
Problem 1: Consider the function f (x, y) = ln(1 + 4x2 + 3y2) and the point
P = (34,−

√
3).

a. Find the gradient field ∇f (x, y) of f (x, y) and then evaluate it at P .
b. Find the angles θ (with respect to the x-axis) associated with the directions

of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function
g(θ).

d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction

of the gradient vector at P . Verify that the maximum value of g equals
the magnitude of the gradient vector at P .

Solution to a: We see that

(1)
fx(x, y) = 1

1+4x2+3y2
∂
∂x(1 + 4x2 + 3y2) = 8x

1+4x2+3y2

fy(x, y) = 1
1+4x2+3y2

∂
∂y(1 + 4x2 + 3y2) = 6y

1+4x2+3y2

(2) → ∇f (x, y) = 〈 8x

1 + 4x2 + 3y2
,

6y

1 + 4x2 + 3y2
〉.

(3) ∇f (
3

4
,−
√

3) = 〈 6

1 + 9
4 + 9

,
−6
√

3

1 + 9
4 + 9

〉 = 〈24

49
,
−24
√

3

49
〉.

Solution to b: We recall that ∇f (P ) points in the direction of maximum
increase from P . Since ∇f (P ) is in the fourth quadrant, we see that

(4) θmax = tan−1(
−24
√
3

49
24
49

) = tan−1(−
√

3) = −π
3
.

is the angle associated with the direction of maximum increase. Since −∇f (P )
points in the direction of maximum decrease from P , we see that θmin = θmax +
π = 2π

3 is the angle associated with the direction of maximum decrease. Since
the directions of no change are orthogonal to ∇f (P ) (and to −∇f (P )), we see
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that θ1 = θmax + π
2 = 5π

6 and θ2 = θmax − π
2 = −π

6 are the angles associated to
the directions of zero change.

Solution to c: We recall that ~u(θ) = 〈cos(θ), sin(θ)〉 is the unit vector
associated with the angle θ. We also recall that for any unit vector ~u, we have
that

(5) d~uf (a, b) = ∇f (a, b) · ~u, so

(6) g(θ) = d~u(θ)f (P ) = ∇f (P ) · ~u(θ) = 〈24

49
,
−24
√

3

49
〉 · 〈cos(θ), sin(θ)〉

(7) =
24

49
cos(θ)− 24

√
3

49
sin(θ).

Solution to d: We see that

(8) g′(θ) = −24

49
sin(θ)− 24

√
3

49
cos(θ)→

(9) g′(θ) = 0⇔ −24

49
sin(θ) =

24
√

3

49
cos(θ)⇔ tan(θ) = −

√
3⇔

(10) θ = −π
3
,

2π

3
We see that

(11) g′′(θ) = −24

49
cos(θ) +

24
√

3

49
sin(θ)

(12) → g′′(−π
3

) = −24

49
cos(−π

3
) +

24
√

3

49
sin(−π

3
) = −48

89
< 0.

The second derivative test shows us that g(θ) has a local maximum at θ = −π
3 .

Page 2



Sohail Farhangi Solutions to the Math 2153 Recitation Handout for 10/21/2021

(13) g(−π
3

) =
24

49
cos(−π

3
)− 24

√
3

49
sin(−π

3
) =

48

49
.

we see that g attains its maximum value of 48
89 on [0, 2π] at θ = −π

3 .

Solution to e: From parts b and d we have already seen that the value of θ
that maximizes g(θ) is the same as the angle θ associated with the direction of
maximum increase. To finish, we just note that

(14) |∇f (
3

4
,−
√

3)| = |〈24

49
,
−24
√

3

49
〉| = 24

49
|〈1,−

√
3〉|

(15) =
24

49

√
12 + (−

√
3)2 =

48

49
.
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Problem 2: Consider the function f (x, y) = x2 + y2 and and the point
P = (2, 3).

(a) Find the unit vector that points in direction of maximum decrease of the
function f at the point P .

(b) Calculate the directional derivative of f at the point P in the direction of
the vector ~u = 〈3, 2〉.

Solution to (a): We see that ∇f (x, y) = 〈fx(x, y), fy(x, y)〉 = 〈2x, 2y〉.
We see that −∇f (2, 3) = 〈−4,−6〉 is a vector that points in the direction of
maximum decrease of f at the point P . Since |〈−4,−6〉| =

√
52 = 2

√
13, we

see that

(16)
〈−4,−6〉
|〈−4,−6〉|

=
1

2
√

13
〈−4,−6〉 = 〈 −2√

13
,
−3√

13
〉

is the direction of maximum decrease of f at the point P .

Solution to (b): We see that |~u| =
√

13, so

(17) ~w =
~u

|~u|
= 〈 3√

13
,

2√
13
〉

is the unit vector that points in the same direction as ~u, so

(18) d~wf (2, 3) = ∇f (2, 3) · ~w = 〈4, 6〉 · 〈 3√
13
,

2√
13
〉 =

24√
13
.
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Problem 3: Below is a contour plot of some function z = f (x, y) along with
4 vectors.

Figure 1. Contour plot of z = f(x, y).

Which of the vectors in the above plot could possibly be a gradient vector of
the function f (x, y)? Please circle all that apply.

(A) (B) (C) (D)

None of the vectors could possibly be a gradient vector for f (x, y).

Explanation: The gradient vector of a function f (x, y) is normal to the level
curves (the curves of the form f (x, y) = c, with c a constant) and points in
the direction of maximum increase. We see that vector A is normal to a level
curve of f , but points in the direction of decrease and is therefore not a gradient
vector. We see that vectors B and C are tangent to a level curve, not normal
to the level curve, so neither of them can be a gradient vector. We see that
vector D is normal to a level curve of f and points in the direction of increase,
so D could be a gradient vector of f .
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Problem 4: Determine all critical points of the function f (x, y) = x3−y3+xy,
then classify each of the critical points as a local maximum, local minimum, or
saddle point.

Solution: To find the criticial points of f , we simply have to find all (x, y)
for which both partial derivatives of f are 0.

(19)
fx(x, y) = 0
fy(x, y) = 0

⇔ 3x2 + y = 0
−3y2 + x = 0

⇔ −3x2 = y
3y2 = x

(20) → x = 3(−3x2)2 = 27x4 → x = 0,
1

3
→ (x, y) = (0, 0), (

1

3
,−1

3
) .

We now proceed to calculate all of the second derivatives of f as well as the
discriminant function so that we can apply the second derivative test.

(21)
fxx(x, y) = 6x
fyy(x, y) = −6y
fxy(x, y) = 1

(22) → D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2 = −36xy − 1.

Since D(0, 0) = −1 < 0, we see that (0, 0) is a saddle point .

Since D(13,−
1
3) = 3 > 0 and fxx(

1
3,−

1
3) = 2 > 0 we see that

(
1

3
,−1

3
) is a local minimum .
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Problem 5: Show that the second derivative test is inconclusive when applied
to the function f (x, y) = x4y2 at the point (0, 0). Show that f (x, y) has a local
minimum at (0, 0) by direct analysis.
H int: The product of 2 negative numbers is positive.

Solution: We will first verify that (0, 0) is a critical point. We see that

(23)
∂f

∂x
(x, y) = 4x3y2 and

∂f

∂y
(x, y) = 2x4y, so

(24)
∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x3y2 = 0

2x4y = 0
⇔ x = 0 or y = 0.

It follows that the critical points of f are precisely those points which are on
either the x-axis or the y-axis, and (0, 0) is certainly such a point. Next, we
notice that

(25)
∂2f

∂x2
(x, y) =

∂

∂x

∂f

∂x
(x, y) =

∂

∂x
(4x3y2) = 12x2y2,

(26)
∂2f

∂y2
(x, y) =

∂

∂y

∂f

∂y
(x, y) =

∂

∂y
(2x4y) = 2x4, and

(27)
∂2f

∂x∂y
(x, y) =

∂

∂x

∂f

∂y
=

∂

∂x
(2x4y) = 8x3y, so

(28) D(x, y) =
∂2f

∂x2
(x, y)

∂2f

∂y2
(x, y)− (

∂2f

∂x∂y
(x, y))2

= 12x2y2 · 2x4 − (8x3y)2 = −40x6y2.

Since D(x, y) = 0 whenever x = 0 or y = 0, we see that the second derivative
test is inconclusive for every critical point of f (which includes (0,0)). However,
we are still able to describe the behavior of f (x, y) at any of its critical points
by using a direct analysis. Note that x4y2 ≥ 0 for all (x, y) ∈ R2 (use the hint
if this is not obvious to you), and that x4y2 = 0 whenever x = 0 or y = 0. It
follows that f attains its absolute minimum at any of its critical points.
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Problem 6: Consider the function f (x, y) = 3+x4+3y4. Show that (0, 0) is a
critical point for f (x, y) and show that the second derivative test is inconclusive
at (0, 0). Then describe the behavior of f (x, y) at (0, 0).

Solution: We see that

(29)
∂f

∂x
(x, y) = 4x3 and

∂f

∂y
(x, y) = 12y3, so

(30)
∂f
∂x(x, y) = 0
∂f
∂y (x, y) = 0

⇔
4x3 = 0

12y3 = 0
⇔ (x, y) = (0, 0).

It follows that (0, 0) is the only critical point of f in all of R2. We also note
that

(31)
∂2f

∂x2
(x, y) =

∂

∂x

∂f

∂x
(x, y) =

∂

∂x
(4x3) = 12x2,

(32)
∂2f

∂y2
(x, y) =

∂

∂y

∂f

∂y
(x, y) =

∂

∂y
(12y3) = 36y2, and

(33)
∂2f

∂x∂y
(x, y) =

∂

∂x

∂f

∂y
=

∂

∂x
(12y3) = 0, so

(34) D(x, y) =
∂2f

∂x2
(x, y)

∂2f

∂y2
(x, y)− (

∂2f

∂x∂y
(x, y))2

= 12x2 · 36y2 − 02 = 432x2y2.

Since D(0, 0) = 0, we see that the second derivative test is inconclusive. How-
ever, we are still able to describe the behavior of f (x, y) at (0, 0). Note that
x4 ≥ 0 for all x ∈ R, and 3y4 ≥ 0 for all y ∈ R. Furthermore, x4 = 0 if and
only if x = 0, and 3y4 = 0 if and only if y = 0. It follows that x4 + 3y4 ≥ 0
for all (x, y) ∈ R2, and x4 + 3y4 = 0 if and only if (x, y) = (0, 0). From this
we are able to see that f (x, y) = 3 + x4 + 3y4 attains an absolute minimum at
(0, 0).
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