

Problem 1: Below is a contour plot of some function $z = f(x, y)$ along with 4 vectors.

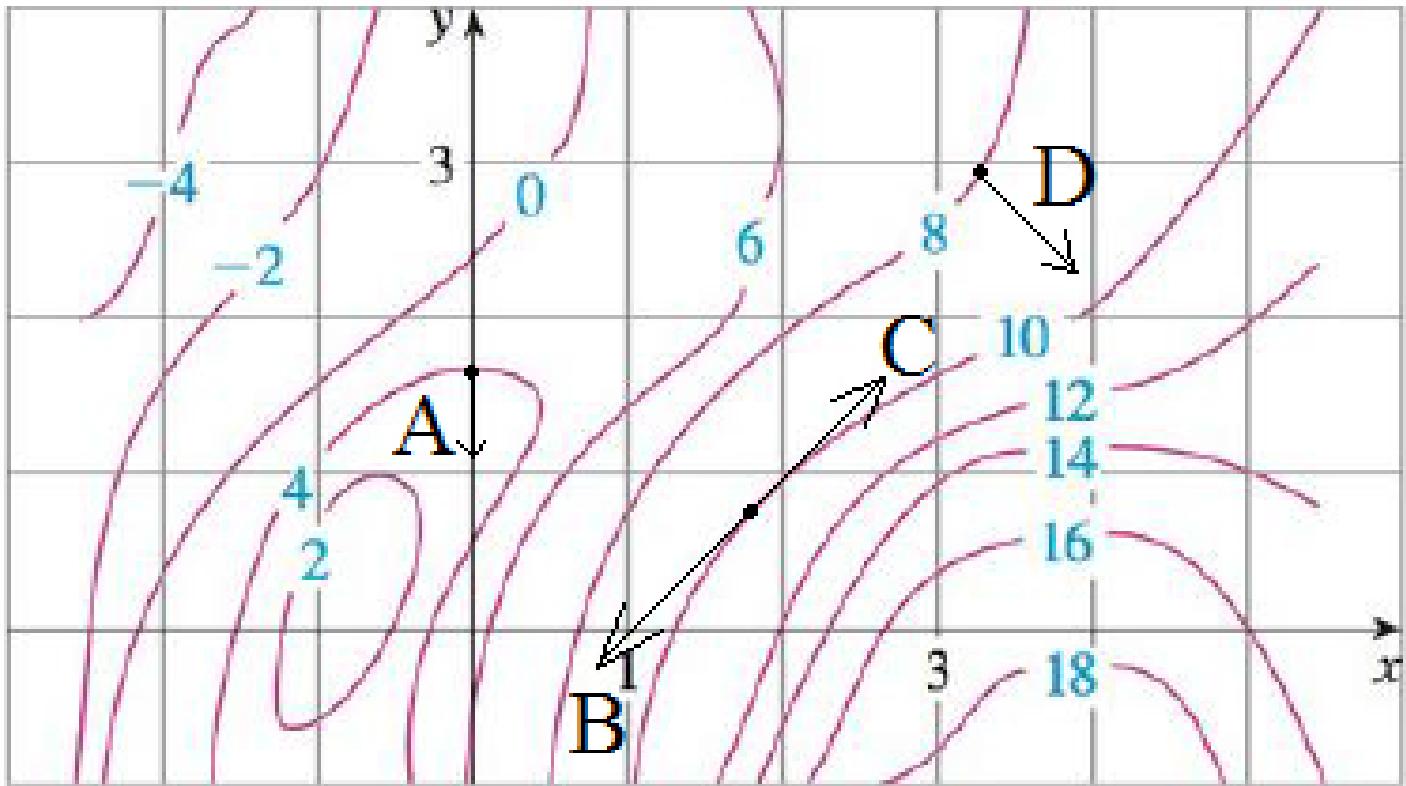


Figure 1: Contour plot of $z = f(x, y)$.

Which of the vectors in the above plot could possibly be a gradient vector of the function $f(x, y)$? Please circle all that apply.

(A) (B) (C) (D) (E) None of the given vectors

Problem 2: Consider the function $f(x, y) = x^2 + y^2$ and the point $P = (2, 3)$.

(a) Find the unit vector that points in direction of maximum decrease of the function f at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of the vector $\vec{u} = \langle 3, 2 \rangle$.

Problem 3: Consider the function $f(x, y) = \ln(1 + 4x^2 + 3y^2)$ and the point $P = (\frac{3}{4}, -\sqrt{3})$.

- (a) Find the gradient field $\nabla f(x, y)$ of $f(x, y)$ and then evaluate it at P .
- (b) Find the angles θ (with respect to the x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
- (c) Write the directional derivative at P as a function of θ ; call this function $g(\theta)$.
- (d) Find the value of θ that maximizes $g(\theta)$ and find the maximum value.
- (e) Verify that the value of θ that maximizes g corresponds to the direction of the gradient vector at P . Verify that the maximum value of g equals the magnitude of the gradient vector at P .

Problem 4: Find the gradient field $\vec{F} = \nabla \varphi$ for the potential function

$$\varphi(x, y) = \sqrt{x^2 + y^2}, \quad \text{for } x^2 + y^2 \leq 9, (x, y) \neq (0, 0). \quad (1)$$

Sketch two level curves of φ and two vectors of \vec{F} of your choice.

Problem 5: The electric field due to a point charge of strength Q at the origin has a potential function $V(x, y, z) = kQ/r$, where $r^2 = x^2 + y^2 + z^2$ is the square of the distance between a variable point $P(x, y, z)$ at the charge, and $k > 0$ is a physical constant. The electric field is given by $\mathbf{E}(x, y, z) = -\nabla V(x, y, z)$.

(a) Show that

$$\mathbf{E}(x, y, z) = kQ \left\langle \frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right\rangle. \quad (2)$$

(b) Show that $|\mathbf{E}| = kQ/r^2$. Explain why this relationship is called the inverse square law.

Problem 6: Let $w = f(x, y, z) = 2x + 3y + 4z$, which is defined for all $(x, y, z) \in \mathbb{R}^3$. Suppose we are interested in the partial derivative w_x on a subset of \mathbb{R}^3 , such as the plane P given by $z = 4x - 2y$. The point to be made is that the result is not unique unless we specify which variables are considered independent.

- (a) We could proceed as follows. On the plane P , consider x and y as the independent variables, which means z depends on x and y , so we write $w = w(x, y) = f(x, y, z(x, y))$. Show that $\frac{\partial}{\partial x} w(x, y) = 18$.
- (b) Alternatively, on the plane P , we could consider x and z as the independent variables, which means y depends on x and z , so we write $w = w(x, z) = f(x, y(x, z), z)$. Show that $\frac{\partial}{\partial x} w(x, z) = 8$.
- (c) Make a sketch of the plane $z = 4x - 2y$ and interpret the results of parts (a) and (b) geometrically.
