle θ associated with the direction of maximum
increase. To finish, we just note that

|∇f(
3

4
,−
√

3)| = |〈24

49
,
−24
√

3

49
〉| = 24

49
|〈1,−

√
3〉| (17)

=
24

49

√
12 + (−

√
3)2 =

48

49
. (18)
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Problem 4: Find the gradient field ~F = Oϕ for the potential function

ϕ(x, y) =
√
x2 + y2, for x2 + y2 ≤ 9, (x, y) 6= (0, 0). (19)

Sketch two level curves of ϕ and two vectors of ~F of your choice.

Solution: Firstly, we see that

~F = Oϕ = 〈ϕx, ϕy〉 = 〈 x√
x2 + y2

,
y√

x2 + y2
〉. (20)

Next, we recall that the level curves of φ are the curves of the form φ(x, y) = c for some
constant c. We see that

φ(x, y) = c⇔
√
x2 + y2 = c⇔ x2 + y2 = c2, (21)

so the level curves of φ are circles centered at the origin. We recall that at a given point
(x, y) the vector Oϕ(x, y) is perpendicular to the level curve that passes through (x, y),
and we also observe that for any (x, y) we have

|Oϕ(x, y)| =
√

(
x√

x2 + y2
)2 + (

y√
x2 + y2

)2 = 1, (22)

so we obtain the sketch below of some vectors from the gradient field and some level
curves.
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Problem 5: The electric field due to a point charge of strength Q at the origin has a
potential function V (x, y, z) = kQ/r, where r2 = x2+y2+z2 is the square of the distance
between a variable point P (x, y, z) at the charge, and k > 0 is a physical constant. The
electric field is given by E(x, y, z) = −∇V (x, y, z).

(a) Show that

E(x, y, z) = kQ〈 x
r3
,
y

r3
,
z

r3
〉. (23)

(b) Show that |E| = kQ/r2. Explain why this relationship is called the inverse square
law.

Solution to (a): We note that since r represents a distance, r is a nonnegative number,
so

r = (x2 + y2 + z2)
1
2 ( and not− (x2 + y2 + z2)

1
2 ). (24)

It follows that

V (x, y, z) = kQ(x2 + y2 + z2)−
1
2 → (25)

Vx(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2 ) ∂
∂x(x2 + y2 + z2)

=−kQx(x2 + y2 + z2)−
3
2 =−kQxr−3

Vy(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2 ) ∂
∂y(x

2 + y2 + z2)

=−kQy(x2 + y2 + z2)−
3
2 =−kQyr−3

Vz(x, y, z) =−1
2(kQ(x2 + y2 + z2)−

3
2 ) ∂
∂z(x

2 + y2 + z2)

=−kQz(x2 + y2 + z2)−
3
2 =−kQzr−3

(26)

It is now clear that

E(x, y, z) = −∇V (x, y, z) = −〈Vx, Vy, Vz〉 (27)

= −〈−kQxr−3,−kQyr−3,−kQzr−3〉 = kQ〈 x
r3
,
y

r3
,
z

r3
〉. (28)

Solution to (b): We see that

|E| = |kQ〈 x
r3
,
y

r3
,
z

r3
〉| = kQ|〈 x

r3
,
y

r3
,
z

r3
〉| = kQ

(
(
x

r3
)2 + (

y

r3
)2 + (

z

r3
)2
) 1

2

(29)
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= kQ

(
x2 + y2 + z2

r6

) 1
2

= kQ

(
r2

r6

) 1
2

= kQ

(
1

r4

) 1
2

=
kQ

r2
. (30)

The fact that |E| = kQ
r2 is known as the inverse square law because the magnitude of the

electric field E is proportional to the inverse of the square (or the square of the inverse)
of the distance r.
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Problem 6: Let w = f(x, y, z) = 2x + 3y + 4z, which is defined for all (x, y, z) ∈ R3.
Suppose we are interested in the partial derivative wx on a subset of R3, such as the plane
P given by z = 4x− 2y. The point to be made is that the result is not unique unless we
specify which variables are considered independent.

(a) We could proceed as follows. On the plane P , consider x and y as the indepen-
dent variables, which means z depends on x and y, so we write w = w(x, y) =
f(x, y, z(x, y)). Show that ∂

∂xw(x, y) = 18.

(b) Alternatively, on the plane P , we could consider x and z as the independent variables,
which means y depends on x and z, so we write w = w(x, z) = f(x, y(x, z), z). Show
that ∂

∂xw(x, z) = 8.

(c) Make a sketch of the plane z = 4x− 2y and interpret the results of parts (a) and (b)
geometrically.

Solution to (a): Since z = 4x− 2y, we are lucky enough to see that z(x, y) = 4x− 2y
without even having to manipulate the original equation. We now see that

w = w(x, y) = f(x, y, z(x, y)) = 2x+ 3y + 4(4x− 2y) = 18x− 5y (31)

⇒ ∂

∂x
w(x, y) = 18. (32)

Solution to (b): Firstly, we observe that

z = 4x− 2y ⇒ 2y = 4x− z ⇒ y = y(x, z) = 2x− 1

2
z. (33)

We now see that

w = w(x, z) = f(x, y(x, z), z) = 2x+ 3(2x− 1

2
z) + 4z = 8x+

5

2
z (34)

⇒ ∂

∂x
w(x, z) = 8. (35)

Solution to (c): In our graph of z = 4x− 2y we have also included graphs of the lines
(0 = 4x− 2y, z = 0) and (z = 4x, y = 0), which are the lines residing within z = 4x− 2y
when you set y = 0 and z = 0 respectively. We do this to analyze what happens when
calculating ∂w

∂x (0, 0, 0) (to have a concrete example) using the methods of parts (a) and
(b).
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We see that fixing z = 0 in part (a) to obtain w(x, y) simply gives us the values of w over
the line (0 = 4x− 2y, z = 0). Similarly, fixing y = 0 in part (b) to obtain w(x, y) simply
gives us the values of w over the line (z = 4x, y = 0). We now see that in part (a) we
calculated the directional derivative of w in the direction of the line (0 = 4x− 2y, z = 0)
and in part (b) we calculated the directional derivative of w in the direction of the line
(z = 4x, y = 0). Said differently, part (a) showed us that D〈 1√

5
, 2√

5
,0〉w(x, y, z) = 18 and

part (b) showed us that D〈 1√
17
,0, 4√

17
〉w(x, y, z) = 8.

Page 9


