

Problem 1: Consider the function $f(x, y) = \ln(1 + 4x^2 + 3y^2)$ and the point $P = (\frac{3}{4}, -\sqrt{3})$.

- a. Find the gradient field $\nabla f(x, y)$ of $f(x, y)$ and then evaluate it at P .
- b. Find the angles θ (with respect to the x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
- c. Write the directional derivative at P as a function of θ ; call this function $g(\theta)$.
- d. Find the value of θ that maximizes $g(\theta)$ and find the maximum value.
- e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient vector at P . Verify that the maximum value of g equals the magnitude of the gradient vector at P .

Solution to a: We see that

$$(1) \quad f_x(x, y) = \frac{1}{1+4x^2+3y^2} \frac{\partial}{\partial x} (1 + 4x^2 + 3y^2) = \frac{8x}{1+4x^2+3y^2}$$

$$f_y(x, y) = \frac{1}{1+4x^2+3y^2} \frac{\partial}{\partial y} (1 + 4x^2 + 3y^2) = \frac{6y}{1+4x^2+3y^2}$$

$$(2) \quad \rightarrow \nabla f(x, y) = \left\langle \frac{8x}{1+4x^2+3y^2}, \frac{6y}{1+4x^2+3y^2} \right\rangle.$$

$$(3) \quad \nabla f\left(\frac{3}{4}, -\sqrt{3}\right) = \left\langle \frac{6}{1 + \frac{9}{4} + 9}, \frac{-6\sqrt{3}}{1 + \frac{9}{4} + 9} \right\rangle = \left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle.$$

Solution to b: We recall that $\nabla f(P)$ points in the direction of maximum increase from P . Since $\nabla f(P)$ is in the fourth quadrant, we see that

$$(4) \quad \theta_{\max} = \tan^{-1}\left(\frac{-24\sqrt{3}}{\frac{24}{49}}\right) = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}.$$

is the angle associated with the direction of maximum increase. Since $-\nabla f(P)$ points in the direction of maximum decrease from P , we see that $\theta_{\min} = \theta_{\max} + \pi = \frac{2\pi}{3}$ is the angle associated with the direction of maximum decrease. Since the directions of no change are orthogonal to $\nabla f(P)$ (and to $-\nabla f(P)$), we see

that $\theta_1 = \theta_{\max} + \frac{\pi}{2} = \frac{5\pi}{6}$ and $\theta_2 = \theta_{\max} - \frac{\pi}{2} = -\frac{\pi}{6}$ are the angles associated to the directions of zero change.

Solution to c: We recall that $\vec{u}(\theta) = \langle \cos(\theta), \sin(\theta) \rangle$ is the unit vector associated with the angle θ . We also recall that for any unit vector \vec{u} , we have that

$$(5) \quad d_{\vec{u}} f(a, b) = \nabla f(a, b) \cdot \vec{u}, \text{ so}$$

$$(6) \quad g(\theta) = d_{\vec{u}(\theta)} f(P) = \nabla f(P) \cdot \vec{u}(\theta) = \left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle \cdot \langle \cos(\theta), \sin(\theta) \rangle$$

$$(7) \quad = \frac{24}{49} \cos(\theta) - \frac{24\sqrt{3}}{49} \sin(\theta).$$

Solution to d: We see that

$$(8) \quad g'(\theta) = -\frac{24}{49} \sin(\theta) - \frac{24\sqrt{3}}{49} \cos(\theta) \rightarrow$$

$$(9) \quad g'(\theta) = 0 \Leftrightarrow -\frac{24}{49} \sin(\theta) = \frac{24\sqrt{3}}{49} \cos(\theta) \Leftrightarrow \tan(\theta) = -\sqrt{3} \Leftrightarrow$$

$$(10) \quad \theta = -\frac{\pi}{3}, \frac{2\pi}{3}$$

We see that

$$(11) \quad g''(\theta) = -\frac{24}{49} \cos(\theta) + \frac{24\sqrt{3}}{49} \sin(\theta)$$

$$(12) \quad \rightarrow g''\left(-\frac{\pi}{3}\right) = -\frac{24}{49} \cos\left(-\frac{\pi}{3}\right) + \frac{24\sqrt{3}}{49} \sin\left(-\frac{\pi}{3}\right) = -\frac{48}{89} < 0.$$

The second derivative test shows us that $g(\theta)$ has a local maximum at $\theta = -\frac{\pi}{3}$.

$$(13) \quad g\left(-\frac{\pi}{3}\right) = \frac{24}{49} \cos\left(-\frac{\pi}{3}\right) - \frac{24\sqrt{3}}{49} \sin\left(-\frac{\pi}{3}\right) = \frac{48}{49}.$$

we see that g attains its maximum value of $\frac{48}{89}$ on $[0, 2\pi]$ at $\theta = -\frac{\pi}{3}$.

Solution to e: From parts b and d we have already seen that the value of θ that maximizes $g(\theta)$ is the same as the angle θ associated with the direction of maximum increase. To finish, we just note that

$$(14) \quad |\nabla f\left(\frac{3}{4}, -\sqrt{3}\right)| = \left|\left\langle \frac{24}{49}, \frac{-24\sqrt{3}}{49} \right\rangle\right| = \frac{24}{49} |\langle 1, -\sqrt{3} \rangle|$$

$$(15) \quad = \frac{24}{49} \sqrt{1^2 + (-\sqrt{3})^2} = \frac{48}{49}.$$

Problem 2: Consider the function $f(x, y) = x^2 + y^2$ and the point $P = (2, 3)$.

- (a) Find the unit vector that points in direction of maximum decrease of the function f at the point P .
- (b) Calculate the directional derivative of f at the point P in the direction of the vector $\vec{u} = \langle 3, 2 \rangle$.

Solution to (a): We see that $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \langle 2x, 2y \rangle$. We see that $-\nabla f(2, 3) = \langle -4, -6 \rangle$ is a vector that points in the direction of maximum decrease of f at the point P . Since $|\langle -4, -6 \rangle| = \sqrt{52} = 2\sqrt{13}$, we see that

$$(16) \quad \frac{\langle -4, -6 \rangle}{|\langle -4, -6 \rangle|} = \frac{1}{2\sqrt{13}} \langle -4, -6 \rangle = \left\langle \frac{-2}{\sqrt{13}}, \frac{-3}{\sqrt{13}} \right\rangle$$

is the direction of maximum decrease of f at the point P .

Solution to (b): We see that $|\vec{u}| = \sqrt{13}$, so

$$(17) \quad \vec{w} = \frac{\vec{u}}{|\vec{u}|} = \left\langle \frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right\rangle$$

is the unit vector that points in the same direction as \vec{u} , so

$$(18) \quad d_{\vec{w}} f(2, 3) = \nabla f(2, 3) \cdot \vec{w} = \langle 4, 6 \rangle \cdot \left\langle \frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \right\rangle = \frac{24}{\sqrt{13}}.$$

Problem 3: Below is a contour plot of some function $z = f(x, y)$ along with 4 vectors.

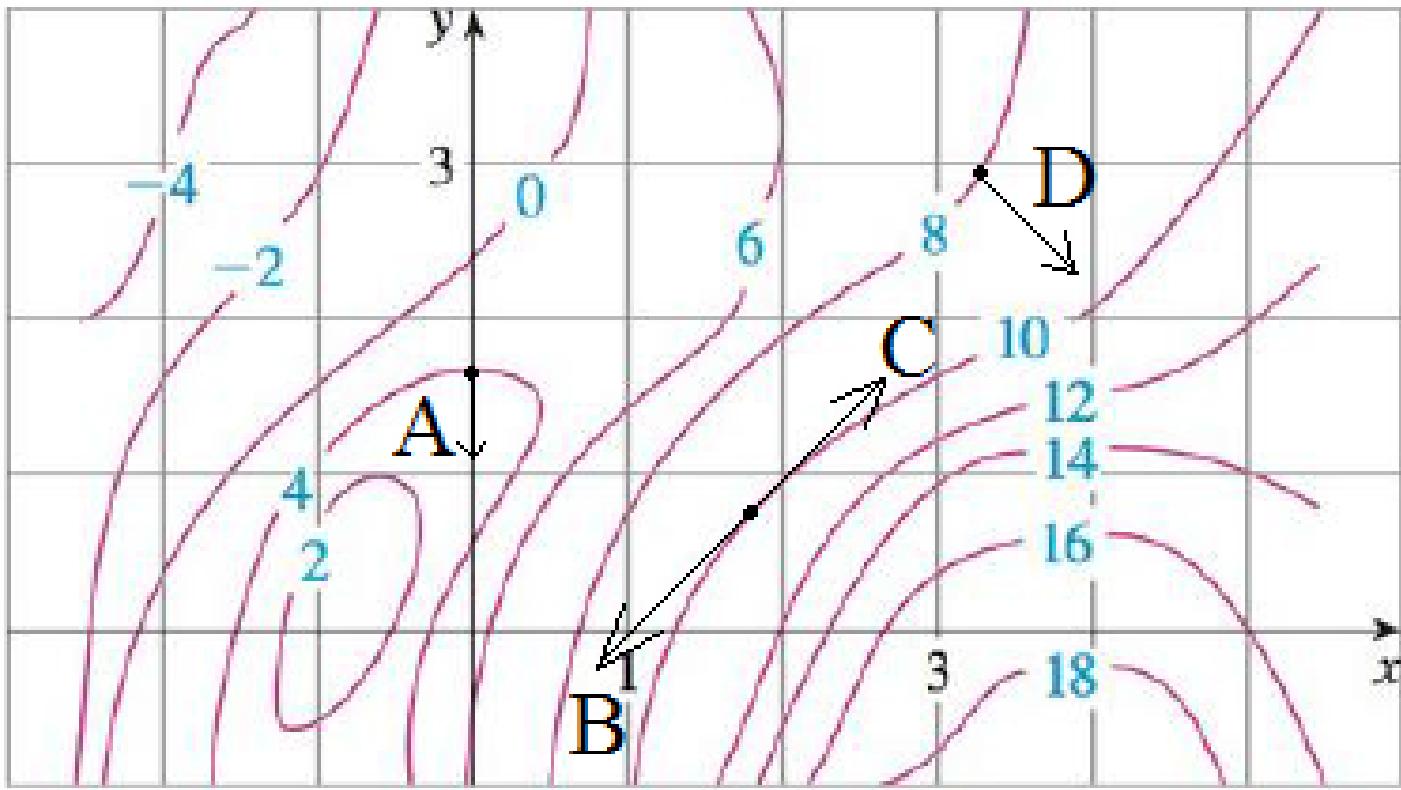


FIGURE 1. Contour plot of $z = f(x, y)$.

Which of the vectors in the above plot could possibly be a gradient vector of the function $f(x, y)$? Please circle all that apply.

(A) (B) (C) (D)

None of the vectors could possibly be a gradient vector for $f(x, y)$.

Explanation: The gradient vector of a function $f(x, y)$ is normal to the level curves (the curves of the form $f(x, y) = c$, with c a constant) and points in the direction of maximum increase. We see that vector A is normal to a level curve of f , but points in the direction of decrease and is therefore not a gradient vector. We see that vectors B and C are tangent to a level curve, not normal to the level curve, so neither of them can be a gradient vector. We see that vector D is normal to a level curve of f and points in the direction of increase, so D could be a gradient vector of f .

Problem 4: Determine all critical points of the function $f(x, y) = x^3 - y^3 + xy$, then classify each of the critical points as a local maximum, local minimum, or saddle point.

Solution: To find the critical points of f , we simply have to find all (x, y) for which both partial derivatives of f are 0.

$$(19) \quad \begin{aligned} f_x(x, y) &= 0 & \Leftrightarrow 3x^2 + y &= 0 & \Leftrightarrow -3x^2 &= y \\ f_y(x, y) &= 0 & \Leftrightarrow -3y^2 + x &= 0 & \Leftrightarrow 3y^2 &= x \end{aligned}$$

$$(20) \quad \rightarrow x = 3(-3x^2)^2 = 27x^4 \rightarrow x = 0, \frac{1}{3} \rightarrow (x, y) = \boxed{(0, 0), \left(\frac{1}{3}, -\frac{1}{3}\right)}.$$

We now proceed to calculate all of the second derivatives of f as well as the discriminant function so that we can apply the second derivative test.

$$(21) \quad \begin{aligned} f_{xx}(x, y) &= 6x \\ f_{yy}(x, y) &= -6y \\ f_{xy}(x, y) &= 1 \end{aligned}$$

$$(22) \quad \rightarrow D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^2 = -36xy - 1.$$

Since $D(0, 0) = -1 < 0$, we see that $\boxed{(0, 0) \text{ is a saddle point}}$.

Since $D\left(\frac{1}{3}, -\frac{1}{3}\right) = 3 > 0$ and $f_{xx}\left(\frac{1}{3}, -\frac{1}{3}\right) = 2 > 0$ we see that

$\boxed{\left(\frac{1}{3}, -\frac{1}{3}\right) \text{ is a local minimum}}$.

Problem 5: Show that the second derivative test is inconclusive when applied to the function $f(x, y) = x^4y^2$ at the point $(0, 0)$. Show that $f(x, y)$ has a local minimum at $(0, 0)$ by direct analysis.

Hint: The product of 2 negative numbers is positive.

Solution: We will first verify that $(0, 0)$ is a critical point. We see that

$$(23) \quad \frac{\partial f}{\partial x}(x, y) = 4x^3y^2 \text{ and } \frac{\partial f}{\partial y}(x, y) = 2x^4y, \text{ so}$$

$$(24) \quad \begin{aligned} \frac{\partial f}{\partial x}(x, y) = 0 &\Leftrightarrow 4x^3y^2 = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 &\Leftrightarrow 2x^4y = 0 \end{aligned} \Leftrightarrow x = 0 \text{ or } y = 0.$$

It follows that the critical points of f are precisely those points which are on either the x -axis or the y -axis, and $(0, 0)$ is certainly such a point. Next, we notice that

$$(25) \quad \frac{\partial^2 f}{\partial x^2}(x, y) = \frac{\partial}{\partial x} \frac{\partial f}{\partial x}(x, y) = \frac{\partial}{\partial x}(4x^3y^2) = 12x^2y^2,$$

$$(26) \quad \frac{\partial^2 f}{\partial y^2}(x, y) = \frac{\partial}{\partial y} \frac{\partial f}{\partial y}(x, y) = \frac{\partial}{\partial y}(2x^4y) = 2x^4, \text{ and}$$

$$(27) \quad \frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x}(2x^4y) = 8x^3y, \text{ so}$$

$$(28) \quad \begin{aligned} D(x, y) &= \frac{\partial^2 f}{\partial x^2}(x, y) \frac{\partial^2 f}{\partial y^2}(x, y) - \left(\frac{\partial^2 f}{\partial x \partial y}(x, y) \right)^2 \\ &= 12x^2y^2 \cdot 2x^4 - (8x^3y)^2 = -40x^6y^2. \end{aligned}$$

Since $D(x, y) = 0$ whenever $x = 0$ or $y = 0$, we see that the second derivative test is inconclusive for every critical point of f (which includes $(0, 0)$). However, we are still able to describe the behavior of $f(x, y)$ at any of its critical points by using a direct analysis. Note that $x^4y^2 \geq 0$ for all $(x, y) \in \mathbb{R}^2$ (use the hint if this is not obvious to you), and that $x^4y^2 = 0$ whenever $x = 0$ or $y = 0$. It follows that f attains its absolute minimum at any of its critical points.

Problem 6: Consider the function $f(x, y) = 3 + x^4 + 3y^4$. Show that $(0, 0)$ is a critical point for $f(x, y)$ and show that the second derivative test is inconclusive at $(0, 0)$. Then describe the behavior of $f(x, y)$ at $(0, 0)$.

Solution: We see that

$$(29) \quad \frac{\partial f}{\partial x}(x, y) = 4x^3 \text{ and } \frac{\partial f}{\partial y}(x, y) = 12y^3, \text{ so}$$

$$(30) \quad \begin{aligned} \frac{\partial f}{\partial x}(x, y) = 0 &\Leftrightarrow 4x^3 = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 &\Leftrightarrow 12y^3 = 0 \end{aligned} \Leftrightarrow (x, y) = (0, 0).$$

It follows that $(0, 0)$ is the only critical point of f in all of \mathbb{R}^2 . We also note that

$$(31) \quad \frac{\partial^2 f}{\partial x^2}(x, y) = \frac{\partial}{\partial x} \frac{\partial f}{\partial x}(x, y) = \frac{\partial}{\partial x}(4x^3) = 12x^2,$$

$$(32) \quad \frac{\partial^2 f}{\partial y^2}(x, y) = \frac{\partial}{\partial y} \frac{\partial f}{\partial y}(x, y) = \frac{\partial}{\partial y}(12y^3) = 36y^2, \text{ and}$$

$$(33) \quad \frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x}(12y^3) = 0, \text{ so}$$

$$(34) \quad \begin{aligned} D(x, y) &= \frac{\partial^2 f}{\partial x^2}(x, y) \frac{\partial^2 f}{\partial y^2}(x, y) - \left(\frac{\partial^2 f}{\partial x \partial y}(x, y) \right)^2 \\ &= 12x^2 \cdot 36y^2 - 0^2 = 432x^2y^2. \end{aligned}$$

Since $D(0, 0) = 0$, we see that the second derivative test is inconclusive. However, we are still able to describe the behavior of $f(x, y)$ at $(0, 0)$. Note that $x^4 \geq 0$ for all $x \in \mathbb{R}$, and $3y^4 \geq 0$ for all $y \in \mathbb{R}$. Furthermore, $x^4 = 0$ if and only if $x = 0$, and $3y^4 = 0$ if and only if $y = 0$. It follows that $x^4 + 3y^4 \geq 0$ for all $(x, y) \in \mathbb{R}^2$, and $x^4 + 3y^4 = 0$ if and only if $(x, y) = (0, 0)$. From this we are able to see that $f(x, y) = 3 + x^4 + 3y^4$ attains an absolute minimum at $(0, 0)$.