

Problem 1: Consider

$$\int_{\mathcal{C}} (x^2 + y^2) ds,$$

where \mathcal{C} is the line segment from $(0, 0)$ to $(5, 5)$.

- (1) Find a parametric description for \mathcal{C} in the form $\vec{r}(t) = \langle x(t), y(t) \rangle$. (*Remember to state the domain of the parameter.*)
- (2) Evaluate $|\vec{r}'(t)|$.
- (3) Convert the line integral to an ordinary integral with respect to the parameter and evaluate it.

Problem 2: Let $f(x, y) = x$ and consider the segment of the parabola $y = x^2$ joining $O(0, 0)$ and $P(1, 1)$.

- (1) Let \mathcal{C}_1 be the segment from O to P . Find a parameterization of \mathcal{C}_1 , then evaluate $\int_{\mathcal{C}_1} f ds$.
- (2) Let \mathcal{C}_2 be the segment from P to O . Find a parameterization of \mathcal{C}_2 , then evaluate $\int_{\mathcal{C}_2} f ds$.
- (3) Compare the results of (1) and (2).

Problem 3: Evaluate

$$(1) \quad \int_C \langle \sqrt[4]{x+6} + \ln(\ln(\ln(e^{e^e} + 4 + x))) - 1, y^3 + 2 + e^{y^2} \rangle \cdot d\vec{r},$$

where C is the curve that is shown in the picture below.

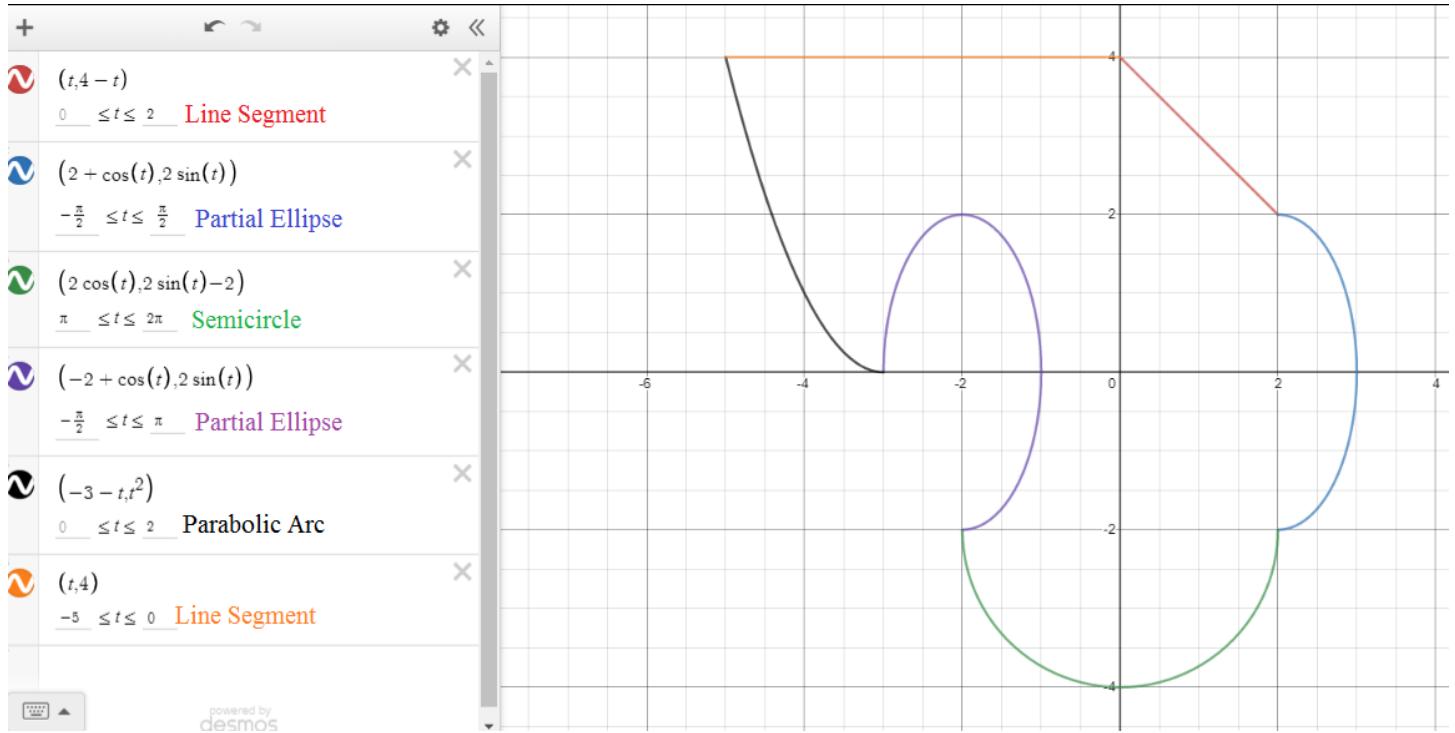


FIGURE 1

Problem 4: Consider the vector field $\vec{F} = \langle x, -y \rangle$ and the curve C which is the square with vertices $(\pm 1, \pm 1)$ with the counterclockwise orientation.

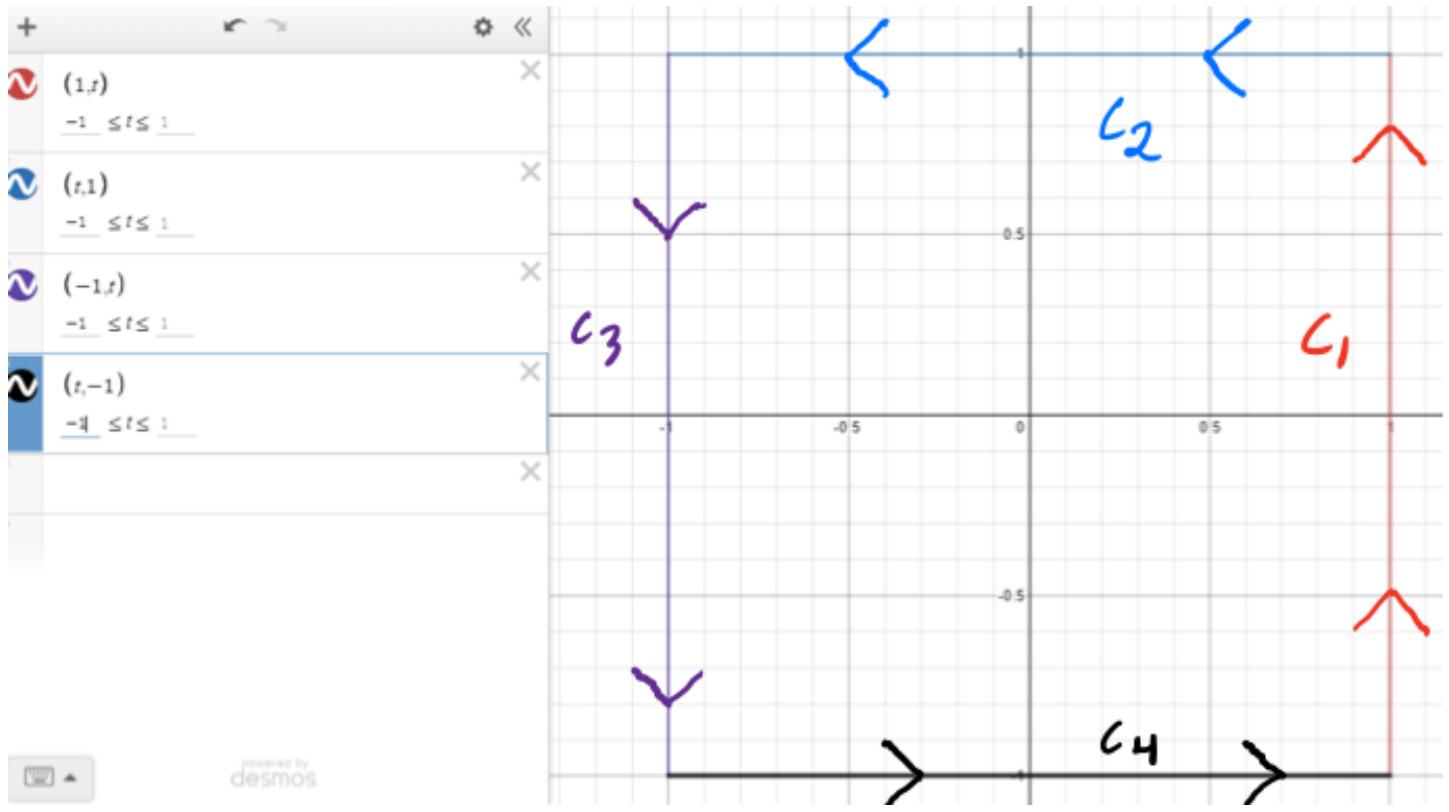


FIGURE 2. The curve C .

- Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by finding a parameterization $\vec{r}(t)$ for the curve C .
- Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by using the Fundamental Theorem for Line Integrals.

Problem 5: An idealized two-dimensional ocean is modeled by the square region $R = [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$, with boundary \mathcal{C} . Consider the stream function $\Psi(x, y) = 4 \cos(x) \cos(y)$ defined on R as shown in the figure below.

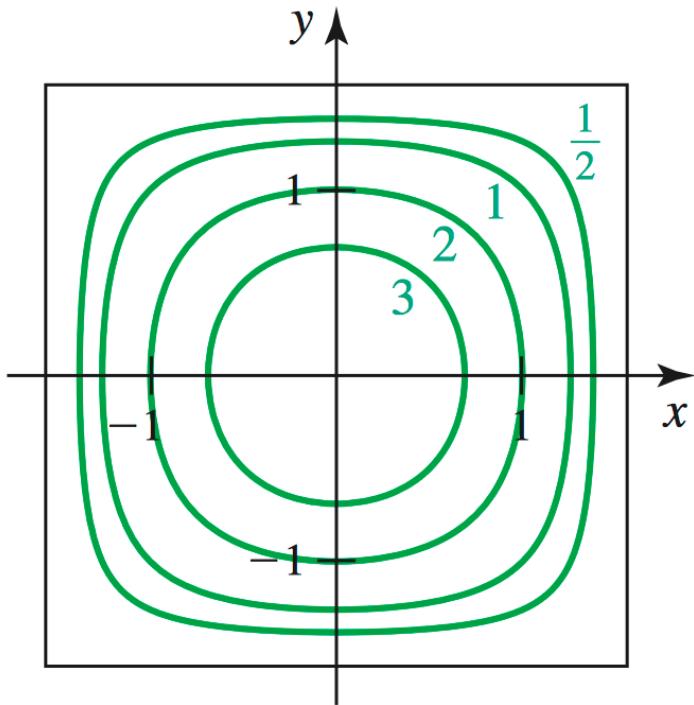


FIGURE 3. Some level curves of the stream function $\Psi(x, y)$.

- The horizontal (east-west) component of the velocity is $u = \Psi_y$ and the vertical (north-south) component of the velocity is $v = -\Psi_x$. Sketch a few representative velocity vectors and show that the flow is counterclockwise around the region.
- Is the velocity field source free? Explain.
- Is the velocity field irrotational? Explain.
- Find the total outward flux across \mathcal{C} .
- Find the circulation on \mathcal{C} assuming counterclockwise orientation.

Problem 6: Consider the radial field $\vec{F}(x, y) = \frac{\langle x, y \rangle}{\sqrt{x^2+y^2}} = \frac{\vec{r}}{|\vec{r}|}$.

(a) Explain why the conditions of Green's Theorem do not apply to \vec{F} on a region R containing the origin.

(b) Let R be the unit disk centered at the origin and compute

$$(2) \quad \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA.$$

(c) Evaluate the line integral in the flux form of Green's Theorem applied to the region R and the vector field \vec{F} .

(d) Do the results of parts (b) and (c) agree? Explain.
