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Problem 1: Verify that

lim
(x,y)→(0,0)

sin(x) + sin(y)

x+ y
= 1. (1)

Solution: We begin by reviewing one of the sum to product trigonometric identities.
Observe that
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2
+
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2
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2
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x− y
2

)− sin(
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2
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= 2 sin(
x+ y

2
) cos(

x− y
2

) . (5)

Recalling that

lim
x→0

sin(x)

x
= 1, (6)

we let z = x+y
2 and see that

lim
(x,y)→(0,0)

sin(x) + sin(y)

x+ y
= lim

(x,y)→(0,0)

2 sin(x+y2 ) cos(x−y2 )

x+ y
(7)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
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)(
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= (1)(cos(

0− 0

2
)) = 1. (9)
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Problem 2: Consider the function

f(x, y) =
xy2

x2 + y4
. (10)

(a) Show that if L is a line that passes through the origin, then

lim
(x,y)→(0,0)

(x,y)∈L

f(x, y) = 0. (11)

(b) Show that

lim
(x,y)→(0,0)

f(x, y) (12)

does not exist.

Solution to (a): Firstly, we see that if L is a line of the form y = mx for some m ∈ R,
then

lim
(x,y)→(0,0)

(x,y)∈L

f(x, y) = lim
x→0

f(x,mx) = lim
x→0

x(mx)2

x2 + (mx)4
(13)

= lim
x→0

m2x3

x2 +m4x4
= lim

x→0

m2x

1 +m4x2
= 0. (14)

The only line L left to consider is the line through the origin with infinite slope, which
is just the line x = 0. In this case we see that

lim
(x,y)→(0,0)

(x,y)∈L

f(x, y) = lim
y→0

f(0, y) = lim
y→0

0 · y2

02 + y4
= 0. (15)

Solution to (b): In order to show that the limit in equation (12) does not exist we need
to use the 2 path test. Based on part (a), we see that our second path needs cannot be
a line. Thankfully, we only need to find a path P that results in any nonzero value when
the limit is taken along P . If we try the parabolic path y = x2, then we again get a value
of 0 for the limit, but if we try the path x = y2 then we get a value of 1

2 ! In fact, we see
that for m ∈ R and the path Pm given by x = my2 we have

lim
(x,y)→(0,0)

(x,y)∈Pm

f(x, y) = lim
y→0

f(my2, y) = lim
y→0

(my2)y2

(my2)2 + y4
(16)

= lim
y→0

my4

m2y4 + y4
= lim

y→0

m

m2 + 1
. (17)
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Since the range of the function g(m) = m
m2+1 is [−1, 1], we see that the limit can take on

any value between −1 and 1 if the correct path is chosen. While we only need 2 paths
that result in different values to apply the 2 path test, it is amusing to see that we have
found infinitely many paths that result in infinitely many different values.
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Problem 3: Consider the function f(x, y) =
√
|xy|.

Figure 1: A graph of z =
√
|xy|.

(a) Is f continuous at (0, 0)?

(b) Show that fx(0, 0) and fy(0, 0) exist by calculating their values.

(c) Determine whether fx and fy are continuous at (0, 0).

(d) Is f differentiable at (0, 0)?

Solution to (a): Yes. We will show that f(x, y) is continuous on all of R2. The function
f1(x, y) = xy is a continuous function since it is a polynomial function. The function
f2(x) = |x| is also a continuous function, and the composition of continuous functions is
again continuous, so we see that f3(x, y) := f2(f1(x, y)) = |xy| is a continuous function.
Since |xy| only takes on nonnegative values and the function f4(x) =

√
x is continuous

on the domain [0,∞), we see that f(x, y) = f4(f3(x, y)) is indeed a continuous function.

Solution to (b): We see that

fy(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y − 0
= lim

y→0

√
|0 · y| −

√
|0 · 0|

y
= 0, and (18)
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fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0

√
|x · 0| −

√
|0 · 0|

x
= 0. and (19)

Solution to (c): We will show that neither of fx and fy are continuous at (0, 0). We
note that for all x, y > 0 we have f(x, y) =

√
|xy| = √xy. It follows that for x, y > 0 we

have

fx(x, y) =
∂

∂x
((xy)

1
2 ) =

1

2
(xy)−

1
2 · y =

1

2

√
y

x
, and (20)

fy(x, y) =
∂

∂y
((xy)

1
2 ) =

1

2
(xy)−

1
2 · x =

1

2

√
x

y
. and (21)

We now use the 2 path test to show that neither function is continuous. Let us consider
the path Pm given by y = mx with m,x > 0 so that the path lies in the first quadrant.
We see that

lim
(x,y)→(0,0)

(x,y)∈Pm

fx(x, y) = lim
x→0+

fx(x,mx) = lim
x→0+

1

2

√
mx

x
=
m

2
, and (22)

lim
(x,y)→(0,0)

(x,y)∈Pm

fy(x, y) = lim
x→0+

fy(x,mx) = lim
x→0+

1

2

√
x

mx
=

1

2m
. and (23)

We see that the paths P1 and P2 result in the values of 1
2 and 1 respectively for the value

of fx(x, y) as (x, y) approaches (0, 0), so fx is not continuous at (0, 0). Similarly, we see
that the paths P1 and P2 result in the values of 1

2 and 1
4 respectively for the value of

fy(x, y) as (x, y) approaches (0, 0), so fy is not continuous at (0, 0).

Solution to (d): No. We begin by examining the directional derivative in the direction
of the vector û = 〈 1√

2
, 1√

2
〉 at (0, 0). We see that

Dûf(0, 0) = lim
t→0

f ((0, 0) + tû)− f(0, 0)

t
= lim

t→0

f( t√
2
, t√

2
)− 0

t
(24)

= lim
t→0

√
| t22 |
t

= lim
t→0

1√
2

=
1√
2
. (25)

If f was differentiable at (0, 0), then we would have

Dûf(0, 0) = ∇f(0, 0) · û = 〈fx(0, 0), fy(0, 0)〉 · 〈 1√
2
,

1√
2
〉 = 0. (26)

Since this is not the case, we see that f is not differentiable at (0, 0).
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Problem 4: Imagine a string that is fixed at both ends (for example, a guitar string).
When plucked, the string forms a standing wave. The displacement u of the string varies
with position x and with time t. Suppose it is given by u = f(x, t) = 2 sin(πx) sin(π2 t),
for 0 ≤ x ≤ 1 and t ≥ 0 (see figure 2). At a fixed point in time, the string forms a wave
on [0, 1]. Alternatively, if you focus on a point on the string (fix a value of x), that point
oscillates up and down in time.

(a) What is the period of the motion in time?

(b) Find the rate of change of the displacement with respect to time at a constant position
(which is the vertical velocity of a point on the string).

(c) At a fixed time, what point on the string is moving fastest?

(d) At a fixed position on the string, when is the strong moving fastest?

(e) Find the rate of change of the displacement with respect to position at a constant
time (which is the slope of the string).

(f) At a fixed time, where is the slope of the string greatest?

Figure 2: Snapshots of the wave at times t = 1 and t = 3.

Solution to (a): We begin by recalling that the period of sin (as well as cos, tan, csc, sec,
and cot) is 2π, i.e., sin(y) = sin(y + 2π) for all y ∈ R. We now want to find the smallest
p > 0 such that
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sin(
π

2
(t+ p)) = sin(

π

2
t), (27)

which will happen if

π

2
t+

π

2
p =

π

2
t+ 2π ⇒ p = 4 . (28)

Solution to (b): If we fix a position of x = x0, then v(x0, t), the rate of change of
displacement with respect to time is given by the t partial derivative of f . We now
observe that

v(x0, t) = ft(x0, t) =
∂

∂t
2 sin(πx0) sin(

π

2
t)
∗
=2 sin(πx0)

∂

∂t
sin(

π

2
t) (29)

= 2 sin(πx0)
(π

2
cos(

π

2
t)
)

= π sin(πx0) cos(
π

2
t) , (30)

where equation * follows from the fact that 2 sin(πx0) is a constant.

Solution to (c): Since speed is just the absolute value of velocity, it suffices to optimize
the velocity function v(x, t). In the end, the largest possible speed is going to either be
the largest possible velocity, or the absolute value of the smallest possible velocity. Since
we are fixing a time t = t0, we seek to optimize the function h(x) := v(x, t0) with respect
to x, which is essentially a single variable calculus optimization problem. Consequently,
we begin by finding the the critical point of h(x) in the interval [0, 1]. We now see that

0 =
d

dx
h(x) =

∂

∂x
v(x, t0) =

∂

∂x
π sin(πx) cos(

π

2
t0)
∗
=π cos(

π

2
t0)

∂

∂x
sin(πx) (31)

= π cos(
π

2
t0)
(
π cos(πx)

)
= π2 cos(

π

2
t0) cos(πx)⇒ 0 = cos(

π

2
t0) cos(πx), (32)

where equation * follows from the fact that π cos(π2 t0) is a constant. We now observe
that if cos(π2 t0) = 0, then v(x, t0) = 0 for all x ∈ [0, 1], so in this situation every point
on the string is the fastest moving point since every point is moving (or not moving
since the velocity is 0) at the same speed. Having fully resolved the situation when
cos(π2 t0) = 0, we proceed to the remaining situation in which cos(π2 t0) 6= 0, in which case
we are allowed to divide both sides of the right hand equation in (32) by cos(π2 t0) to see
that 0 = cos(πx). Recalling that cos(y) = 0 if and only if y = π

2 + nπ for some integer
n, we see that x ∈ {· · · − 3

2 ,−
1
2 ,

1
2 ,

3
2 , · · · }. Recalling that x ∈ [0, 1] we see that x = 1

2 is
the only critical point. Since the end points of the domain of x are 0 and 1, we observe
that v(0, t0) = v(1, t0) = 0 (which should not be a surprise since the end points of our
string are not moving) and that v(12 , t0) = 2 cos(π2 t0). Lastly, to put together the results
of our preceding two cases we recall that cos(π2 t0) = 0 if and only if π

2 t0 = π
2 + nπ for
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some integer n, which happens if and only if t = 2n + 1. Since t ≥ 0, we see that this
happens if and only if t is a positive odd integer. In conclusion, the fastest moving point
on the string at time t = t0 is{

x = 1
2 if t is not an odd integer

all x ∈ [0, 1] else
. (33)

Solution to (d): As in part (c) we begin by optimizing the velocity function v(x, t).
Since we are fixing a position x = x0, we seek to optimize the function q(t) := v(x0, t)
with respect to t, which is essentially a single variable calculus optimization problem.
Consequently, we begin by finding the the critical point of q(t) over [0,∞). We now see
that

0 =
d

dt
q(t) =

∂

∂t
v(x0, t) =

∂

∂t
π sin(πx0) cos(

π

2
t)
∗
=π sin(πx0)

∂

∂t
cos(

π

2
t) (34)

= π sin(πx0)
(
− π

2
sin(

π

2
t)
)

= −π
2

2
sin(πx0) sin(

π

2
t)⇒ 0 = sin(πx0) sin(

π

2
t), (35)

where equation * follows from the fact that π sin(πx0) is a constant. We now observe
that if sin(πx0) = 0 for some x0 ∈ [0, 1], then x0 = 0, 1. Noting that v(0, t) = v(1, t) = 0
for all t ≥ 0 (which makes sense since the endpoints of the string are fixed) we see
that any time t ≥ 0 results in the fastest velocity if x0 = 0, 1. We now proceed to
the situation in which x0 ∈ (0, 1), so sin(πx0) 6= 0 and we can divide the right hand
equation in (35) by sin(πx0) to see that 0 = sin(π2 t). Recalling that sin(y) = 0 if and
only if y = nπ for some integer n, we see that t ∈ {· · · − 4,−2, 0, 2, 4, · · · }. Recalling
that t ≥ 0 we see that {0, 2, 4, · · · } are all of the critical points, and this set of critical
points coincidentally (luckily) includes the endpoint 0 of our region. Observing that
v(x0, 2n) = π sin(πx0) cos(nπ) = (−1)nπ sin(πx0), so the largest speed is π| sin(πx0)|. In
conclusion, the fastest speed of the point x = x0 on the string is attained at{

Every t ≥ 0 if x0 = 0, 1

{0, 2, 4, · · · } else
. (36)

Interestingly, we note that if t ∈ {0, 2, 4, · · · } then the string is back at equilibrium (every
point has 0 displacement) and if t ∈ {1, 3, 5, · · · } then the string is in an extreme state
in which every point has its maximum possible displacement.

Solution to (e): If we fix a time t = t0, then s(x, t0), the rate of change of the displace-
ment with respect to position (slope of the string) at a constant time is given by the x
partial derivative of f . We now observe that
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s(x, t0) =
∂

∂x
f(x, t0) =

∂

∂x
2 sin(πx) sin(

π

2
t0)
∗
=2 sin(

π

2
t0)

∂

∂x
sin(πx) (37)

= 2 sin(
π

2
t0)
(
π cos(πx)

)
= 2π cos(πx) sin(

π

2
t0) . (38)

Solution to (f): As in parts (c) and (d) we begin by optimizing the slope function
s(x, t). Since we are fixing a time t = t0, we seek to optimize the function r(x) := s(x, t0)
with respect to x, which is essentially a single variable calculus optimization problem.
Consequently, we begin by finding the the critical point of r(x) over [0, 1]. We now see
that

0 =
d

dx
r(x) =

∂

∂x
s(x, t0) =

∂

∂x
2π cos(πx) sin(

π

2
t0)
∗
=2π sin(

π

2
t0)

∂

∂x
cos(πx) (39)

= 2π sin(
π

2
t0)
(
− π sin(πx)

)
= −2π sin(πx) sin(

π

2
t0)⇒ 0 = sin(πx) sin(

π

2
t0), (40)

where equation * follows from the fact that 2π sin(π2 t0) is a constant. As we saw in part
(d), sin(π2 t0) = 0 for t0 ≥ 0 if and only if t0 ∈ {0, 2, 4, · · · }, and in this situation we see
that s(x, t0) = 0 for all x, so every x attains the greatest slope. We now consider the
situation in which t0 /∈ {0, 2, 4, · · · } and divide the right hand equation of 40 by sin(π2 t0)
to see that 0 = sin(πx). As before, we deduce that x ∈ [0, 1] must be an integer, so
x = 0, 1. Observing that

s(0, t0) = 2π cos(0) sin(
π

2
t0) = 2π sin(

π

2
t0) and (41)

s(1, t0) = 2π cos(π) sin(
π

2
t0) = −2π sin(

π

2
t0), a (42)

we see that the largest slope in this case is 2π| sin(π2 t0)|, which occurs at 0 if sin(π2 t0) > 0
and at 1 if sin(π2 t0) < 0. In conclusion, the greatest slope of a point on the string at time
t = t0 is attained at

Every x ∈ [0, 1] if t0 ∈ {0, 2, 4, · · · }
x = 0 if t0 ∈ (2n, 2n+ 1) for some integer n

x = 1 if t0 ∈ (2n+ 1, 2n+ 2) for some integer n

. (43)

Page 9


