

Problem 15.2.5.82: Verify that

$$(1) \quad \lim_{(x,y) \rightarrow (0,0)} \frac{\sin(x) + \sin(y)}{x + y} = 1.$$

Solution: We begin by reviewing one of the sum to product trigonometric identities. Observe that

$$(2) \quad \boxed{\sin(x) + \sin(y)} = \sin\left(\frac{x+y}{2} + \frac{x-y}{2}\right) + \sin\left(\frac{x+y}{2} - \frac{x-y}{2}\right)$$

$$(3) \quad = \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) + \sin\left(\frac{x-y}{2}\right) \cos\left(\frac{x+y}{2}\right) \\ + \sin\left(\frac{x+y}{2}\right) \cos\left(-\frac{x-y}{2}\right) + \sin\left(-\frac{x-y}{2}\right) \cos\left(\frac{x+y}{2}\right)$$

$$(4) \quad = \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) + \sin\left(\frac{x-y}{2}\right) \cos\left(\frac{x+y}{2}\right) \\ + \sin\left(\frac{x+y}{2}\right) \cos\left(+\frac{x-y}{2}\right) - \sin\left(\frac{x-y}{2}\right) \cos\left(\frac{x+y}{2}\right)$$

$$(5) \quad = \boxed{2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)}.$$

Recalling that

$$(6) \quad \lim_{x \rightarrow 0} \frac{\sin(x)}{x} = 1,$$

we see that

$$(7) \quad \lim_{(x,y) \rightarrow (0,0)} \frac{\sin(x) + \sin(y)}{x + y} = \lim_{(x,y) \rightarrow (0,0)} \frac{2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)}{x + y}$$

$$(8) \quad \left(\lim_{(x,y) \rightarrow (0,0)} \frac{\sin\left(\frac{x+y}{2}\right)}{\frac{x+y}{2}} \right) \left(\lim_{(x,y) \rightarrow (0,0)} \cos\left(\frac{x-y}{2}\right) \right) = (1)(\cos\left(\frac{0-0}{2}\right)) = 1.$$

Homemade Problem: Consider the function

$$(9) \quad f(x, y) = \frac{xy^2}{x^2 + y^4}.$$

(a) Show that if L is a line that passes through the origin, then

$$(10) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in L}} f(x, y) = 0.$$

(b) Show that

$$(11) \quad \lim_{(x,y) \rightarrow (0,0)} f(x, y)$$

does not exist.

Solution to (a): Firstly, we see that if L is a line of the form $y = mx$ for some $m \in \mathbb{R}$, then

$$(12) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in L}} f(x, y) = \lim_{x \rightarrow 0} f(x, mx) = \lim_{x \rightarrow 0} \frac{x(mx)^2}{x^2 + (mx)^4}$$

$$(13) \quad = \lim_{x \rightarrow 0} \frac{m^2 x^3}{x^2 + m^4 x^4} = \lim_{x \rightarrow 0} \frac{m^2 x}{1 + m^4 x^2} = 0.$$

The only line L left to consider is the line through the origin with infinite slope, which is just the line $x = 0$. In this case we see that

$$(14) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in L}} f(x, y) = \lim_{y \rightarrow 0} f(0, y) = \lim_{y \rightarrow 0} \frac{0 \cdot y^2}{0^2 + y^4} = 0.$$

Solution to (b): In order to show that the limit in equation (11) does not exist we need to use the 2 path test. Based on part (a), we see that our second path needs cannot be a line. Thankfully, we only need to find a path P that results in any nonzero value when the limit is taken along P . If we try the parabolic path $y = x^2$, then we again get a value of 0 for the limit, but if we

try the path $x = y^2$ then we get a value of $\frac{1}{2}!$ In fact, we see that for $m \in \mathbb{R}$ and the path P_m given by $x = my^2$ we have

$$(15) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in P_m}} f(x,y) = \lim_{y \rightarrow 0} f(my^2, y) = \lim_{y \rightarrow 0} \frac{(my^2)y^2}{(my^2)^2 + y^4}$$

$$(16) \quad = \lim_{y \rightarrow 0} \frac{my^4}{m^2y^4 + y^4} = \lim_{y \rightarrow 0} \frac{m}{m^2 + 1}.$$

Since the range of the function $g(m) = \frac{m}{m^2+1}$ is $[-1, 1]$, we see that the limit can take on any value between -1 and 1 if the correct path is chosen. While we only need 2 paths that result in different values to apply the 2 path test, it is amusing to see that we have found infinitely many paths that result in infinitely many different values.

Problem 15.3.97: Consider the function $f(x, y) = \sqrt{|xy|}$.

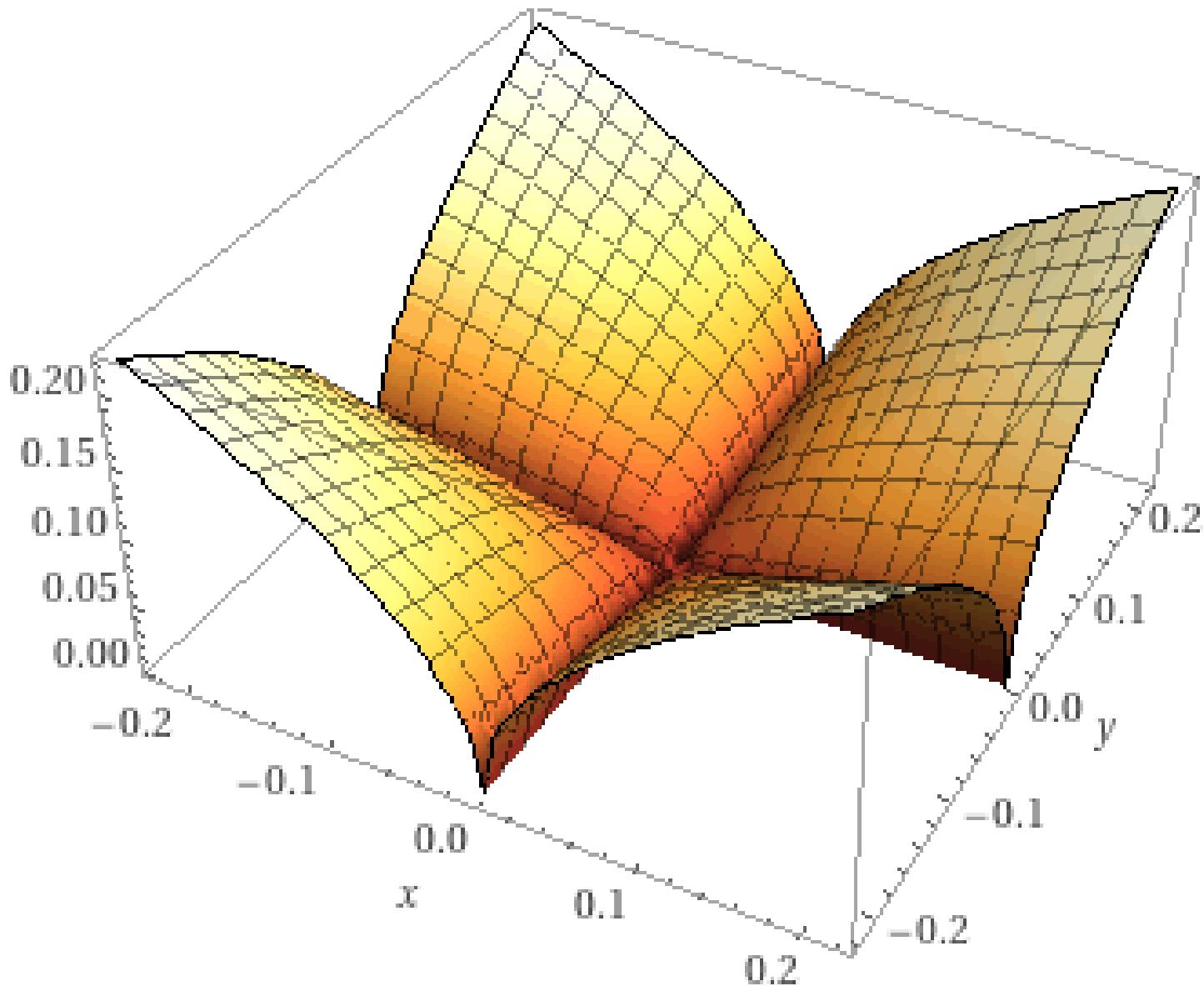


FIGURE 1. A graph of $z = \sqrt{|xy|}$.

- (a) Is f continuous at $(0, 0)$?
- (b) Show that $f_x(0, 0)$ and $f_y(0, 0)$ exist by calculating their values.
- (c) Determine whether f_x and f_y are continuous at $(0, 0)$.
- (d) Is f differentiable at $(0, 0)$?

Solution to (a): Yes. We will show that $f(x, y)$ is continuous on all of \mathbb{R}^2 . The function $f_1(x, y) = xy$ is a continuous function since it is a polynomial function. The function $f_2(x) = |x|$ is also a continuous function, and the composition of continuous functions is again continuous, so we see that $f_3(x, y) := f_2(f_1(x, y)) = |xy|$ is a continuous function. Since $|xy|$ only takes

on nonnegative values and the function $f_4(x) = \sqrt{x}$ is continuous on the domain $[0, \infty)$, we see that $f(x, y) = f_4(f_3(x, y))$ is indeed a continuous function.

Solution to (b): We see that

$$(17) \quad f_y(0, 0) = \lim_{y \rightarrow 0} \frac{f(0, y) - f(0, 0)}{y - 0} = \lim_{y \rightarrow 0} \frac{\sqrt{|0 \cdot y|} - \sqrt{|0 \cdot 0|}}{y} = 0, \text{ and}$$

$$(18) \quad f_x(0, 0) = \lim_{x \rightarrow 0} \frac{f(x, 0) - f(0, 0)}{x - 0} = \lim_{x \rightarrow 0} \frac{\sqrt{|x \cdot 0|} - \sqrt{|0 \cdot 0|}}{x} = 0.$$

Solution to (c): We will show that neither of f_x and f_y are continuous at $(0, 0)$. We note that for all $x, y > 0$ we have $f(x, y) = \sqrt{|xy|} = \sqrt{xy}$. It follows that for $x, y > 0$ we have

$$(19) \quad f_x(x, y) = \frac{\partial}{\partial x}((xy)^{\frac{1}{2}}) = \frac{1}{2}(xy)^{-\frac{1}{2}} \cdot y = \frac{1}{2}\sqrt{\frac{y}{x}}, \text{ and}$$

$$(20) \quad f_y(x, y) = \frac{\partial}{\partial y}((xy)^{\frac{1}{2}}) = \frac{1}{2}(xy)^{-\frac{1}{2}} \cdot x = \frac{1}{2}\sqrt{\frac{x}{y}}.$$

We now use the 2 path test to show that neither function is continuous. Let us consider the path P_m given by $y = mx$ with $m, x > 0$ so that the path lies in the first quadrant. We see that

$$(21) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in P_m}} f_x(x, y) = \lim_{x \rightarrow 0^+} f_x(x, mx) = \lim_{x \rightarrow 0^+} \frac{1}{2}\sqrt{\frac{mx}{x}} = \frac{m}{2}, \text{ and}$$

$$(22) \quad \lim_{\substack{(x,y) \rightarrow (0,0) \\ (x,y) \in P_m}} f_y(x, y) = \lim_{x \rightarrow 0^+} f_y(x, mx) = \lim_{x \rightarrow 0^+} \frac{1}{2}\sqrt{\frac{x}{mx}} = \frac{1}{2m}.$$

We see that the paths P_1 and P_2 result in the values of $\frac{1}{2}$ and 1 respectively for the value of $f_x(x, y)$ as (x, y) approaches $(0, 0)$, so f_x is not continuous at $(0, 0)$. Similarly, we see that the paths P_1 and P_2 result in the values of $\frac{1}{2}$ and $\frac{1}{4}$ respectively for the value of $f_y(x, y)$ as (x, y) approaches $(0, 0)$, so f_y is not continuous at $(0, 0)$.

Solution to (d): [No.] We begin by examining the directional derivative in the direction of the vector $\hat{u} = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$ at $(0, 0)$. We see that

$$(23) \quad D_{\hat{u}}f(0, 0) = \lim_{t \rightarrow 0} \frac{f((0, 0) + t\hat{u}) - f(0, 0)}{t} = \lim_{t \rightarrow 0} \frac{f\left(\frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right) - 0}{t}$$

$$(24) \quad = \lim_{t \rightarrow 0} \frac{\sqrt{\left|\frac{t^2}{2}\right|}}{t} = \lim_{t \rightarrow 0} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

If f was differentiable at $(0, 0)$, then we **would** have

$$(25) \quad D_{\hat{u}}f(0, 0) = \nabla f(0, 0) \cdot \hat{u} = \langle f_x(0, 0), f_y(0, 0) \rangle \cdot \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = 0.$$

Since this is not the case, we see that f is not differentiable at $(0, 0)$.