

Problem 1: Consider

$$\int_{\mathcal{C}} (x^2 + y^2) ds,$$

where \mathcal{C} is the line segment from $(0, 0)$ to $(5, 5)$.

- (1) Find a parametric description for \mathcal{C} in the form $\vec{r}(t) = \langle x(t), y(t) \rangle$. (Remember to state the domain of the parameter.)
- (2) Evaluate $|\vec{r}'(t)|$. $ds = |\vec{r}'(t)| dt$
- (3) Convert the line integral to an ordinary integral with respect to the parameter and evaluate it.

$$\vec{P} = \langle 0, 0 \rangle, \vec{Q} = \langle 5, 5 \rangle$$

$$\vec{r}(t) = \vec{P} + (\underbrace{\vec{Q} - \vec{P}}_{\text{"direction"})} t, \quad 0 \leq t \leq 1$$

$$\begin{aligned} &= \langle 0, 0 \rangle + (\langle 5, 5 \rangle - \langle 0, 0 \rangle) t \\ &= \langle 5t, 5t \rangle, \quad 0 \leq t \leq 1. \end{aligned}$$

$$2) \quad \vec{r}'(t) = \langle 5, 5 \rangle, \quad 0 \leq t \leq 1.$$

$$|\vec{r}'(t)| = \sqrt{5^2 + 5^2} = 5\sqrt{2}$$

$$\begin{aligned} \int_{\mathcal{C}} (x^2 + y^2) ds &= \int_0^1 (x(t)^2 + y(t)^2) |\vec{r}'(t)| dt \\ &= \int_0^1 ((5t)^2 + (5t)^2) 5\sqrt{2} dt = 125\sqrt{2} \int_0^1 2t^2 dt \end{aligned}$$

$$= \frac{250\sqrt{2}}{3} t^3 \Big|_0^1 = \boxed{\frac{250\sqrt{2}}{3}}$$

Problem 2: Let $f(x, y) = x$ and consider the segment of the parabola $y = x^2$ joining $O(0, 0)$ and $P(1, 1)$.

- (1) Let \mathcal{C}_1 be the segment from O to P . Find a parameterization of \mathcal{C}_1 , then evaluate $\int_{\mathcal{C}_1} f ds$.
- (2) Let \mathcal{C}_2 be the segment from P to O . Find a parameterization of \mathcal{C}_2 , then evaluate $\int_{\mathcal{C}_2} f ds$.
- (3) Compare the results of (1) and (2).

Problem 3: Evaluate

$$(1) \quad \int_C \langle \sqrt[4]{x+6} + \ln(\ln(\ln(e^{e^e} + 4 + x))) - 1, y^3 + 2 + e^{y^2} \rangle \cdot d\vec{r},$$

where C is the curve that is shown in the picture below.

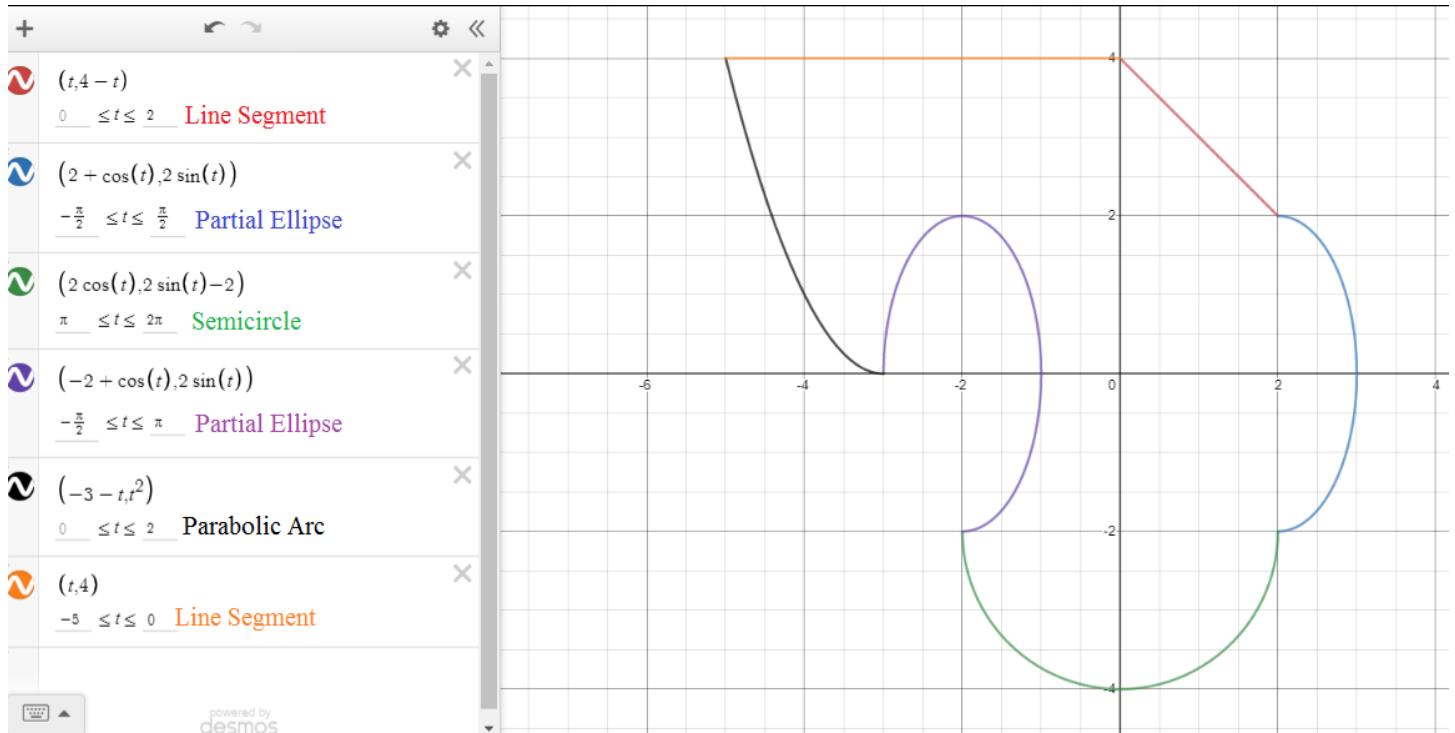


FIGURE 1

Problem 4: Consider the vector field $\vec{F} = \langle x, -y \rangle$ and the curve C which is the square with vertices $(\pm 1, \pm 1)$ with the counterclockwise orientation.

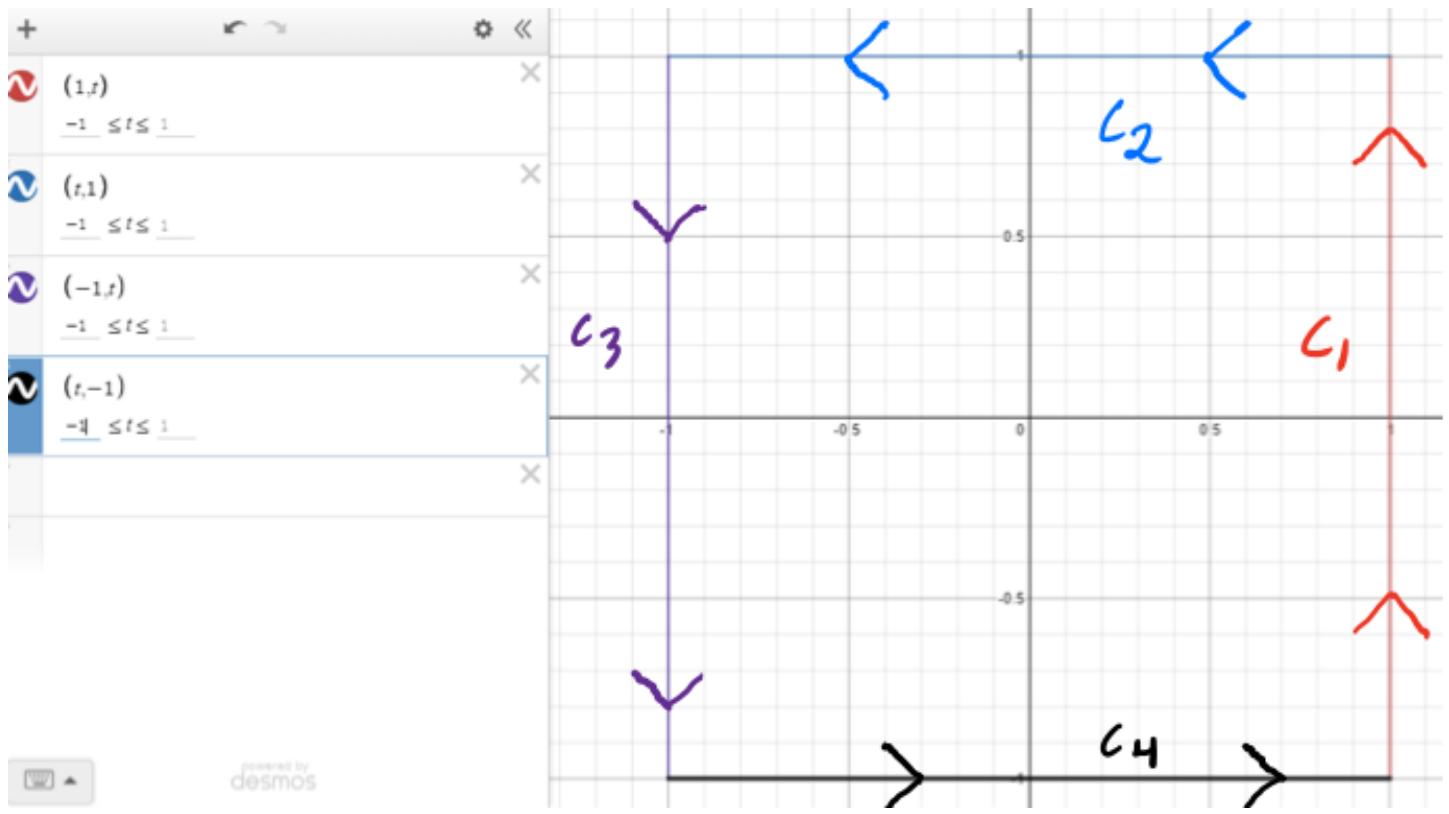


FIGURE 2. The curve C .

- Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by finding a parameterization $\vec{r}(t)$ for the curve C .
- Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by using the Fundamental Theorem for Line Integrals.

Problem 5: An idealized two-dimensional ocean is modeled by the square region $R = [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$, with boundary \mathcal{C} . Consider the stream function $\Psi(x, y) = 4 \cos(x) \cos(y)$ defined on R as shown in the figure below.

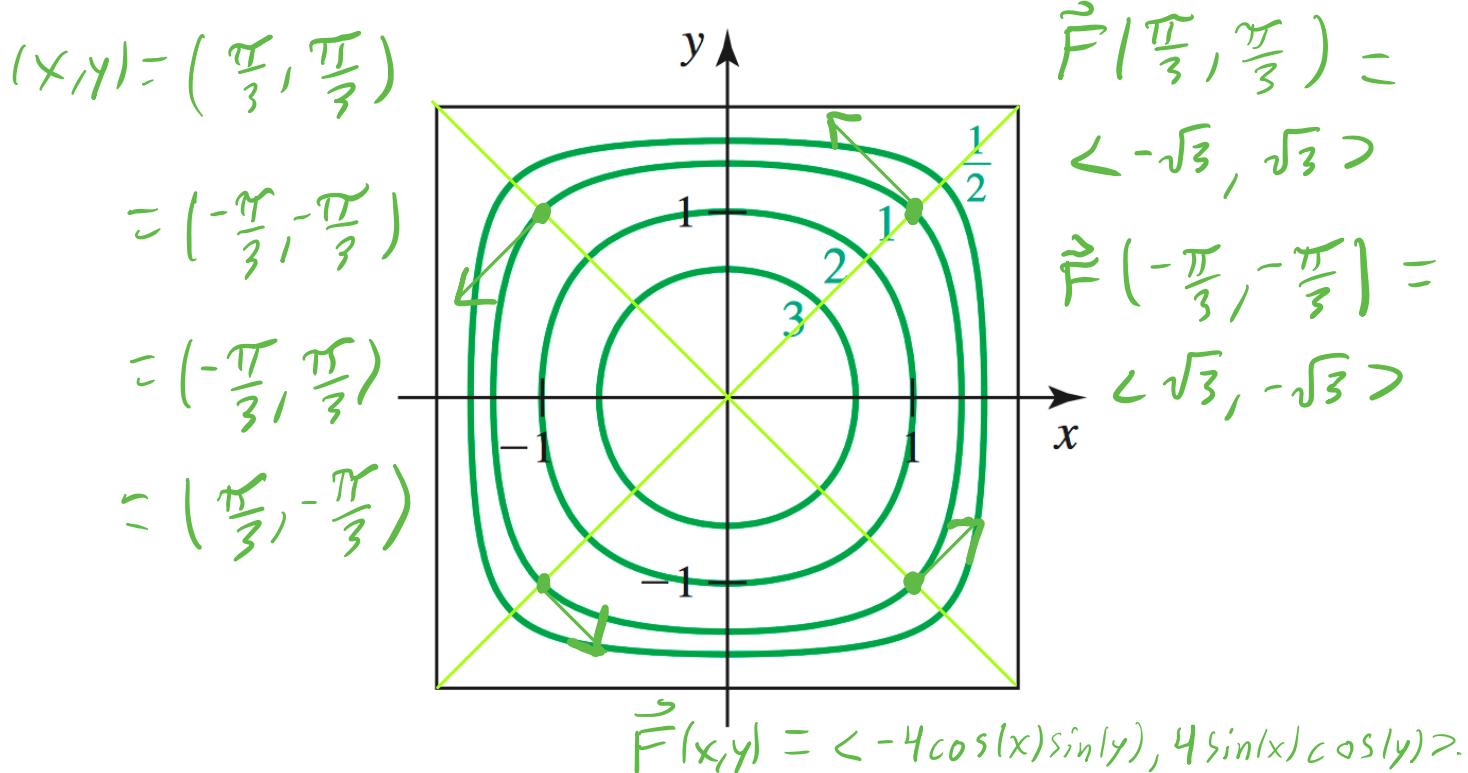


FIGURE 3. Some level curves of the stream function $\Psi(x, y)$.

- (a) The horizontal (east-west) component of the velocity is $u = \Psi_y$ and the vertical (north-south) component of the velocity is $v = -\Psi_x$. Sketch a few representative velocity vectors and show that the flow is counterclockwise around the region.
- (b) Is the velocity field source free? Explain.
- (c) Is the velocity field irrotational? Explain.
- (d) Find the total outward flux across \mathcal{C} .
- (e) Find the circulation on \mathcal{C} assuming counterclockwise orientation.

a) $\vec{F}(x, y) = \langle u(x, y), v(x, y) \rangle$
 $= \langle \Psi_y, -\Psi_x \rangle$
 $= \langle -4 \cos(x) \sin(y), 4 \sin(x) \cos(y) \rangle.$

b) $\vec{F} = \langle \psi_y, -\psi_x \rangle \rightarrow$
 $\underbrace{\psi_y}_u, \underbrace{-\psi_x}_g$
 f

$$\text{Div}(\vec{F}) = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = (\psi_y)_x + (-\psi_x)_y$$

$$= \psi_{yx} - \psi_{xy} = 0 \rightarrow$$

If \vec{F} has a stream function,
then \vec{F} is source free.

c) No. The only \vec{F} that is
source free AND irrotational
is $\vec{F}(x, y) = \langle 0, 0 \rangle$.

$$\vec{F}(x, y) = \langle -4\cos(x)\sin(y), 4\sin(x)\cos(y) \rangle$$

$$\text{Curl}(\vec{F}) = \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}$$

$$= 4\cos(x)\cos(y) - (-4\cos(x)\cos(y))$$

$$\rightarrow \vec{F} \text{ is } \underline{\text{not}} \text{ irrotational} \quad = 8\cos(x)\cos(y) \neq 0$$

d)

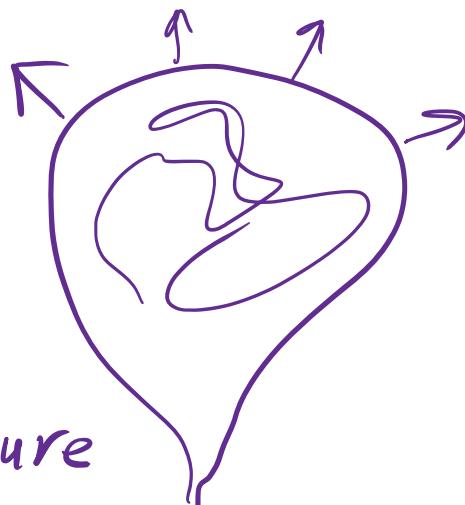
$$\text{Flux}_C(\vec{F}) = \int_C \vec{F} \cdot \hat{n} ds \quad (\text{Flux Form of Green's Theorem})$$

$$\vec{F} = \langle f, g \rangle$$

$$= \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA$$

$\underbrace{\phantom{\iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA}}_{\text{Div}(\vec{F})}$

$$= \iint_R 0 dA = \boxed{0}$$



The air in a balloon puts outward pressure on the surface of the balloon.

A Flux integral tells you the exact amount of pressure on the surface of the balloon.

e)

$$\text{Circulation}_C(\vec{F}) = \int_C \vec{F} \cdot \hat{T} ds = \int_C \vec{F} \cdot d\vec{r}$$

$$\begin{aligned} & \left. \begin{aligned} & \text{(by the circulation} \\ & \text{form of Green's} \\ & \text{Theorem} \end{aligned} \right) & = \iint_R \text{Curl}(\vec{F}) dA \\ & = \iint_R 8 \cos(x) \cos(y) dA \end{aligned}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8 \cos(x) \cos(y) dx dy$$

$$= 8 \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) dx \right) \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(y) dy \right)$$

$$= 8 \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) dx \right)^2 = 8 \left(\sin(x) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right)^2$$

$$= 8(1 - (-1))^2 = 8 \cdot 2^2 = \boxed{32}$$

Problem 6: Consider the radial field $\vec{F}(x, y) = \frac{\langle x, y \rangle}{\sqrt{x^2+y^2}} = \frac{\vec{r}}{|\vec{r}|}$.

(a) Explain why the conditions of Green's Theorem do not apply to \vec{F} on a region R containing the origin.

(b) Let R be the unit disk centered at the origin and compute

$$(2) \quad \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA.$$

(c) Evaluate the line integral in the flux form of Green's Theorem applied to the region R and the vector field \vec{F} .

(d) Do the results of parts (b) and (c) agree? Explain.



Flux Form of Green's Theorem: If C is a closed piecewise-smooth curve with connected and simply connected interior R , and $\vec{F} = \langle f, g \rangle$ has f, g with continuous partial derivatives on R , then

$$\text{Div}_C(\vec{F}) = \int_C \vec{F} \cdot \hat{n} ds = \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA.$$

↓
 f and g are not even defined at $(0,0)$, so
 their partial derivatives are not continuous
 on all of \mathbb{R} if $(0,0) \in \mathbb{R}$.

b) $f(x,y) = \frac{x}{\sqrt{x^2+y^2}}$

$$\begin{aligned} \rightarrow \frac{\partial f}{\partial x} &= \frac{1}{\sqrt{x^2+y^2}} + x \left(-\frac{1}{2} (x^2+y^2)^{-\frac{3}{2}} \cdot 2x \right) \\ &= \frac{1}{\sqrt{x^2+y^2}} - \frac{x^2}{\sqrt{x^2+y^2}^3} \\ &= \frac{x^2+y^2}{\sqrt{x^2+y^2}^3} - \frac{x^2}{\sqrt{x^2+y^2}^3} = \frac{y^2}{\sqrt{x^2+y^2}^3}. \end{aligned}$$

$$g(x,y) = \frac{y}{\sqrt{x^2+y^2}} \rightarrow \frac{\partial g}{\partial y} = \frac{x^2}{\sqrt{x^2+y^2}^3}$$

$$\iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA = \iint_R \left(\frac{y^2}{\sqrt{x^2+y^2}^3} + \frac{x^2}{\sqrt{x^2+y^2}^3} \right) dA$$

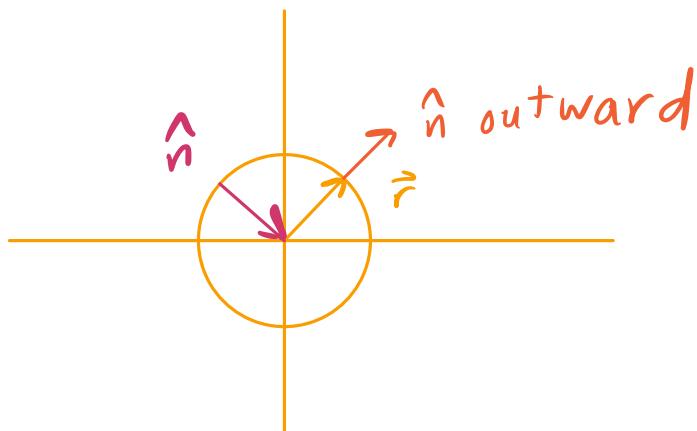
$$= \iint_R \frac{x^2+y^2}{(x^2+y^2)^{\frac{3}{2}}} dA = \iint_R \frac{1}{(x^2+y^2)^{\frac{1}{2}}} dA$$

$$= \int_0^{2\pi} \int_0^1 \frac{1}{r} r dr d\theta = \int_0^{2\pi} \int_0^1 1 dr d\theta = \boxed{2\pi}$$

$$C) \quad \vec{r}(t) = \langle \cos(t), \sin(t) \rangle, \quad 0 \leq t \leq 2\pi.$$

$$\hat{\vec{n}}(t) = \langle \cos(t), \sin(t) \rangle = \vec{r}(t).$$

outward unit normal vector.



$$\text{Flux}_C(\vec{F}) = \int_C \vec{F} \cdot \hat{n} ds$$

$$= \int_0^{2\pi} \frac{\vec{r}(t)}{|\vec{r}(t)|} \cdot \vec{r}(t) \cdot dt$$

$$= \int_0^{2\pi} \frac{|\vec{r}(t)|^2}{|\vec{r}(t)|} dt$$

$$= \int_0^{2\pi} 1^2 dt = \boxed{2\pi}$$

d) The answers to parts b and c are the same, so the conditions of Green's Theorem are not always necessary even though they are sufficient.
