Problem 1: Suppose that the second partial derivative of f are continuous
on R={(z,y):0 <2 <a,0<y<b}. Show that

1) // axay”df‘l F(a,b) — fla,0) — £(0,5) + £(0,0).

Hint: Think about the fundamental theorem of calculus.

Solution: We see that

82]0 B b pa 82]0 B b af
@ [ gtewia= [ ey = [ G|
of of _ b
@ = (Zan-Zow)a= -,
Alternatively, since the second partial derivatives of f are continuous on R, we
can use to perform the calculations in the following fashion.
a2f B a b an B a 6f b
//R (x,y)dA = /0 /o (x,y)dydx = /0 %(x, Y) yzod:c
0 0 a
o =] (G- Fen)d=wn- o
(7) :f(a,b)—f(a,O)—f(O,b)—i—f(0,0).

Remark: A similar method can show that if R = {(z,y) :a < x < b,c <
y < d}, then

) // (2, 9)dA = f(b,d) — f(a,d) — f(b,c) + fla,0).

The Fundamental Theorem of Calculus told us that
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© [ Lyt = 1) - s,

Comparing equations (9) and (8), we see that instead taking the difference
at the 2 endpoints of a line segment, we are adding 2 opposite corners of the
rectangular region R (f(b, d) and f(a,c), or f(a,b)and f(0,0) from the original
problem) and subtracting from that the sum of the other 2 opposite corners

(f(a,d) and f(b,c), or f(a,0) and f(0,b) from the original problem).

{'0,};’) [49\123)
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Problem 2: Let R={(z,y):0< 2 <1,0<y <1}

a. Evaluate [ [, cos(z,/y)dA.
b. Evaluate [ [, z%y cos(z?y?)dA.

Hint: Choose a convenient order of integration.

Solution to a: Noting that [ cos(cx)dz is easily computable, but [ cos(c,/y)dy

is not easily computable, we decide to use the order of integration given by
dA = dzdy. Tt follows that

(10) / /R cos(z/5)dA = /O 1 /O cos(r/G)dady

any /0 1 /0 1%\5@\/@@@ = /0 1 /x 10 CO\S/(;)dudy

y=0

=12 —2cos(1)|.

(14) = —2cos(,/y)

Solution to b: Noting that [ ¢;a® cos(cez?)dx is not easily computable, but
[ a1y cos(cay?)dy is easily computable, we decide to use the order of integration
given by dA = dydzx. It follows that

1,1
(15) // 2%y cos(zy?)dA = / z%y cos(zy?)dyda
R 0 Jo
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o 1l PR RS G
(16) = / / = cos(zy?)2ydydx "= / / — cos(x*u)dudz
0 0 2 0 y=0 2

(17) = // = cos(z?u)r*dudx // gcos(v)dvdx
—0

uma? [11 L :
(20) = / —sin(u)du = —= cos(u)
=0 4 =0
1 1 I 1
(21) =7 cos(z?) I il cos(1)
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Problem 3: Let R = {(z,y) : 0 < 2 < 1,0 <y < 1} Let F be an
antiderivative of f satisfying F'(0) = 0, and let G' be an antiderivative of F.
Show that if f and F' are integrable, and r, s > 1 are real numbers, then

(22) // er—lys—lf(xryS)dA _ G(1> - G(O)
R

rs

Hint: Pick a convenient order of integration, then apply u-substition. It
also helps if you do part b of Problem 2 before doing this problem.

Solution: We note that part b of Problem 2 was a special instance of this
problem in which r = s = 2 and f(t) = cos(t). Therefore we will proceed in a
similar fashion, but we will slightly simplify our solution by merging the first 2
u-substitutions that were performed in the solution to Problem 14.1.60b into a
single u-substitution. We now see that
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(28) Low| =leen 2GW=¢O

s =0 rs =0 s
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Problem 4: Let R be the region that is bounded by both branches of y = %,
the line y = x + %, and the line y =z — %
(a) Find the area of R.

(b) Evaluate

(29) / /R ydA.

Solution to (a): We first sketch a picture of the region R.

s oo« |

@+

QR &

(2]
.

We now solve for the intersection points of the curves y = % and y = x + % to
see that

1
(30) y = x—l—% - T+ 5 T+ 2:13
(31) — 2,2 = (@,y) = (=2,—3), (5, 2)
r=—2,= x,y)=(—2,—=),(=,2).
72 7y J 2 Y 27
Similarly, we solve for the intersection points of the curves y = % and y = —%

to see that

| <
S
| &1

(32)

d
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(33) = —%, 2 (2, y) = (-%, _9),(2, %).

We now see that the area of R is

2 - -1 2 1
(39) = (1+2In(2) —g)+3+(1+21n(2) —§> =| 7 +4m()|

Solution to (b): Using our diagram from part (a) we see that
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. Ll 5,95 —3 4|2
(45) =5l % te +é$—H’I’ L, te _%
1 1 9 2
‘|‘§(1H|ﬂ3’—1$4‘|‘$3 éIQ)%
5
46 =2In(2) — —
(46) n(?) -
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Problem 5: Let R be the region inside of the ellipse :1”—2 + % = 1 for which
we also have y < %x.

(a) Find the area of R.
(b) Evaluate

(47) / /R ydA.

Solution to (a): We first sketch a picture of the region R.

____________________ 1 1 £
Q/ Y—i 4 tﬁ =1 // A
S 36 ! | l ! 1 ! ! 4
’ Vo= é\ /
........ { ! ! L] ! L] ! —9 ! L]
o 9. 2" 19.2° :'
1 1 |
| )\
10 5 5 |- 2 2 af
|
o (—9 219 2—) \
e oy —_—t e
N/ 05 .
(RN S R ) >
17 1
x = 3.08697453257 |
. | k /

2
We now solve for the intersection points of the curves 91”—; +&=landy = %az.

We see that

2 y2 2 16 .2
48 18 T 36 2407
(48 = 18 36

9v/2 9v2  12v/2. 92 12v/2

(49) _>x:i¢—1—7_>(w7y>:<_\/ﬁ7_m)7(\/ﬁ7 \/ﬁ

We now see that the area of R is

(50) / /R 104 = / /R | dyda

).
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V2o 4, 3v2  p\/36—247
/ ldydx + / / ldydx
V36—222

36 22

i 3V2  \/36-242
Y dx + / Y dx
92 7 ly=—v/36—222 s;ig y=—v36—2x2
17

2 (4 32
(53) = / (—a:' + v 36 — 2332) dxr + / 24/ 36 — 2x%dx
_9v2 \ 3 9v2

V17

Since

1 1
(54) / V1—2?= 5% 1 — a2+ 5 sin”'(z), (substitute z = sin())

we see that

(55) /Mda::/f;\/l_(gfﬁ%)zdxyg%

(56) = 9v2y+y/1 —y2 +9v2sin~! ——x\/36—2x2+9f81n

Applying this result to equation (53), we see that

e 32
(57) / (—x + v 36 — 2x2> dx + / 24/ 36 — 2x%dx
_s\%g 3 9v2

V17
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(58) = <—:132 +—21/36 — 222 + 9\/§sm1(i)) s
3 2 3v/2 -2
1, T V2
+ (:z:\/ 36 — 222 4 18v/2sin~ (—))
32 ) 192
V17
1
(59) 2 <—x\/36 — 222+ 9V2 sinl(i)) s
2 3v2 ) 103
3v2 3v2
+ /36 — 22|  + 18V2sin N (= =)
V1T V17

+18V2sin (1)

(60) z+/36 — 222

22 3V2 0% 3V2
€T €T
— /36 — 2:1:2‘ 1 18v2sin (- ( 182 sin L (E
22 (3\@) 3v2 (3\/5) e

(62) = 0+ 18v2sin™'(1) = |9v2r|

Remark: For the ellipse % + 31“"—; = 1 we see that the major radius is 6 and

the minor radius is 3\/§7 so the area of the ellipse is 6 - 3V2 -1 = 1821 We
now see that our region R has half the area of the ellipse containing it. In fact,
we can prove this directly with symmetry and no calculus at alll We just have
to remember that when we reflect the point (x,y) across the origin we get the
point (—z, —y), and that reflection across the origin (or reflection across any

other point) preserves area as shown in the picture below.
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+ - “ € Borh regions '
Q =1 jm,lfﬁ ‘J'”IE. f’\ 1"-.
© . : Same

¥y oga araﬁ - !|
o [ :;_'_J.'_:* :'\T' ) \ '
© ( 9 1 ) __,.4
Q. _, 2

02 4y 3vV2  pV/36—222
3

(64) _ [V rydydx + xydydx

9v2

N2 J—36-27 V/36—222

B % 1, 4y 3V2 1 3622
(65) = Ty d Y dx
_?/er 2 y=—1/36—222 s\% 2 y=—/36—222
?/ﬁ 1 4 1

(66) = /9172 (éx(ga:)Q — 533(—\/ 36 — 2x?) > dx
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9v3

[V (16, A
(67) = | s (gx — 18z +x ) dz =10]
VT

Remark: We see that both integrals appearing in equation (64) are 0. It turns
out that this can also be shown directly with symmetry instead of evaluating
the integrals! Firstly, we recall that (z,y) turns into (—z, —y) when reflected
across the origin and that reflection across the origin preserves area. We also
note that xy = (—x)(—y), so we can rewrite our double integral as a double
integral that takes place over the right (or left) half of the ellipse instead of the
region R. We then notice that x(—y) = —(xy), so the integrals over the top
right and lower right quarters of the ellipse cancel each other out to yield 0 as
shown in the picture below.

- - & « L T
o~ - “
L N SR
S ..
o t.n 12 _3_'_]’
. 8
© [+ e
.., 2

Page 14



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 11/04/2021

Problem 6: Find the volume of the solid S bounded by the paraboloid z =

8 — 22 — 3y? and the hyperbolic paraboloid z = 2% — 3.

+ Input...

FIGURE 1. A view of the solid S whose volume we are calculating.

Solution: We begin by finding the (x,y)-coordinates of the curves of inter-
section of the 2 given surfaces. We see that

(68) 8—a?—3yyl=z=0—y > 2*+2 =8 - 2*+¢y* =1,

so the (z, y)-coordinates of the curve of intersection is simply the circle of radius
2 centered at the origin.

FIGURE 2. A bird’s eye view of the solid S that is used to find the region of integration R.
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Noting that 8—0%2—3-0? = 8 > 0 = 0°—0?, we see that the curve z = 8—x?—3y°
lies above the curve z = x? — y? for all (z,y) inside of R, the disc of radius 2
centered at the origin. We now see that

(69) Votune(S) = [ (= 2na)dd = [ [ (8= 397) = 22 = 7))

(70) = / /R (8 — 22 — 2y*)dA = /O K /0 2(8 — 2r%)rdrdf
(7)) = ( /O K d@) ( /0 2(8r - 2r3)dr) — (2n) (4r2 - %#D — 167
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