

Some Collinearities of Cevian Triangles

By Sohail Farhangi and Victoria Xia

Let P be an arbitrary point in the plane of $\triangle ABC$, and let P' be the complement of P with respect to $\triangle ABC$. Without loss of generality (WLOG) let P_A be the intersection of lines AP and BC . WLOG let A_1 be the intersection of lines P_BP_C and BC , let A_2 be the intersection of line BC and the line through P parallel to P_BP_C , let A_3 be the intersection of line BC and the line through P' parallel to P_BP_C , let A_4 be the complement of P_A with respect to $\triangle ABC$, and let M_A be the midpoint of BC . In this paper we will prove the 3 results below.

- (1) A_2, B_2 , and C_2 are collinear. Furthermore, A_2B_2 is parallel to A_1B_1 .
- (2) A_3, B_3 , and C_3 are collinear.
- (3) AA_4, BB_4 , and CC_4 concur at a point Q , which is also the isotomic conjugate of P with respect to $\triangle ABC$.

First, we will prove (1). We can see that WLOG $\triangle APB_2 \sim \triangle AP_A B_1$ and $\triangle APC_2 \sim \triangle AP_A C_1$, so $\frac{AB_2}{AB_1} = \frac{AP}{AP_A} = \frac{AC_2}{AC_1} \rightarrow B_1C_1 \parallel B_2C_2$. Similar reasoning will show that $A_1B_1 \parallel A_2B_2$, and using the well-known fact that A_1, B_1 , and C_1 are collinear, we can see that A_2, B_2 , and C_2 are collinear and make a line parallel to A_1B_1 as desired. ■

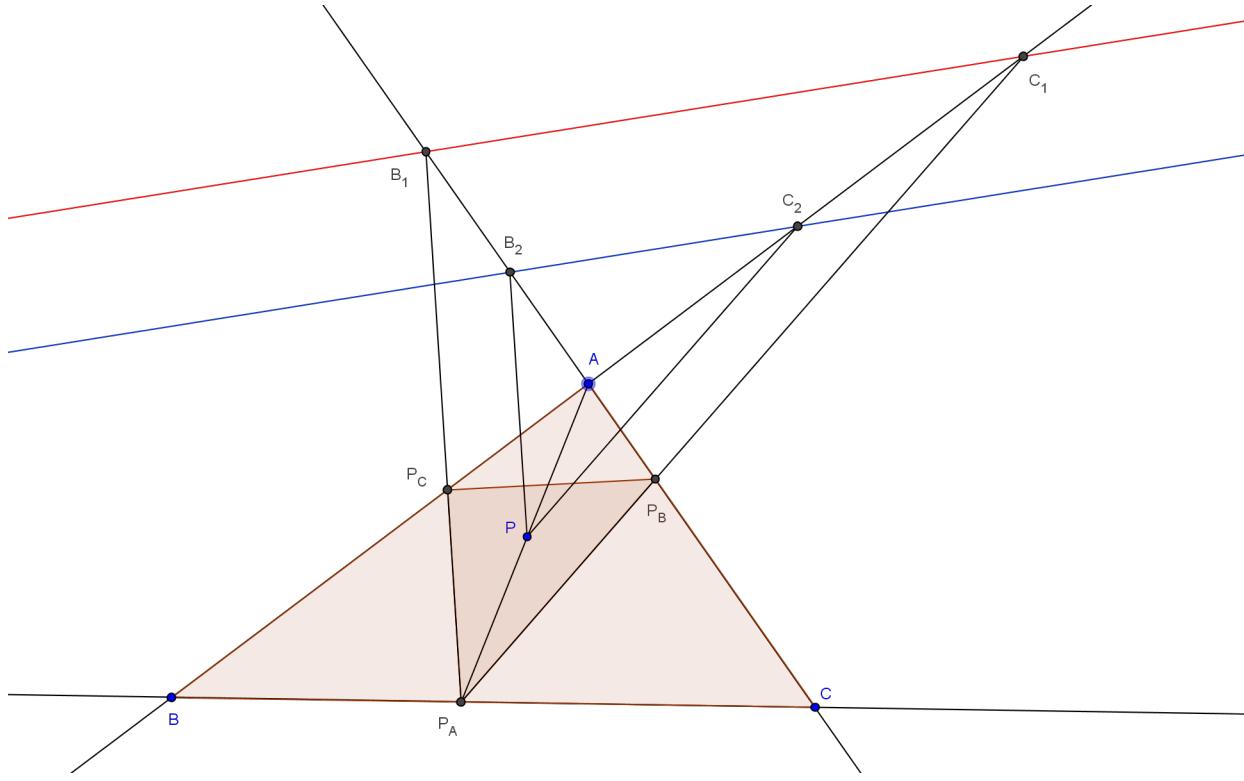


Figure 1

Next, we will prove (2). Let A_B be the intersection of line BC and the line through P' that is parallel to $P_A P_B$. View Figure 3 for the labeling of similarly defined points such as B_A .

Lemma 1: WLOG M_A is the midpoint of line segment $A_B A_C$.

Proof: Let L be the line through A that is parallel to line BC . Let X be the intersection of lines PAP_C and L , let Y be the intersection of the line through P parallel to PAP_C and line L , let Z be the intersection of the line through P parallel to PAP_B and line L , and let W be the intersection lines PAP_B and L . We can see that $\triangle P_C X A \sim \triangle P_C P A B \rightarrow \frac{X A}{A P_C} = \frac{P_C B}{B P_A} \rightarrow X A = \frac{(A P_C)(B P_A)}{P_C B}$. A similar analysis will show that $A W = \frac{(A P_B)(P_A C)}{P_B C}$. Noting that $\triangle P_A P_B P_C$ is a cevian triangle, and hence satisfies ceva's theorem, it can be seen that $X A = A W$. Noting that $\triangle A Y P \sim \triangle A X P_A \rightarrow A Y = \frac{(A X)(A P)}{A P_A} = \frac{(A W)(A P)}{A P_A} = A Z$. Applying a homothety centered at G with a scale factor of $-\frac{1}{2}$ yields the desired result. ■

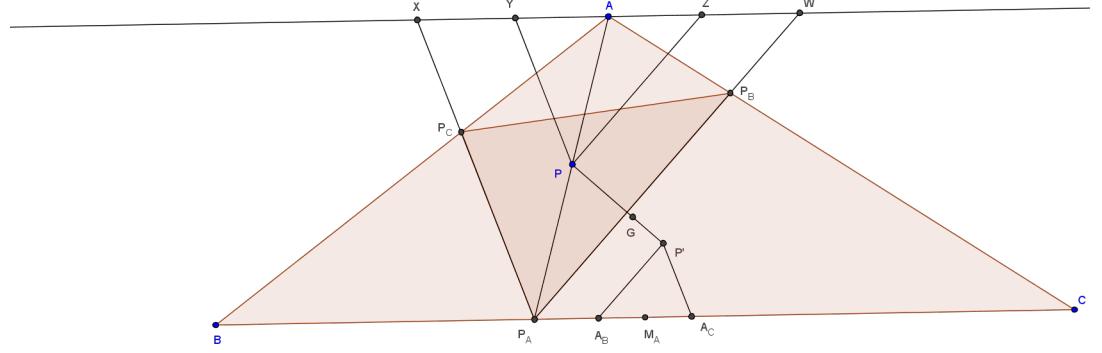


Figure 2

Returning to the main problem at hand, we note that $\triangle CB_3A_C \sim \triangle CB_1P_A \rightarrow CB_3 = \frac{(CB_1)(CA_C)}{CP_A}$. We can now see (4) below.

$$(4) \frac{(AB_3)(CA_3)(BC_3)}{(B_3C)(A_3B)(C_3A)} = \frac{(AB_1)(AC_A)(CP_A) \cdot (CA_1)(CB_C)(BP_C) \cdot (BC_1)(BA_B)(AP_B)}{(AP_C)(CB_1)(CA_C) \cdot (CP_B)(BA_1)(BC_B) \cdot (BP_A)(AC_1)(AB_A)} = \\ \frac{(AB_1)(CA_1)(BC_1)}{(B_1C)(A_1B)(C_1A)} \cdot \frac{(CP_A)(BP_C)(AP_B)}{(P_A B)(P_C A)(P_B C)} \cdot \frac{(AC_A)(BA_B)(CB_C)}{(BC_B)(CA_C)(AB_A)} = -1$$

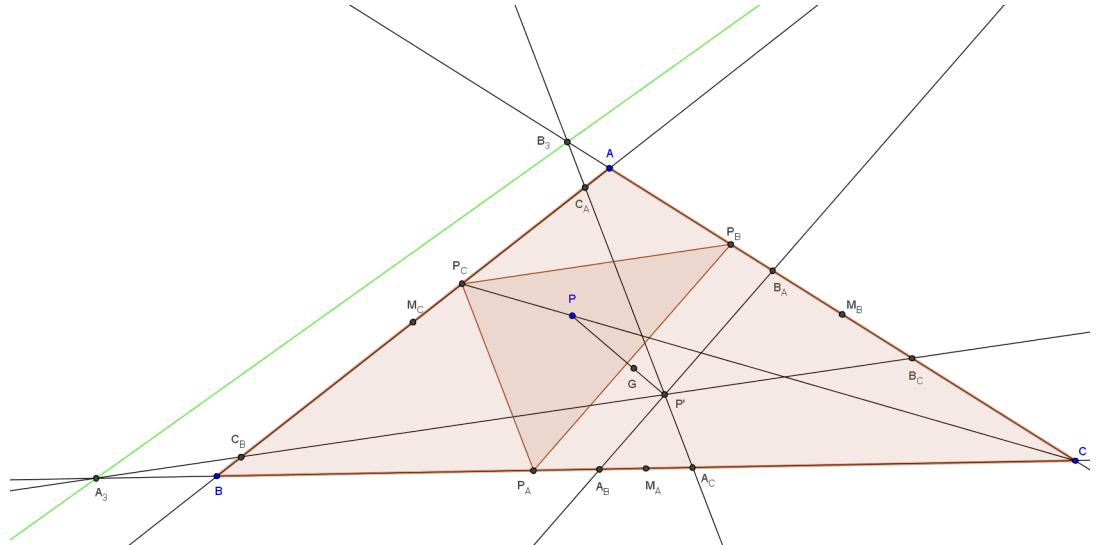


Figure 3

The desired result now follows from menelaus' theorem. ■

Lastly, we will prove (3). From the definition of complement we have that $\frac{A_4G}{GP_A} = \frac{M_A G}{GA} = \frac{1}{2} \rightarrow \frac{A_4 M_A}{AP_A} = \frac{1}{2}$, so if we allow line AA_4 intersect line BC are A_5 , we can see that $P_A M_A = M_A A_5$, which proves the desired result. ■

