Problem 1: A lidless cardboard box is to be made with a volume of 4 m?3.
Find the dimensions of the box that require the least cardboard.

Solution: If the box has a width of w, a length of £ and a height of h, then
the volume V' is given by V' = wh{. We also see from figure 1 that the amount
of cardboard it takes to make such a box is 2hw + 2h¢ 4+ wl.

FIGURE 1

It follows that we are trying to optimize the function

(1) flw, h,l) = 2hw + 2hl + w/

subject to the constraint

(2) whi = 4.
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Noting that

4
3 h=—
3) wl’
we now want to optimize the function
4 4 4 8 8
4 l) = h,l) = — . 0) =2— 2—/ (=—-+— 14

over the first quadrant of R%2. We see that

dg 8 dg 8
(5) %——E+Eandw——€—2+w, SO
D l)y=0 —4+0=0 \
(6) %w(w,) & 1§2+ S8=wl=wl>w="
5(w, £) =0 —ptw=0
(7) —8=w’— (w,h,0)=(2,1,2)|

To verify that g(w, £) does indeed attain its minimum value at (w, ¢) = (2,2)
we will use the second derivative test. We note that

02 0 Jdg 0 8 16

(8) w<w7€) = %a—w(wa@ a—w(—@ () = —,

0%g 0 Jg o 8 16
(9) W(’w»@ = @@(waf) = @(—ﬁ +w) = Gk and

0%g 0 Og 0 8
(10) —awag(w,ﬁ) = a—w@(w,ﬁ) = a—w(—ﬁ +w) =1, so

d°g &g g 2
16 16 ., 256
v B T we !

Since
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256 52g 16
12 D2,2)=——-1=3>0and =—%(2,2) = —==2>0

the second derivative test tells us that g(w,f) attains a local minimum at
the critical point (2,2). We will now verify that (2,2) is actually the global
minimum of g(w, £) over the first quadrant of R?. Consider the closed and
bounded region region R = [1, 64]%.

T
'/-c (%) B0

<t 64

£

S0t

RO

<< 64 aoll

=i= 04 304t

=i= 04 204

0 10 20 30 40 50 60

A picture of R.

We note that (2,2) € R, and that (2,2) is the only critical point of g(w, ¢)
in R (because g(w, ) only had 1 critial point anyways). We also see that
g(w,l) > 16 > 12 = ¢(2,2) for (w, £) on the boundary of R (this can easily be
checked on each of the 4 sides of the boundary of R separately). By the extreme
value theorem, we see that ¢ attains its absolute minimum over R at the point
(2,2). Since g(w,f) > 16 > 12 for (w,¥) that are in the first quadrant of R?
but outside of R (this fact is left as a challenge to the reader), we see that

g(w, £) does indeed attain its global minimum over the first quadrant of R? at
(2,2).
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Remark: We never actually needed to use the second derivative test to verify
that the global minimum occurred at (2,2). The second derivative test was only
useful for telling us that (2,2) was a local minimum, but we never used the fact
that (2,2) was a local minimum in order to conclude that it was actually a
global minimum. I only wrote that into the solutions since I permitted you to
finish the problem by checking that it is a local minimum instead of a global
minimum.
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Problem 2: Find the absolute minimum and absolute maximum values of
the function f(z,y) = xy over the region R = {(z,y) | (x — 1)* +¢* < 1}.

Solution: Since R is a closed and bounded region, and f is a continuous
function, the Extreme Value Theorem tells us that f will attain its absolute
minimum and absolute maximum values over the region R. Furthermore, we
know that the extreme values of f will either be attained on the boundary of
R, or at a critical point of f in the interior of R.

We will begin by finding all critical points in the interior of R. Since f,(x,y) =y
and f,(z,y) = x, we immediately see that (0,0) is the only critical point of f,
and it is on the boundary (not interior) of the region R, but it is still a candidate
for where f can attain one of its extreme values. We note that f(0,0) = 0.

We will now proceed to find the absolute minimum and absolute maximum
values of f on the boundary of R. Since the boundary of R is given by OR =
{(x,y) | (x — 1)* + y* = 1}, we will use the method of Lagrange Multipliers
to optimize the function f(x,y) = xy subject to the constraint g(z,y) =
(x —1)2+y?> — 1 = 0. We note that

(13) Vf(z,y) = (y,z) and Vg(z,y) = (2r — 2,2y),

so the method of Lagrange Multipliers results in the following system of equa-
tions for us to solve:

(z =12 +y* =1

g(x,y) = 0
(14) B & y = A2z —2)
(15) — Ax(2z —2) = a2y = N2y* = 0 =2\(y* — 2> + 2).

By the zero-product property, we see that we must have A = 0 or y?> —2%+x = 0,
so we will consider both cases separately.

Case 1: For our first case let us assume that A = 0. In this case we see that
the last 2 equations from (14) tell us that z =y = 0, since ¢(0,0) = 0, we see
that we reobtain the critical point (z,y) = (0,0).
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Case 2: For our next case let us assume that y> —2? + 2z = 0, so y* = 22 — 2.

We see that

(16) l=y*+(x—1)P =2"—z+(x—1)*=22" -3z +1
3 3 3

(A7) =2 =3r=0-2=0,5 = (2.y) = (0,0), 5, {) 5 —§>-
Making a table of our critical points and corresponding values of f, we see that

(z,y) | [(z,y)

(0,0) 0

(2 @) 3v/3

272 1

ol s

so f attains its absolute maximum value of 3\f at the point (2, 73) and f
attains its absolute minimum value of — 3\/_ at the point (2, —¥2).
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Problem 3: Find the absolute minimum and absolute maximum values of
the function

(18) flx,y) = a2+ 4y? + 1

over the region
(19) R={(z,y): 2" +4y* < 1}.

You should know how to solve this type of problem using lagrange multipli-
ers, but you can avoid using lagrange multipliers (and even avoid param-
eterization of the boundary) in this particular problem if you think about
it carefully.

FIGURE 2. The interior of the R is shaded in red and the boundary of R is blue.

Solution: Since the region R is a closed and bounded region, and the function
f is continuous, the extreme value theorem tells us that the absolute minimum
and absolute maximum values of f must be achieved on the boundary of R or
at a critical point in the interior of R. We first find all of the critical points of
f. We see that

N
S
|

(20) f@"(x’y% "0 e 2T e @y = (0,00
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We see that (0,0) € R and that f(0,0) = 1. Next we will determine the
absolute minimum and absolute maximum values of f on the boundary of R.
Since the boundary of R is given by 2% + 4y? = 1, we see that f(x,y) = 2 for
every (z,y) on the boundary of R, so we immediately see that f achieves its
absolute minimum value of 1 at (0,0) and its absolute maximum value of 2 at
any (x,y) on the boundary of R.

If we were not lucky enough to instatly notice that f(z,y) = 2 for every
(x,y) on the boundary of R, then we would try to handle the boundary by
using the method of Lagrange multipliers. More specifically, we would try
to optimize the function f(z,y) = 1 + 22 + 4y* subject to the constraint
g(z,y) = 22 + 4y*> — 1 = 0. Noting that

(21) Vy(z,y) = (2z,8y) and V f(z,y) = (2z,8y)

the method of Lagrange multipliers gives us the system of equations

(z,y) = 0 (z,y) = 0
(22) Viley) = AVgle.y) © 2r.y) = Mow.sy)
g(z,y) = 0
(23) & 2r = 2\x .
8y = 8y

Letting A = 1, we see that every point (z, y) on the boundary of R (which is the
same as every point (x, y) satisfying the constraint g(z, y) = 0 also satisfies the
system of equations given to us by the method of Lagrange multipliers. This
seems bad at first since the boundary has infinitely many points, so it looks
like the method of Lagrange multipliers did not help us in our search for the
absolute minimum and absolute maximum values that occur on the boundary.
However, it turns out that the only time every point on the boundary of our
region R (assuming that R has a piecewise smooth boundary, which it always
will in this class) is a critical point is when f(x,y) is constant on the region R
(as it was in this problem), so the problem turns out to be easier in these cases
since you can determine the value of f(x,y) on the boundary of R by checking
the value at any random point (z,y) on the boundary of R.
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Problem 4: Use the method of Lagrange multipliers to find the absolute
maximum and minimum of the function

(24) f@,y,2) = zyz
subject to the constraint

(25) x° +2y° + 427 = 0.

Solution: We will present two different solutions to this problem. The method
of setting up the system of equations from the method of Lagrange multipliers
is the same in both solutions, but the method of solving the resulting system
will be different.

We see that the region defined by the constraint is a closed and bounded
region with no boundary, so the method of Lagrange multipliers will give us the
complete list of critical points that we need to check in order to determine the
absolute minimum and absolute maximum values of f subject to the constraint.

B & < e

(@) eql: x® + 2y + 422 =9

+ Input...

We see that

(26) P+ 2 4t =9 P+ 2 422 -9 =0,

so we may take our constraint function to be g(z,y, z) = x4+ 2% + 422 - 9.
We see that

Page 9



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 10/28,/2021

(27) Vf(x,y,2) = {folz,y,2), f(2,9,2), fo(2,9,2)) = (yz, 22, 2y), and

—

(28) Vo(z,y,2) = (9.(2,y, 2), 9y(x, ¥, 2), g:(x, y, 2) = (22, 4y, 82).

We now want to find all (x,y, z, \) (although we don’t really care about the
value of \) such that

g(z,y,2) = 0
(29) ﬁf(gj‘,y,Z) = )\ﬁg(«x;yaz)

2?2+ 2y +422 -9 = 0

(30) (yz,zz,2y) = A(27,4y,8%)
'+ 2y +422 =9 = 0
yz = 2)\x
(31) = rz = 4y
ry = 8A\z

Finish 1: We will now use the method of cross multiplication to solve the
system of equations in (31). This method will be computationally intensive,
but is 'standard’ and does not require any 'tricky insights’. By cross multiplying
the second and third equations in (31) we see that

(32) ANz = 2002 — 0 = 40\yPz — 202%2 = 202(2y° — 27),

so by the zero product property we see that either A = 0, z = 0, or 2y* —z? = 0.
We will handle each case separately.

Case 1 (A =0): By plugging A = 0 back into (31) we see that
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22 +2y% + 422 — 9

y= =
(33 vs =

Ty =

o O OO

Using the zero product property once again on the second, third, and fourth
equations of (33), we see that 2 of x,y, and z must be 0. In conjunction with
the first equation of (31) (the constraint equation) we see that (z,y, 2z, A) €
{(0,0, i%, 0), (0, i%, 0,0), (£3,0,0,0)} are the solutions that we obtain from

this case.

Case 2 (z = 0): By plugging z = 0 back into (31) we see that

2?2 +2y2—9 = 0

0 = 2\z

(34) 0 = 4y~
xy = 0

Since we are done with case 1, we may also assume that A # 0. It now follows
from the second and third equations in (34) that x = y = 0, but this contradicts
the first equation in (34), so we obtain no additional solutions in this case.

Case 3 (2y> — 22 = 0): In this case we see that 22 = 2y so x = /2y,
which means that we have 2 subcases to handle. For our first subcase, we plug
r = /2y back into (31) to obtain

208 + 2% + 422 —9 = 0
yz = 2v2\y
(35) Vg = 4y
V2y? = 8z

By cross-multiplying the third and fourth equations in (35) we see that

(36) 8v2\yz® = 4v2X\y® — 0 = 8v2)yz? — 4v2\y® = 4vV2)y(22% — o).
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Since we are no longer in case 1, we may assume that A # 0, so either y = 0
or 222 —y? = 0. If y = 0, then x = v/2y = 0, and we reobtain the solution
(x,y,2) = (0,0, %) If 222 — y? = 0, then y?> = 22%. Plugging this back into
the first equation of (35) yields

3
(37) 1922 =0 —y » — ig,

so we obtain the solutions

w

(38) (:C, Y, Z) < {(\/ga 7£)7 (_\/év o

~

2 ls
S5l

SIS

V3, V3 V3
SR VE Y )

For our second subcase we let = —v/2y and a similar calculation vields the
additional solutions

(30) (a,.2) € {<—¢é,£,

Now that we have found all solutions to the system of equations in (31), we see
that
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(xy2) f(x.y.2) (x,y.2) f(x,y,2)
(0,0.3) 0 (3,2, ) | 33
(0,50 | 0 (V3 -, 8) |
(3,0,0) 0 (V3,3 | 2
o0 | ¢ AL |
(0,30 | 0 (—V3, 4, —) | o
(-3,0,0) 0 (—V3, 3,5 | 33
(V3. 29| 32 (—v/3, Y3, )| 3

In conclusion, we see that the absolute minimum value of f(x,y, z) subject to

g(x,y,2z) = 0is —% and the absolute maximum value of f(x,y, z) subject
()i 3V3
to g(x,y,z) =0 is N

Finish 2: We will now use the symmetry that appears in the system of equa-
tions in (31) in order to solve the system more quickly. Observe that

2?4+ 202 +422 -9 = 0 2?4+ 202 +422 -9 = 0
yz = 2\x ryz = 2\x°
(40) rz = 4y ~ ryz = 4\y?
xy = 8z ryz = SA\2?
(41) — Ax? =27 = 4N

We now have 2 cases to consider based on whether or not A = 0.

Case 1 (A = 0): In this case, we plug A = 0 into the system of equations
appearing in the left hand portion of (40) (the original system of equations that
we started with) to see that
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427+ 422 -9 = 0
(12) 2T o (@) € {(,0,0),(0,5,0),(0,0,2)}.
xy = 0
(43) S (2, 2) € {(£3,0,0), (0, £-=, 0), (0,0, £2)}
7y7 Y 9 Y ) \/57 Y 9 9 2 °

Case 2 (A # 0): In this case, we see that we can divide the equations appearing
in (41) by A and plug to result back into our constraint equation to obtain

(44) 2P =27 =422 5 9=2+ 2 + 42° = 32? = = V3, and

(45) (zv,y, ) {( \/* 2) ( g ﬁ:i)v($7ﬁ7_§)7(x7_ﬁ7_§)}'

Putting together all of our results from cases 1 and 2, we once again find all
solutions to the system of equations in (40) as

bey) | oy (eya) i)
(0,0,3) 0 (V3,43 ) 2\\?
(0,4.0) 0 (V3 -4, L) | -
(3,0,0) 0 (V3 -4, -3 | 223
(0,0,—3) 0 (—v3,48,8) | -4
050 | o ~E4-9 | 4
(-3,0,0) 0 (—v3, -3, ) | 243
V3.3 % (—v3,-8.-9)| -3
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In conclusion, we see that the absolute minimum value of f(x,y, z) subject to

x,y,2) = 01s —3V3 and the absolute maximum value of f(x,y, z) subject

to g(x,y,z) =0 is %
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Problem 5: What point on the plane x 4+ y 4+ 4z = 8 is closest to the origin?
Give an argument showing that you have found an absolute minimum of the
distance function.

Solution: Note that for any (z,y, z) on the plane x + y + 4z = 8 we have

1 1

4 — 9
(46) z T Y
from which we see that

17 17

1 1 1
A8) — 2 002 (9 — Zp — Zq)2 = \/4 o h -2 2.

We recall that if f(z,y) is any nonnegative function, then f(z,y) and f*(z,y)
have their (local and global) minimums and maximums occur at the same values
of (z,y). It follows that we want to optimize the function

1 17 17
49 — 4 gyt -yt —a? oy

Since any global minimum of f(x,y) is also a local minimum, we see that the
global minimum of f (if it exists) is at a critical point. We now begin finding
the critical points of f. We see that

0= fo(z,y)=Yo+ 1y -1 17 1 17 1
(50) 187 ° —0=(—z+-y—1)—(—y+-x—1)
0=fy(z,y)=Fy+5z—1 508 578

4
(51) :2x—2y—>x:y%x:y:§.

We see that (3, 3) is the only critical point. We will now use the second deriv-

ative test to verify that (5, 3) is a local minimum. We see that
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f:cx(xay):%
(52) foy(z,y) :% = D(z,y) = fuu(®,y) fyy(z,y) — fmy(xa?J)Q
fxy(xay) - %
17 17 1 9 4 4 9
53 = P2 =2 5D =0
Since we also see that f,.(5,3) = % > 0, the second derivative test tells

us that (5,3) is indeed a local minimum of f(z,y). It remains to show that
f(z,y) attains its global minimum at (%, g). Firstly, we note that f (%, %) = %—2.

Since % < 25 (I picked 25 randomly, I just needed some larger number), let us

1 1
consider the region R of (z,y) for which (z,y,2 — i Zy) has a distance of

\ .

N
¥4

at most 5 from the origin. This is the same as R = {(z,y) | f(x,y) < 25}.

g & < e
@) eql: x+y+2z =38
(@) arxt+y?+z22=25

=+ Input...
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= - B « /\
' W2+ +(2——1—é}')?i 25 4
© (1) 2
.
2 0 . ¢ i
(E] a

Since R is a closed and bounded region, and f(x,y) is a continuous function
function, we know that f attains an absolute minimum on R. The point (%, %)
is inside of R, so the minimum of f is not attained on the boundary of R (as
that is where the distance to the origin is exactly 5). Since the minimum of f
on R is attained on the interior, we see that it must be obtained at a critical
point of f(z,y), so it is attained at (%, %). For any point (z,y) outside of R,
we have f(x,y) > 25 (by the very definition of R), so the global minimum of
f(z,y) is £ and is attained at (3, 3). It follows that the point on the plane
4 4 16>

9°9’ 9

x + y + 2z = 8 that is closest to the origin is |(
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Problem 6: Find the point on the plane 2x + 3y + 6z — 10 = 0 closest to the
point (—2,5, 1) by using the method of Lagrange Multipliers. Can you justify
that your answer is a global minimum and not just a local minimum?

Solution: We see that our constraint function is g(z, y, 2) = 2x+3y+6z— 10,
and the function that we are trying to optimize is the distaince from a point
(x,y, z) on the plane to the point (—2,5, 1), which is given by

(54) hiz,y,2) = V(& = (=2)2 + (y = 5> + (2 = 1)?
= a2 +4r+4+92 — 10y + 25+ 22 — 22 + 1.

Since h(z,y, z) and f(z,y,2) = (h(z,y, 2))* have their absolute minimum(s)
occurring at the same location(s), we will optimize f(x, y, z) subject to g(x, y, z) =
0 instead since the resulting calculations will be easier. Since our constraint
function defines an open region (a plane) the method of Lagrange multipliers
will give us all of the critical points in the open region, and we will compare the
values of f(x,y, z) at the critical points to the values of f(z,y, 2) as (z,y, 2)
approaches the boundary. Noting that

(55) Vg(z,y,z) = (2,3,6) and

(56) Vf(r,y,z)=(2r+4,2y— 10,2z — 2),

the method of Lagrange multipliers gives us the system of equations

g(x,y,2) = 0
(57) 6f(5c,y,z) = Aﬁg(ﬂ%yaz)

20 +3y+62—10 = 0
(2x + 4,2y — 10,22 — 2) = X(2,3,6)
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20+ 3y +6z2—10 = 0 20+ 3y +62—10 = 0
20 +4 = 2\ r = A—2
59 2y —10 = 3\ y = 3A+5
22 —2 = 6A z = 3A+1

(61) — (CL’,y,Z) - (__ T~ _> .

We see that a point (z, ¥, z) in the plane 2z 4+ 3y 4+ 6z — 10 = 0 approaches
the boundary of the plane (the 'outer edges’ of the plane) if at least one of
x,1, or z appraoches infinity. It follows that the square of the distance function
(f(x,y,z)) approaches positive infinity as (x,y, z) approaches the boundary,
so the absolute minimum exists and occurs at the critical point that we found.
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Problem 7: Economists model the output of manufacturing systems using
production functions that have many of the same properties as utility functions.
The family of Cobb-Douglas production functions has the form P = f(K, L) =
CK*L'~" where K represents capital, L represents labor, and C' and a are
positive real numbers with 0 < a < 1. If the cost of capital is p dollars per
unit, the cost of labor is ¢ dollars per unit, and the total available budget is B,
then the constraint takes the form pK + gL = B. Find the values of K and L
that maximize the production function

(62) P=f(K,L)=10K5L3
subject to
(63) 30K + 60L = 360,

assuming K > 0 and L > 0.

Solution: We see that the region defined by the constraint is the line segment
from (K, L) = (0,6) to (K, L) = (12,0), which is a closed and bounded region
with boundary:.

. 30K+ 60L= 360

(with K and L nonnegative)

The method of Lagrange multipliers will give us all of the critical points in the
interior of the line segment, and we will then compare the values of f at the
critical points with the values of f at the boundary (the 2 end points of the
line segment) in order to find the absolute maximum and absolute minimum
values. We begin by identifying our constraint function g(K, L), its gradient

field Vg(K, L), and the gradient field V f(K, L) of our optimization function

as
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(64) g(K, L) = 30K + 60L — 360, Vg(K, L) = (30,60), and
1 2
(65) VK, L) = <§OK_§L§, goK%L_%y

The method of Lagrange multipliers gives us the system of equations

=
=

|

-

(70) — 0 =30K + 60L — 360 = 90L — 360 — L =4 — (K, L) = (4,4)].

Since (4,4) is the only critical point given to use by the method of Lagrange
multipliers and

(71)  f(4,4) =10-4545 = 10-4 =40 > 0 = f(12,0) = £(0,6),

we see that the production function attains its absolute maximum value (subject
to the given constraint) of 40 at (4,4).
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Problem 8: Given the production function P = f(K, L) = K°L'~® and the
budget constraint pK + gL = B, where a, p,q, and B are given, show that P
is maximized when K = aB/p and L = (1 — a)B/q. (Recall that K > 0 and
L > 0 in order for the model to make sense in the real world and in order for
the production function f to be well defined.)

See Problem 7 for context.

Solution: We see that the region defined by the constraint is the line segment,
from (K, L) = (0, %) to (K, L) = (%, 0), which is a closed and bounded region
with boundary. The method of Lagrange multipliers will give us all of the
critical points in the interior of the line segment, and we will then compare the
values of f at the critical points with the values of f at the boundary (the 2 end
points of the line segment) in order to find the absolute maximum and absolute
minimum values. We begin by identifying our constraint function g(K, L), its
gradient field Vg(K, L), and the gradient field V f(K, L) of our optimization
function as

(72) 9(K,L) = pK +qL — B,Vg(K,L) = (p,q), and
(73) VfK,L)=(aK“ 'Ll —a,(1 —a)K"L™").

The method of Langrange multipliers gives us the system of equations

K.L) = 0
(74) V?EK, L§ — V(K. L)
- N pK+qL—B = 0

(76) & aK 'Ll —a = pA
(1—a)K'L™" = g\

(77) — qaK" 'L = pg) = p(1 — a) K°L™°
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1_
(78) —>qaL:p(1—a)K—>L:p( a)K
qa
1 — B
(79) S 0—pK+ql—B-pk+P =Yg g, Do
a p
(80) N (By (78)) B(1 — a)’ "
q
Ba B(1 —
(81) (k1) = (22, BUL=9),
P q

is the only critical point obtained by the method of Lagrange multipliers. We
see that K, L > 0 at this critical point, so

B B
(82) f(KaL>>0=f(0,5)=f(?0)-

Since the value of f at the (only) critical point is larger than the values of f
on the boundary (the end points) we see that f attains its absolute maximum
value at the critical point as desired.
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