

Problem 1: Below is a contour plot of some function $z = f(x, y)$ along with 4 vectors.

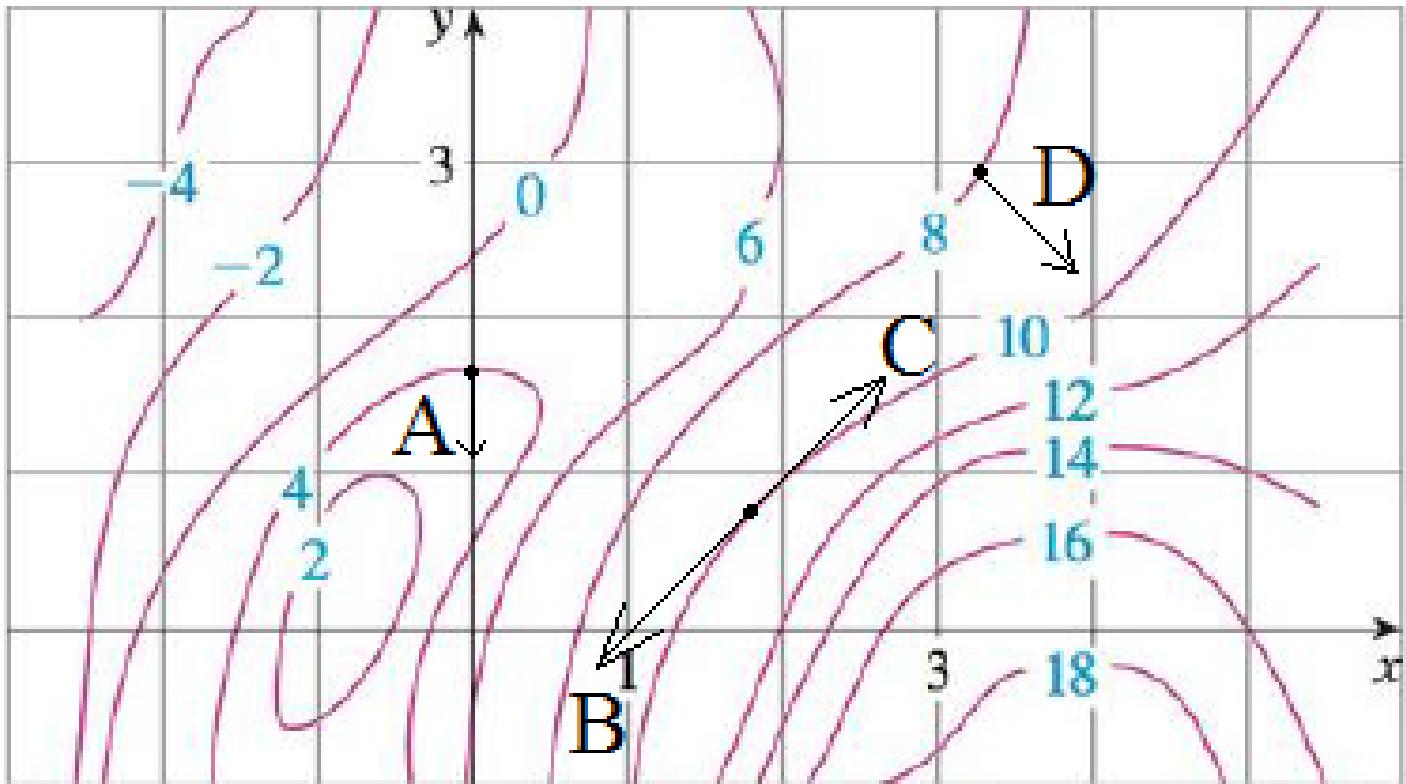


Figure 1: Contour plot of $z = f(x, y)$.

Which of the vectors in the above plot could possibly be a gradient vector of the function $f(x, y)$? Please circle all that apply.

(A) (B) (C) (D) (E) None of the given vectors

Explanation: The gradient vector of a function $f(x, y)$ is normal to the level curves (the curves of the form $f(x, y) = c$, with c a constant) and points in the direction of maximum increase. We see that vector A is normal to a level curve of f , but points in the direction of decrease and is therefore not a gradient vector. We see that vectors B and C are tangent to a level curve, not normal to the level curve, so neither of them can be a gradient vector. We see that vector D is normal to a level curve of f and points in the direction of increase, so D could be a gradient vector of f .

Problem 2: Consider the function $f(x, y) = x^2 + y^2$ and the point $P = (2, 3)$.

(a) Find the unit vector that points in direction of maximum decrease of the function f at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of the vector $\vec{u} = \langle 3, 2 \rangle$.

Solution to (a): We see that $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \langle 2x, 2y \rangle$. We see that $-\nabla f(2, 3) = \langle -4, -6 \rangle$ is a vector that points in the direction of maximum decrease of f at the point P . Since $|\langle -4, -6 \rangle| = \sqrt{52} = 2\sqrt{13}$, we see that

$$\frac{\langle -4, -6 \rangle}{|\langle -4, -6 \rangle|} = \frac{1}{2\sqrt{13}} \langle -4, -6 \rangle = \boxed{\left\langle \frac{-2}{\sqrt{13}}, \frac{-3}{\sqrt{13}} \right\rangle} \quad (1)$$

is the direction of maximum decrease of f at the point P .

Solution to (b): We see that $|\vec{u}| = \sqrt{13}$, so

$$\vec{w} = \frac{\vec{u}}{|\vec{u}|} = \left\langle \frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right\rangle \quad (2)$$

is the unit vector that points in the same direction as \vec{u} , so

$$d_{\vec{w}} f(2, 3) = \nabla f(2, 3) \cdot \vec{w} = \langle 4, 6 \rangle \cdot \left\langle \frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right\rangle = \boxed{\frac{24}{\sqrt{13}}}. \quad (3)$$

Problem 3: Consider the function $f(x, y) = \ln(1 + 4x^2 + 3y^2)$ and the point $P = (\frac{3}{4}, -\sqrt{3})$.

- (a) Find the gradient field $\nabla f(x, y)$ of $f(x, y)$ and then evaluate it at P .
- (b) Find the angles θ (with respect to the x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
- (c) Write the directional derivative at P as a function of θ ; call this function $g(\theta)$.
- (d) Find the value of θ that maximizes $g(\theta)$ and find the maximum value.
- (e) Verify that the value of θ that maximizes g corresponds to the direction of the gradient vector at P . Verify that the maximum value of g equals the magnitude of the gradient vector at P .

Solution to (a): We see that

$$f_x(x, y) = \frac{1}{1+4x^2+3y^2} \frac{\partial}{\partial x} (1 + 4x^2 + 3y^2) = \frac{8x}{1+4x^2+3y^2} \quad (4)$$

$$f_y(x, y) = \frac{1}{1+4x^2+3y^2} \frac{\partial}{\partial y} (1 + 4x^2 + 3y^2) = \frac{6y}{1+4x^2+3y^2}$$

$$\rightarrow \nabla f(x, y) = \left\langle \frac{8x}{1+4x^2+3y^2}, \frac{6y}{1+4x^2+3y^2} \right\rangle. \quad (5)$$

$$\nabla f\left(\frac{3}{4}, -\sqrt{3}\right) = \left\langle \frac{6}{1 + \frac{9}{4} + 9}, \frac{-6\sqrt{3}}{1 + \frac{9}{4} + 9} \right\rangle = \boxed{\left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle}. \quad (6)$$

Solution to (b): We recall that $\nabla f(P)$ points in the direction of maximum increase from P . Since $\nabla f(P)$ is in the fourth quadrant, we see that

$$\theta_{\max} = \tan^{-1}\left(\frac{\frac{-24\sqrt{3}}{49}}{\frac{24}{49}}\right) = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}. \quad (7)$$

is the angle associated with the direction of maximum increase. Since $-\nabla f(P)$ points in the direction of maximum decrease from P , we see that $\theta_{\min} = \theta_{\max} + \pi = \frac{2\pi}{3}$ is the angle associated with the direction of maximum decrease. Since the directions of no change are orthogonal to $\nabla f(P)$ (and to $-\nabla f(P)$), we see that $\theta_1 = \theta_{\max} + \frac{\pi}{2} = \frac{5\pi}{6}$ and $\theta_2 = \theta_{\max} - \frac{\pi}{2} = -\frac{\pi}{6}$ are the angles associated to the directions of zero change.

Solution to (c): We recall that $\vec{u}(\theta) = \langle \cos(\theta), \sin(\theta) \rangle$ is the unit vector associated with the angle θ . We also recall that for any unit vector \vec{u} , we have that

$$d_{\vec{u}} f(a, b) = \nabla f(a, b) \cdot \vec{u}, \text{ so} \quad (8)$$

$$g(\theta) = d_{\vec{u}(\theta)} f(P) = \nabla f(P) \cdot \vec{u}(\theta) = \left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle \cdot \langle \cos(\theta), \sin(\theta) \rangle \quad (9)$$

$$= \boxed{\frac{24}{49} \cos(\theta) - \frac{24\sqrt{3}}{49} \sin(\theta)}. \quad (10)$$

Solution to (d): We see that

$$g'(\theta) = -\frac{24}{49} \sin(\theta) - \frac{24\sqrt{3}}{49} \cos(\theta) \rightarrow \quad (11)$$

$$g'(\theta) = 0 \Leftrightarrow -\frac{24}{49} \sin(\theta) = \frac{24\sqrt{3}}{49} \cos(\theta) \Leftrightarrow \tan(\theta) = -\sqrt{3} \Leftrightarrow \quad (12)$$

$$\theta = -\frac{\pi}{3}, \frac{2\pi}{3} \quad (13)$$

We see that

$$g''(\theta) = -\frac{24}{49} \cos(\theta) + \frac{24\sqrt{3}}{49} \sin(\theta) \quad (14)$$

$$\rightarrow g''\left(-\frac{\pi}{3}\right) = -\frac{24}{49} \cos\left(-\frac{\pi}{3}\right) + \frac{24\sqrt{3}}{49} \sin\left(-\frac{\pi}{3}\right) = -\frac{48}{89} < 0. \quad (15)$$

The second derivative test shows us that $g(\theta)$ has a local maximum at $\theta = -\frac{\pi}{3}$.

$$g\left(-\frac{\pi}{3}\right) = \frac{24}{49} \cos\left(-\frac{\pi}{3}\right) - \frac{24\sqrt{3}}{49} \sin\left(-\frac{\pi}{3}\right) = \frac{48}{49}. \quad (16)$$

we see that g attains its maximum value of $\frac{48}{49}$ on $[0, 2\pi]$ at $\theta = -\frac{\pi}{3}$.

Solution to (e): From parts *b* and *d* we have already seen that the value of θ that maximizes $g(\theta)$ is the same as the angle θ associated with the direction of maximum increase. To finish, we just note that

$$|\nabla f\left(\frac{3}{4}, -\sqrt{3}\right)| = \left| \left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle \right| = \frac{24}{49} |\langle 1, -\sqrt{3} \rangle| \quad (17)$$

$$= \frac{24}{49} \sqrt{1^2 + (-\sqrt{3})^2} = \frac{48}{49}. \quad (18)$$

Problem 4: Find the gradient field $\vec{F} = \nabla \varphi$ for the potential function

$$\varphi(x, y) = \sqrt{x^2 + y^2}, \quad \text{for } x^2 + y^2 \leq 9, (x, y) \neq (0, 0). \quad (19)$$

Sketch two level curves of φ and two vectors of \vec{F} of your choice.

Solution: Firstly, we see that

$$\vec{F} = \nabla \varphi = \langle \varphi_x, \varphi_y \rangle = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle. \quad (20)$$

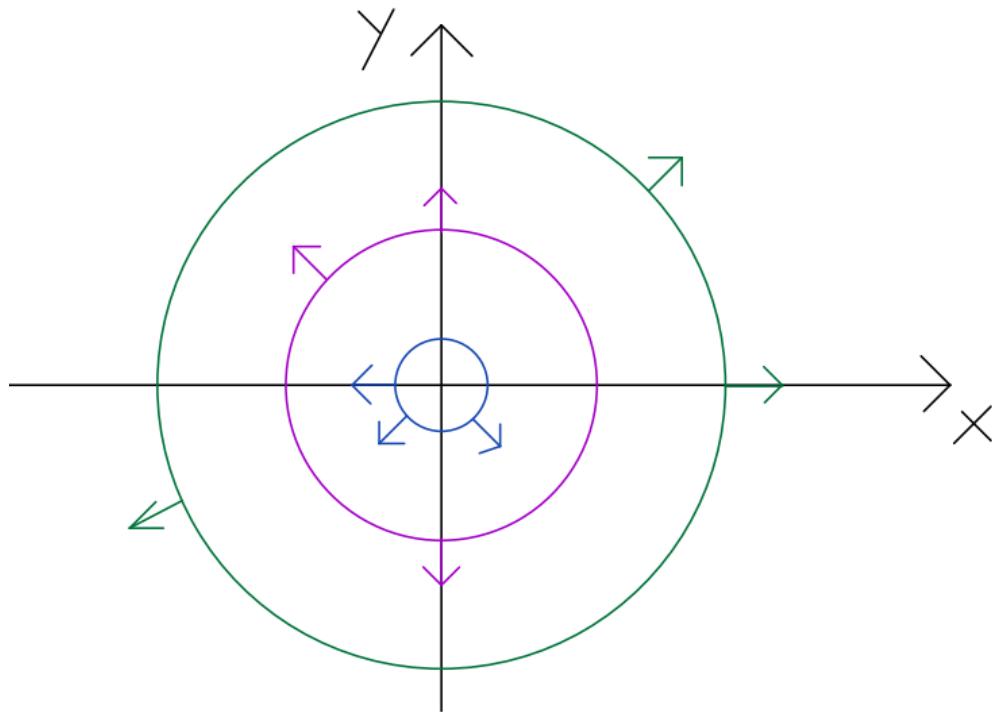
Next, we recall that the level curves of ϕ are the curves of the form $\phi(x, y) = c$ for some constant c . We see that

$$\phi(x, y) = c \Leftrightarrow \sqrt{x^2 + y^2} = c \Leftrightarrow x^2 + y^2 = c^2, \quad (21)$$

so the level curves of ϕ are circles centered at the origin. We recall that at a given point (x, y) the vector $\nabla \varphi(x, y)$ is perpendicular to the level curve that passes through (x, y) , and we also observe that for any (x, y) we have

$$|\nabla \varphi(x, y)| = \sqrt{\left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2} = 1, \quad (22)$$

so we obtain the sketch below of some vectors from the gradient field and some level curves.



Problem 5: The electric field due to a point charge of strength Q at the origin has a potential function $V(x, y, z) = kQ/r$, where $r^2 = x^2 + y^2 + z^2$ is the square of the distance between a variable point $P(x, y, z)$ at the charge, and $k > 0$ is a physical constant. The electric field is given by $\mathbf{E}(x, y, z) = -\nabla V(x, y, z)$.

(a) Show that

$$\mathbf{E}(x, y, z) = kQ \left\langle \frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right\rangle. \quad (23)$$

(b) Show that $|\mathbf{E}| = kQ/r^2$. Explain why this relationship is called the inverse square law.

Solution to (a): We note that since r represents a distance, r is a nonnegative number, so

$$r = (x^2 + y^2 + z^2)^{\frac{1}{2}} \quad (\text{and not } -(x^2 + y^2 + z^2)^{\frac{1}{2}}). \quad (24)$$

It follows that

$$V(x, y, z) = kQ(x^2 + y^2 + z^2)^{-\frac{1}{2}} \rightarrow \quad (25)$$

$$\begin{aligned} \mathbf{V}_x(x, y, z) &= -\frac{1}{2}(kQ(x^2 + y^2 + z^2)^{-\frac{3}{2}}) \frac{\partial}{\partial x} (x^2 + y^2 + z^2) \\ &= -kQx(x^2 + y^2 + z^2)^{-\frac{3}{2}} &= -kQxr^{-3} \\ \mathbf{V}_y(x, y, z) &= -\frac{1}{2}(kQ(x^2 + y^2 + z^2)^{-\frac{3}{2}}) \frac{\partial}{\partial y} (x^2 + y^2 + z^2) \\ &= -kQy(x^2 + y^2 + z^2)^{-\frac{3}{2}} &= -kQyr^{-3} \end{aligned} \quad (26)$$

$$\begin{aligned} \mathbf{V}_z(x, y, z) &= -\frac{1}{2}(kQ(x^2 + y^2 + z^2)^{-\frac{3}{2}}) \frac{\partial}{\partial z} (x^2 + y^2 + z^2) \\ &= -kQz(x^2 + y^2 + z^2)^{-\frac{3}{2}} &= -kQzr^{-3} \end{aligned}$$

It is now clear that

$$\mathbf{E}(x, y, z) = -\nabla V(x, y, z) = -\langle \mathbf{V}_x, \mathbf{V}_y, \mathbf{V}_z \rangle \quad (27)$$

$$= -\langle -kQxr^{-3}, -kQyr^{-3}, -kQzr^{-3} \rangle = kQ \left\langle \frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right\rangle. \quad (28)$$

Solution to (b): We see that

$$|\mathbf{E}| = |kQ \left\langle \frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right\rangle| = kQ \left| \left\langle \frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right\rangle \right| = kQ \left(\left(\frac{x}{r^3} \right)^2 + \left(\frac{y}{r^3} \right)^2 + \left(\frac{z}{r^3} \right)^2 \right)^{\frac{1}{2}} \quad (29)$$

$$= kQ \left(\frac{x^2 + y^2 + z^2}{r^6} \right)^{\frac{1}{2}} = kQ \left(\frac{r^2}{r^6} \right)^{\frac{1}{2}} = kQ \left(\frac{1}{r^4} \right)^{\frac{1}{2}} = \frac{kQ}{r^2}. \quad (30)$$

The fact that $|\mathbf{E}| = \frac{kQ}{r^2}$ is known as the inverse square law because the magnitude of the electric field \mathbf{E} is proportional to the inverse of the square (or the square of the inverse) of the distance r .

Problem 6: Let $w = f(x, y, z) = 2x + 3y + 4z$, which is defined for all $(x, y, z) \in \mathbb{R}^3$. Suppose we are interested in the partial derivative w_x on a subset of \mathbb{R}^3 , such as the plane P given by $z = 4x - 2y$. The point to be made is that the result is not unique unless we specify which variables are considered independent.

- (a) We could proceed as follows. On the plane P , consider x and y as the independent variables, which means z depends on x and y , so we write $w = w(x, y) = f(x, y, z(x, y))$. Show that $\frac{\partial}{\partial x} w(x, y) = 18$.
- (b) Alternatively, on the plane P , we could consider x and z as the independent variables, which means y depends on x and z , so we write $w = w(x, z) = f(x, y(x, z), z)$. Show that $\frac{\partial}{\partial x} w(x, z) = 8$.
- (c) Make a sketch of the plane $z = 4x - 2y$ and interpret the results of parts (a) and (b) geometrically.

Solution to (a): Since $z = 4x - 2y$, we are lucky enough to see that $z(x, y) = 4x - 2y$ without even having to manipulate the original equation. We now see that

$$w = w(x, y) = f(x, y, z(x, y)) = 2x + 3y + 4(4x - 2y) = 18x - 5y \quad (31)$$

$$\Rightarrow \frac{\partial}{\partial x} w(x, y) = 18. \quad (32)$$

Solution to (b): Firstly, we observe that

$$z = 4x - 2y \Rightarrow 2y = 4x - z \Rightarrow y = y(x, z) = 2x - \frac{1}{2}z. \quad (33)$$

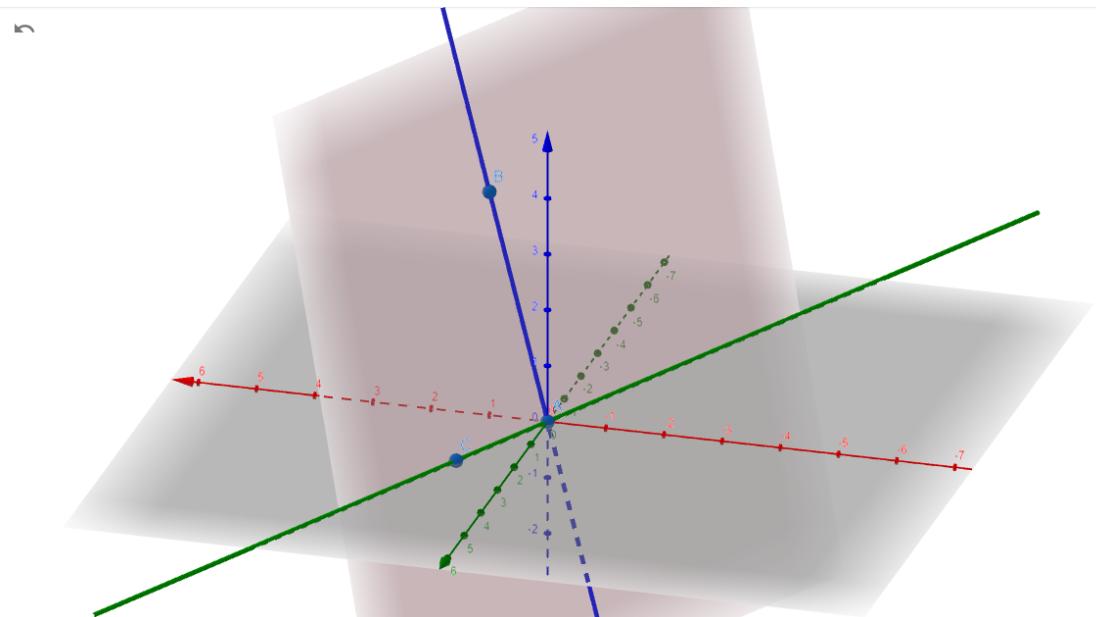
We now see that

$$w = w(x, z) = f(x, y(x, z), z) = 2x + 3(2x - \frac{1}{2}z) + 4z = 8x + \frac{5}{2}z \quad (34)$$

$$\Rightarrow \frac{\partial}{\partial x} w(x, z) = 8. \quad (35)$$

Solution to (c): In our graph of $z = 4x - 2y$ we have also included graphs of the lines $(0 = 4x - 2y, z = 0)$ and $(z = 4x, y = 0)$, which are the lines residing within $z = 4x - 2y$ when you set $y = 0$ and $z = 0$ respectively. We do this to analyze what happens when calculating $\frac{\partial w}{\partial x}(0, 0, 0)$ (to have a concrete example) using the methods of parts (a) and (b).

●	$f: z = 4x - 2y$	⋮
●	$A = (0, 0, 0)$	⋮
●	$B = (1, 0, 4)$	⋮
●	$C = (1, 2, 0)$	⋮
●	$g: \text{Line}(A, B)$	⋮
	$\rightarrow X = (0, 0, 0) + \lambda (1, 0, 4)$	
●	$h: \text{Line}(C, A)$	⋮
	$\rightarrow X = (1, 2, 0) + \lambda (-1, -2, 0)$	
+	Input...	



We see that fixing $z = 0$ in part (a) to obtain $w(x, y)$ simply gives us the values of w over the line $(0 = 4x - 2y, z = 0)$. Similarly, fixing $y = 0$ in part (b) to obtain $w(x, y)$ simply gives us the values of w over the line $(z = 4x, y = 0)$. We now see that in part (a) we calculated the directional derivative of w in the direction of the line $(0 = 4x - 2y, z = 0)$ and in part (b) we calculated the directional derivative of w in the direction of the line $(z = 4x, y = 0)$. Said differently, part (a) showed us that $D_{\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \rangle} w(x, y, z) = 18$ and part (b) showed us that $D_{\langle \frac{1}{\sqrt{17}}, 0, \frac{4}{\sqrt{17}} \rangle} w(x, y, z) = 8$.