Problem 1: A lidless cardboard box is to be made with a volume of 4 m?.
Find the dimensions of the box that require the least cardboard.
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Problem 3: Find the absolute minimum and absolute maximum values of

he function -
the Hcito A 50'(,0_]—’ ()V\
o TAV Floyg) =2+ 4y 41

over the region
) R={(z,y): 2%+ 42 <1},

You should know how to solve this type of problem using lagrange multipli-
ers, but you can avoid using lagrange multipliers (and even avoid param-

eterization of the boundary) in this particular problem if you think about
it carefully.
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FIGURE 2. The interior of the R is shaded in red and the boundary of R is blue.
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Problem 3: Find the absolute minimum and absolute maximum values of
the function

(1) flz,y) =2 +4y° +1

over the region
) R={(z,y): 2%+ 42 <1},

You should know how to solve this type of problem using lagrange multipli-
ers, but you can avoid using lagrange multipliers (and even avoid param-

eterization of the boundary) in this particular problem if you think about
it carefully.
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FIGURE 2. The interior of the R is shaded in red and the boundary of R is blue.
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Problem 4: Use the method of Lagrange multipliers to find the absolute
maximum and minimum of the function
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Problem 5: What point on the plane x + y 4+ 4z = 8 is closest to the origin?

Give an argument showing that you have found an absolute minimum of the
distance function.
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Problem 7: Given the production function P = f(K, L) = K*L'™% and the
budget constraint pK + gL = B, where a, p, q, and B are given, show that P
is maximized when K = aB/p and L = (1 — a)B/q. (Recall that K > 0 and
L > 0 in order for the model to make sense in the real world and in order for
the production function f to be well defined.)
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