

Inequalities and Quadratic Forms

by Sohail Farhangi

In this paper we will investigate a method of transforming inequalities using quadratic forms.

Problem: Given real positive number a, b , and c , prove the following inequality, and find when equality holds.

$$(1) a\sqrt{4a^2 + 5bc} + b\sqrt{4b^2 + 5ca} + c\sqrt{4c^2 + 5ab} \geq (a + b + c)^2.$$

Solution: We notice that (1) is equivalent to (2) below.

$$(2) a\sqrt{4a^2 + 5bc} - a^2 - ab - ac + b\sqrt{4b^2 + 5ca} - ab - b^2 - bc + c\sqrt{4c^2 + 5ab} - ca - bc - c^2 \geq 0.$$

Now we define the following variables so that we may restate (2) as (3).

$$v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$A = \begin{pmatrix} \sqrt{4 + 5\frac{bc}{a^2}} - 1 & -1 & -1 \\ -1 & \sqrt{4 + 5\frac{ca}{b^2}} - 1 & -1 \\ -1 & -1 & \sqrt{4 + 5\frac{ab}{c^2}} - 1 \end{pmatrix}$$

$$(3) v^t A v \geq 0$$

We will now show that A is a positive semi-definite matrix, then we will only need to find the eigenvectors corresponding to an eigenvalue of 0 to finish the problem. To show that the hermitian matrix A is positive semi-definite, we only need to verify that all principal minors are nonnegative. It is clear that all 1×1 minors of A are positive. Next, if we note that $\sqrt{4 + 5\frac{bc}{a^2}} - 1 \geq \sqrt{4 + 5 * 0} - 1 = 1$, it is easily seen that all 2×2 minors of A are nonnegative. Lastly, we need to verify that the determinant of A is nonnegative, and this is equivalent to (4) below.

$$(\sqrt{4 + 5\frac{bc}{a^2}} - 1)[(\sqrt{4 + 5\frac{ca}{b^2}} - 1)(\sqrt{4 + 5\frac{ab}{c^2}} - 1) - 1] - (-1)[-(\sqrt{4 + 5\frac{ab}{c^2}} - 1) - 1] + (-1)[1 - (-1)(\sqrt{4 + 5\frac{ca}{b^2}} - 1)] \geq 0 \Leftrightarrow$$

$$\sqrt{4 + 5\frac{bc}{a^2}} \sqrt{4 + 5\frac{ca}{b^2}} \sqrt{4 + 5\frac{ab}{c^2}} \geq \sqrt{4 + 5\frac{bc}{a^2}} \sqrt{4 + 5\frac{ca}{b^2}} + \sqrt{4 + 5\frac{ca}{b^2}} \sqrt{4 + 5\frac{ab}{c^2}} + \sqrt{4 + 5\frac{ab}{c^2}} \sqrt{4 + 5\frac{bc}{a^2}} \geq 0 \Leftrightarrow$$

$$(4) 1 \geq (4 + 5\frac{bc}{a^2})^{-\frac{1}{2}} + (4 + 5\frac{ca}{b^2})^{-\frac{1}{2}} + (4 + 5\frac{ab}{c^2})^{-\frac{1}{2}}$$

We note that (4) is a homogeneous inequality, so we may impose the condition $abc = 1$ to obtain (5).

$$(5) 1 \geq (4 + 5a^{-3})^{-\frac{1}{2}} + (4 + 5b^{-3})^{-\frac{1}{2}} + (4 + 5c^{-3})^{-\frac{1}{2}}$$

We may now perform the following substitution. $x = a^{-3}, y = b^{-3}$, and $z = c^{-3}$ to obtain (6).

$$(6) 1 \geq (4 + 5x)^{-\frac{1}{2}} + (4 + 5y)^{-\frac{1}{2}} + (4 + 5z)^{-\frac{1}{2}}, xyz = 1.$$

(6) is a well known inequality with the 2 equality cases, so A is positive semi-definite as desired. The proof of (6) is being omitted as it detracts from the main method being illustrated in this paper. We will now consider the 2 equality cases in order to find when equality holds in (1).

Case 1: $x = y = z = 1$. In this case it is evident that $a = b = c$, and plugging these values in A yields the matrix A_1 below.

$$A_1 = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

It can be seen that the eigenvalues of A_1 are 0, 3, and 3, so the eigenspace corresponding to the eigenvalue 0 has dimension 1. We can see that

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

is an eigenvector of A_0 corresponding to the eigenvalue of 0, and it follows that equality in (1) holds if $a = b = c$.

Case 2: $\{x, y, z\} = \lim_{n \rightarrow \infty} \{\frac{1}{n}, \frac{1}{n}, n^2\}$. For short hand, we will denote this solution as $\{x, y, z\} = \{0, 0, \infty\}$. Moreover, it can be seen that there are 3 permutations of this solution, but it is only necessary to consider 1 of them. In this case it is evident that $a = b = \infty$, and $c = 0$. We can see that plugging these values in A yields the matrix A_2 below.

$$A_2 = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & \infty \end{pmatrix}$$

It can be seen that

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Is an eigenvector corresponding to the eigenvalue 0. Furthermore, we can see that v_1 is the only eigenvector corresponding to the eigenvalue 0 as follows. Consider the vector v_2 below.

$$v_2 = \begin{pmatrix} r \\ s \\ t \end{pmatrix}$$

In order for v_2 to be an eigenvector corresponding to the eigenvalue 0 of the

matrix A_2 , we must have $t = 0$ as seen from the fact that the entry in the third row and third column of A_2 is ∞ , while the other entries in the third row are finite. Examining the first row of A_2 tells us that $r = s$, so we can see that v_1 is the only eigenvector of A_2 corresponding to the eigenvalue 0 as desired, and this corresponds to the solution $a = b$, and $c = 0$ for (1). ■

Exercise 1

Consider a function of the form $f(a, b, c) = \sqrt{4 + \sum_{i=0}^n d_i a^{r_i} b^{s_i} c^{t_i}}$ where $\{d_i\}_{i=0}^{\infty}$, $\{r_i\}_{i=0}^{\infty}$, $\{s_i\}_{i=0}^{\infty}$, and $\{t_i\}_{i=0}^{\infty}$ are all real sequences with $d_i > 0 \forall 1 \leq i \leq n$, and $f(1, 1, 1) = 3$. For positive real numbers a, b , and c , and any real number x, y , and z , prove the following inequality given that $abc \geq 1$.

$$x^2 f(a, b, c) + y^2 f(c, a, b) + z^2 f(b, c, a) \geq (x + y + z)^2.$$

What can be said about the equality case? The equality case does have some dependence on the function f .