
Problem 1: Consider Z

C
(x2 + y

2)ds,

where C is the line segment from (0, 0) to (5, 5).
(1) Find a parametric description for C in the form ~r(t) = hx(t), y(t)i. (Re-

member to state the domain of the parameter.)
(2) Evaluate |~r0(t)|.
(3) Convert the line integral to an ordinary integral with respect to the pa-

rameter and evaluate it.
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Sohail Farhangi Math 2153 Recitation Handout for 12/02/2021

Problem 2: Let f (x, y) = x and consider the segment of the parabola y = x
2

joining O(0, 0) and P (1, 1).
(1) Let C1 be the segment from O to P . Find a parameterization of C1, then

evaluate
R
C1 fds.

(2) Let C2 be the segment from P to O. Find a parameterization of C2, then
evaluate

R
C2 fds.

(3) Compare the results of (1) and (2).
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Problem 3: Evaluate

(1)

Z

C

h 4
p
x + 6 + ln(ln(ln(ee

e
+ 4 + x)))� 1, y3 + 2 + e

y
2i · d~r,

where C is the curve that is shown in the picture below.

Figure 1
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Problem 4: Consider the vector field ~F = hx,�yi and the curve C which is
the square with vertices (±1,±1) with the counterclockwise orientation.

Figure 2. The curve C.

(a) Evaluate
R
C
~F · d~r by finding a parameterization ~r(t) for the curve C.

(b) Evaluate
R
C
~F · d~r by using the Fundamental Theorem for Line Integrals.
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Problem 5: An idealized two-dimensional ocean is modeled by the square
region R = [�⇡

2 ,
⇡

2 ]⇥ [�⇡

2 ,
⇡

2 ]. with boundary C. Consider the stream function
 (x, y) = 4 cos(x) cos(y) defined on R as shown in the figure below.

Figure 3. Some level curves of the stream function  (x, y).

(a) The horizontal (east-west) component of the velocity is u =  y and the
vertical (north-south) component of the velocity is v = � x. Sketch a few
representative velocity vectors and show that the flow is counterclockwise
around the region.

(b) Is the velocity field source free? Explain.
(c) Is the velocity field irrotational? Explain.
(d) Find the total outward flux across C.
(e) Find the circulation on C assuming counterclockwise orientation.
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Problem 6: Consider the radial field ~F (x, y) = hx,yip
x2+y2

= ~r

|~r|.

(a) Explain why the conditions of Green’s Theorem do not apply to ~F on a
region R containing the origin.

(b) Let R be the unit disk centered at the origin and compute

(2)

ZZ

R

(
@f

@x
+

@g

@y
)dA.

(c) Evaluate the line integral in the flux form of Green’s Theorem applied to
the region R and the vector field ~F .

(d) Do the results of parts (b) and (c) agree? Explain.
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d The answers to parts b and
c are the same so the conditions
of Green's Theorem are not
always necessary even though they

aresufficient.pe


