

Review Problem 1.92: What point on the plane $x + y + 4z = 8$ is closest to the origin? Give an argument showing that you have found an absolute minimum of the distance function.

Solution: Note that for any (x, y, z) on the plane $x + y + 4z = 8$ we have

$$(1) \quad z = 2 - \frac{1}{4}x - \frac{1}{4}y,$$

from which we see that

$$(2) \quad d((x, y, z), (0, 0, 0)) = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2}$$

$$(3) \quad = \sqrt{x^2 + y^2 + (2 - \frac{1}{4}x - \frac{1}{4}y)^2} = \sqrt{4 - x - y + \frac{1}{8}xy + \frac{17}{16}x^2 + \frac{17}{16}y^2}.$$

We recall that if $f(x, y)$ is any nonnegative function, then $f(x, y)$ and $f^2(x, y)$ have their (local and global) minimums and maximums occur at the same values of (x, y) . It follows that we want to optimize the function

$$(4) \quad f(x, y) = 4 - x - y + \frac{1}{8}xy + \frac{17}{16}x^2 + \frac{17}{16}y^2.$$

Since any global minimum of $f(x, y)$ is also a local minimum, we see that the global minimum of f (if it exists) is at a critical point. We now begin finding the critical points of f . We see that

$$(5) \quad \begin{aligned} 0 &= f_x(x, y) = \frac{17}{8}x + \frac{1}{8}y - 1 \\ 0 &= f_y(x, y) = \frac{1}{8}y + \frac{1}{8}x - 1 \end{aligned} \rightarrow 0 = (\frac{17}{8}x + \frac{1}{8}y - 1) - (\frac{1}{8}y + \frac{1}{8}x - 1)$$

$$(6) \quad = 2x - 2y \rightarrow x = y \rightarrow x = y = \frac{4}{9}.$$

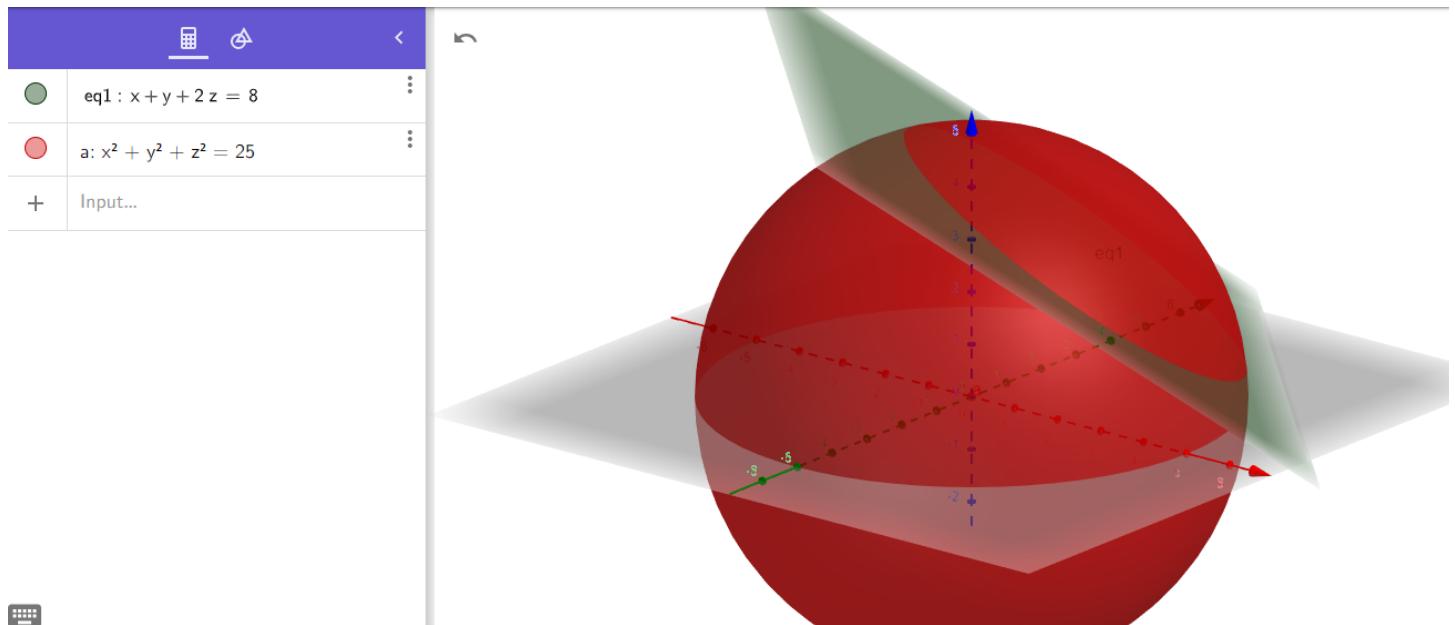
We see that $(\frac{4}{9}, \frac{4}{9})$ is the only critical point. We will now use the second derivative test to verify that $(\frac{4}{9}, \frac{4}{9})$ is a local minimum. We see that

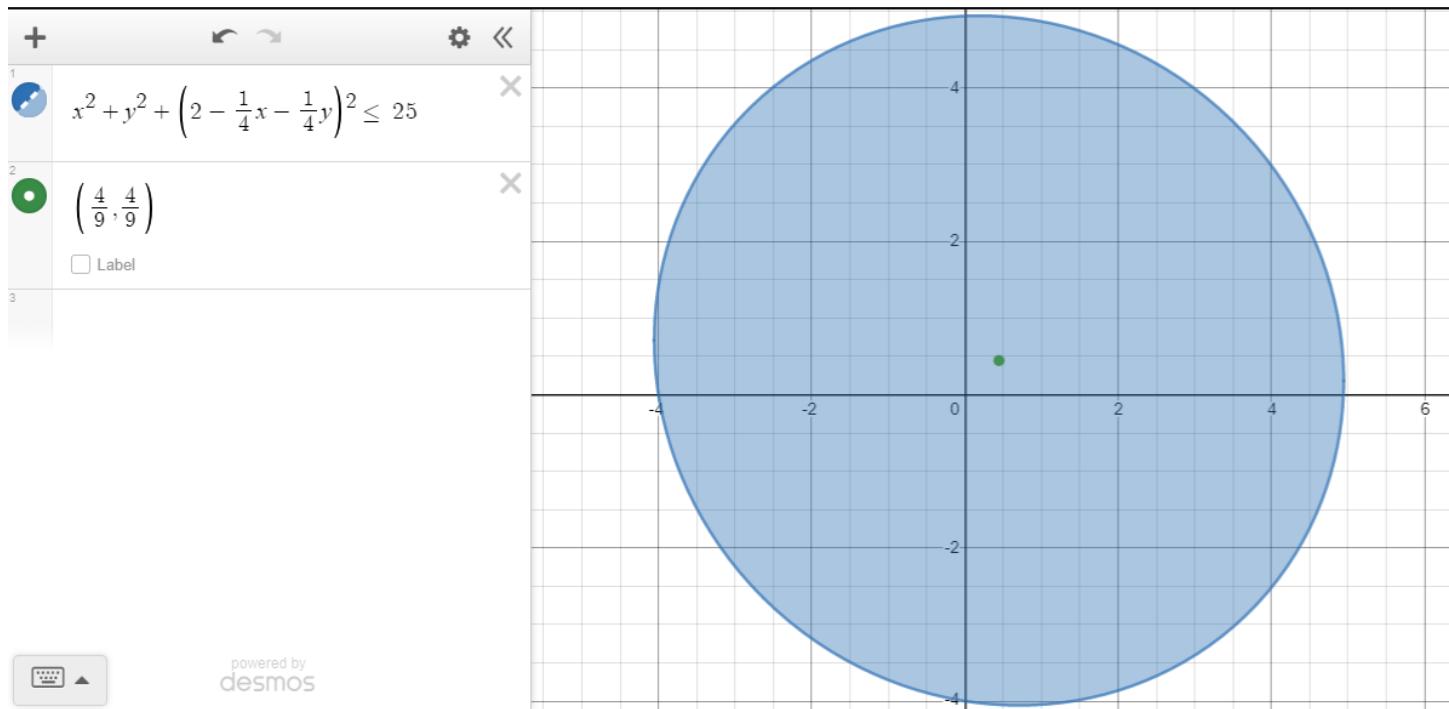
$$(7) \quad \begin{aligned} f_{xx}(x, y) &= \frac{17}{8} \\ f_{yy}(x, y) &= \frac{17}{8} \rightarrow D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - f_{xy}(x, y)^2 \\ f_{xy}(x, y) &= \frac{1}{8} \end{aligned}$$

$$(8) \quad = \frac{17}{8} \cdot \frac{17}{8} - \left(\frac{1}{8}\right)^2 = \frac{9}{2} \rightarrow D\left(\frac{4}{9}, \frac{4}{9}\right) = \frac{9}{2} > 0.$$

Since we also see that $f_{xx}\left(\frac{4}{9}, \frac{4}{9}\right) = \frac{17}{8} > 0$, the second derivative test tells us that $\left(\frac{4}{9}, \frac{4}{9}\right)$ is indeed a local minimum of $f(x, y)$. It remains to show that $f(x, y)$ attains its global minimum at $\left(\frac{4}{9}, \frac{4}{9}\right)$. Firstly, we note that $f\left(\frac{4}{9}, \frac{4}{9}\right) = \frac{4\sqrt{2}}{3}$. Since $\frac{32}{9} < 25$ (I picked 25 randomly, I just needed some larger number), let us consider the region R of (x, y) for which $(x, y, \underbrace{2 - \frac{1}{4}x - \frac{1}{4}y}_{z})$ has a distance of

at most 5 from the origin. This is the same as $R = \{(x, y) \mid f(x, y) \leq 25\}$.

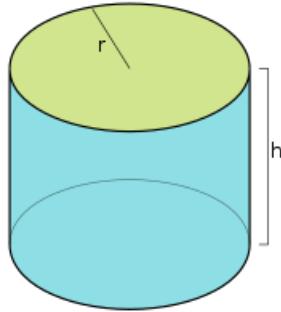




Since R is a closed and bounded region, and $f(x, y)$ is a continuous function function, we know that f attains an absolute minimum on R . The point $(\frac{4}{9}, \frac{4}{9})$ is inside of R , so the minimum of f is not attained on the boundary of R (as that is where the distance to the origin is exactly 5). Since the minimum of f on R is attained on the interior, we see that it must be obtained at a critical point of $f(x, y)$, so it is attained at $(\frac{4}{9}, \frac{4}{9})$. For any point (x, y) outside of R , we have $f(x, y) > 25$ (by the very definition of R), so the global minimum of $f(x, y)$ is $\frac{32}{9}$ and is attained at $(\frac{4}{9}, \frac{4}{9})$. It follows that the point on the plane

$x + y + 2z = 8$ that is closest to the origin is $\left(\frac{4}{9}, \frac{4}{9}, \frac{16}{9}\right)$.

Review Problem 1.98: Use Lagrange multipliers to find the dimensions of the right circular cylinder of minimum surface area (including the circular ends) with a volume of 32π in³.



Solution: We recall that a cylinder of radius r and height h has a volume of $V = \pi r^2 h$ and a surface area (including the 2 circular ends) of $S = 2\pi r^2 + 2\pi r h$. It follows that we want to optimize the function $f(r, h) = 2\pi r^2 + 2\pi r h$ subject to the constraint $0 = g(r, h) = \pi r^2 h - 32\pi$. Since

$$(9) \quad \nabla f(r, h) = \langle 4\pi r + 2\pi h, 2\pi r \rangle \text{ and } \nabla g(r, h) = \langle 2\pi r h, \pi r^2 \rangle, \text{ we obtain}$$

$$(10) \quad \begin{aligned} 4\pi r + 2\pi h &= 2\pi \lambda r h & 2r + h &= \lambda r h & 2r + h &= 2h \\ 2\pi r &= \pi \lambda r^2 & \xrightarrow{r \neq 0} 2 &= \lambda r & 2 &= \lambda r \\ \pi r^2 h &= 32\pi & r^2 h &= 32 & r^2 h &= 32 \end{aligned}$$

$$(11) \quad \begin{aligned} 2r &= h & 2r &= h \\ \rightarrow 2 &= \lambda r & \rightarrow 2 &= \lambda r & \rightarrow r = \sqrt[3]{16} = 2\sqrt[3]{2} & \rightarrow h = 4\sqrt[3]{2}. \\ r^2 h &= 32 & 2r^3 &= 32 \end{aligned}$$

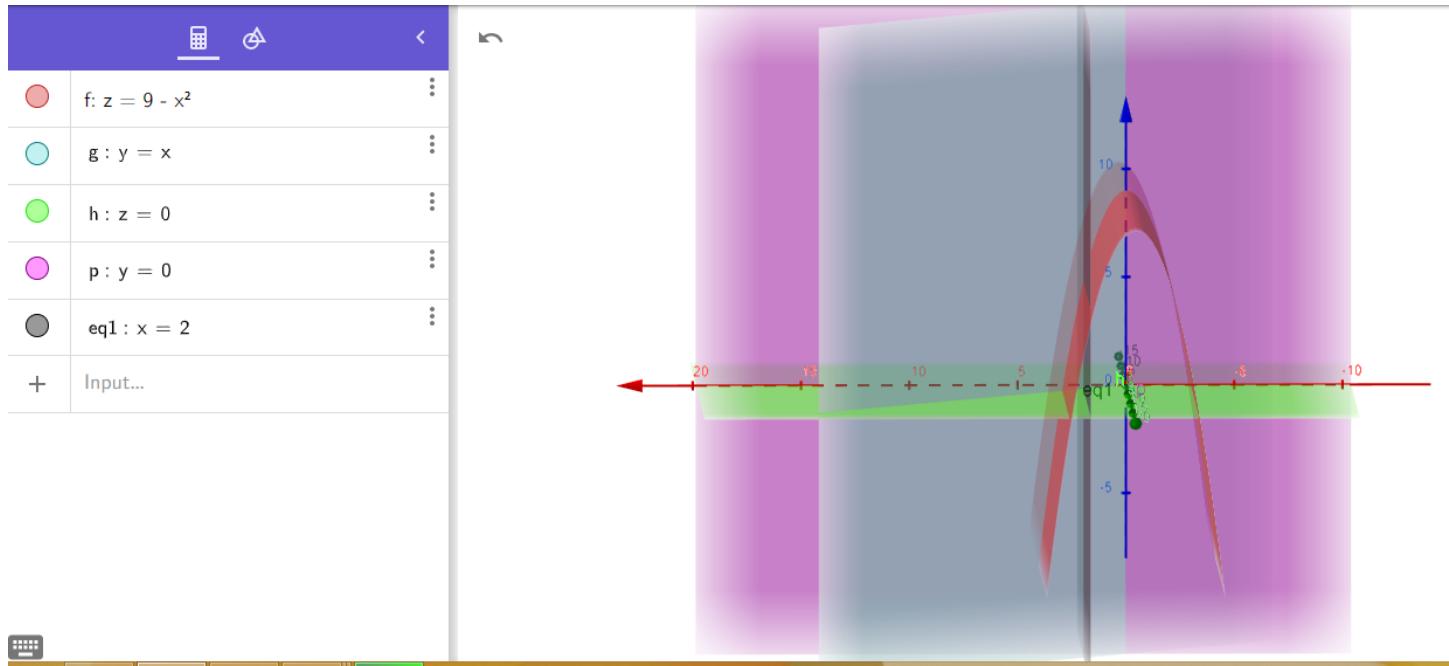
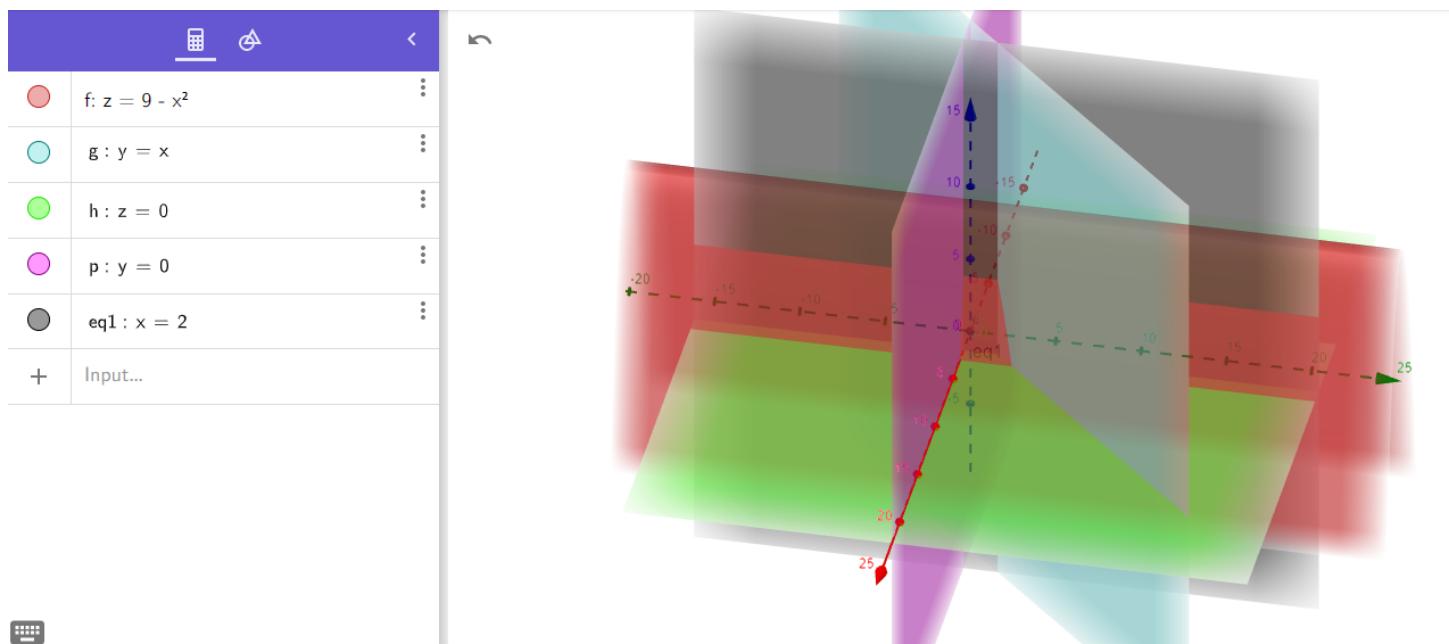
Since the cylinder does not have a maximum surface area when subjected to the constraint $V = 32\pi$, we see that the critical point that we found has to correspond to a local minimum. The extreme/boundary cases occur when either $r \rightarrow \infty$ or $h \rightarrow \infty$, in which case we also have $S \rightarrow \infty$. It follows that $f(r, h)$ attains a minimum value of $24\pi\sqrt[3]{4}$ when $(r, h) = \boxed{(2\sqrt[3]{2}, 4\sqrt[3]{2})}$.

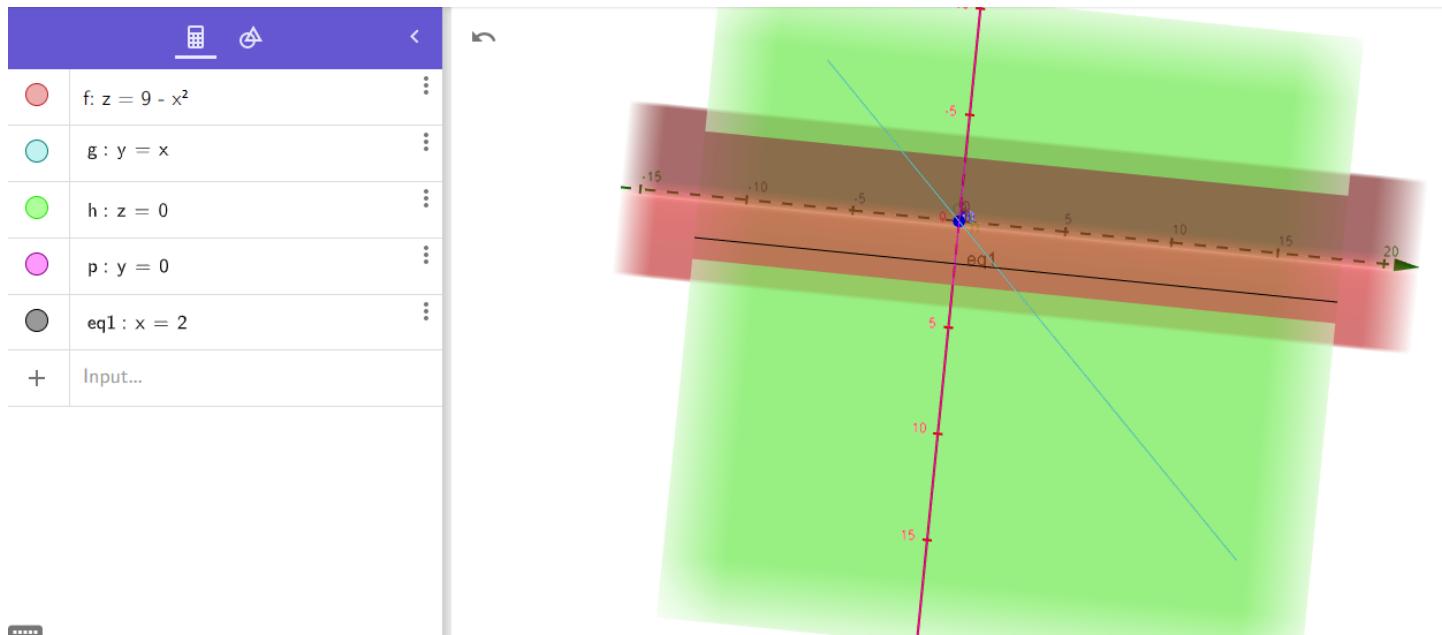
Review Problem 2.26: Rewrite the the triple integral

$$(12) \quad \int_0^2 \int_0^{9-x^2} \int_0^x f(x, y, z) dy dz dx$$

using the order $dz dx dy$.

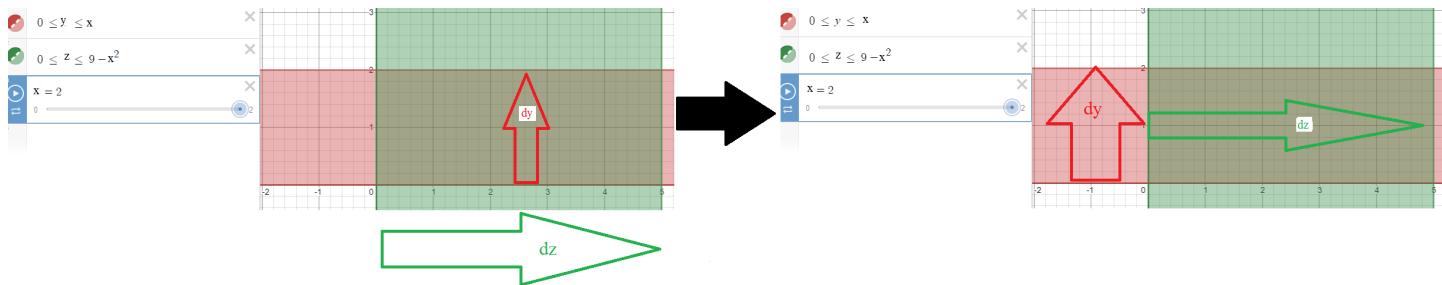
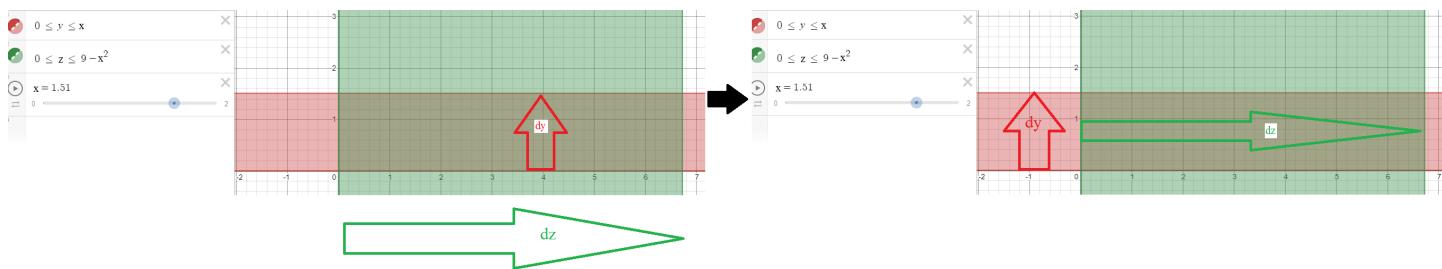
First Solution: We envision the 3-dimensional solid that is described by the bounds of the triple integral in the correct order of $dy dz dx$, and then we traverse the solid using the new order of $dz dx dy$.



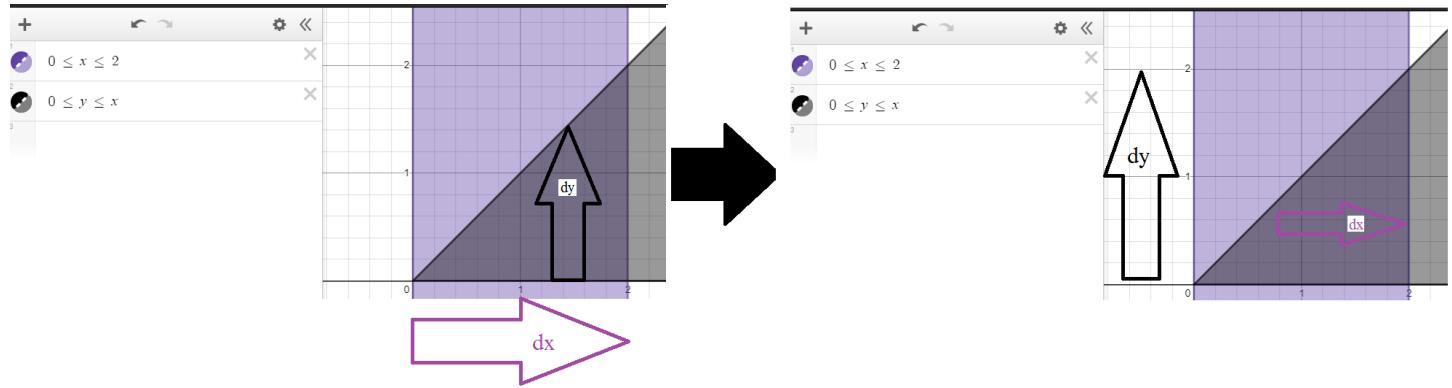


$$(13) \quad \int_0^2 \int_y^2 \int_0^{9-x^2} f(x, y, z) dz dx dy.$$

Second Solution: In order to avoid drawing and thinking about 3-dimensional regions, we will perform 2 separate changes of order. We will first change the order from $dy dz dx$ to $dz dy dx$, and then we will change the order from $dz dy dx$ to $dz dx dy$.

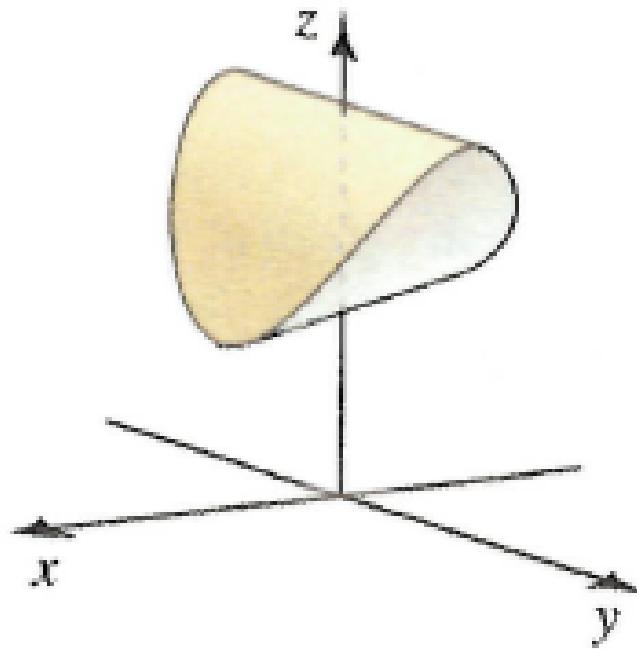


$$(14) \quad \int_0^2 \int_0^{9-x^2} \int_0^x f(x, y, z) dy dz dx = \int_0^2 \int_0^x \int_0^{9-x^2} f(x, y, z) dz dy dx$$



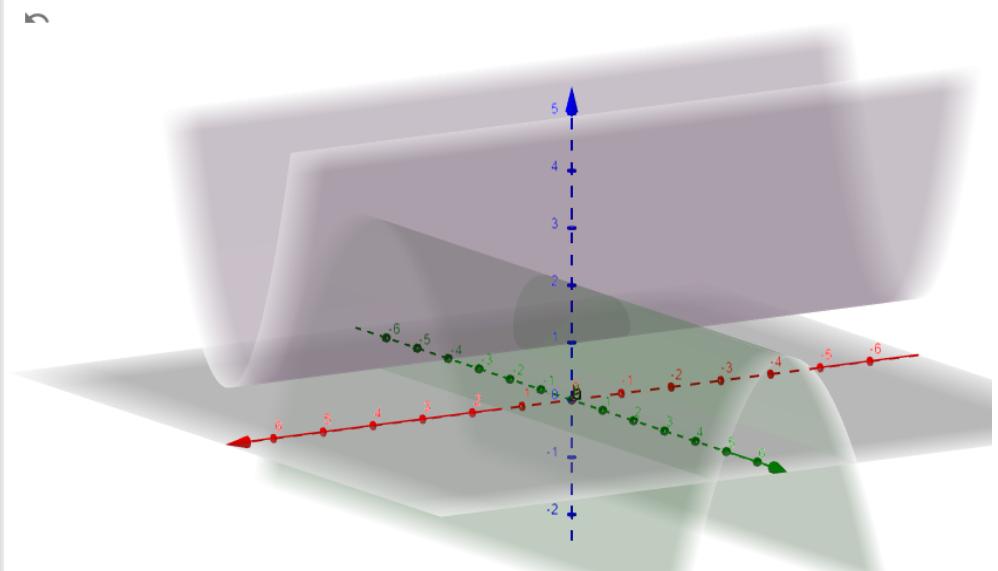
$$(15) \quad \int_0^2 \int_0^x \int_0^{9-x^2} f(x, y, z) dz dy dx = \boxed{\int_0^2 \int_y^2 \int_0^{9-x^2} f(x, y, z) dz dx dy}.$$

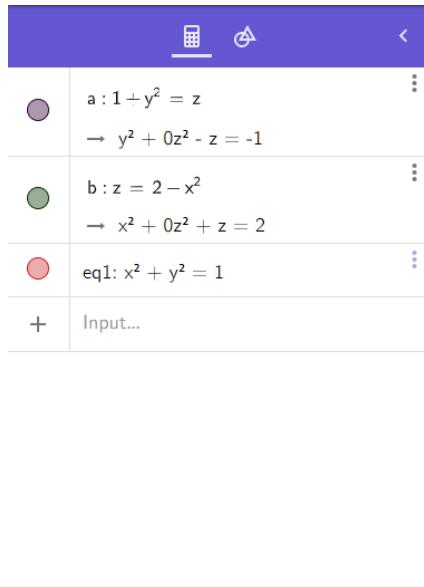
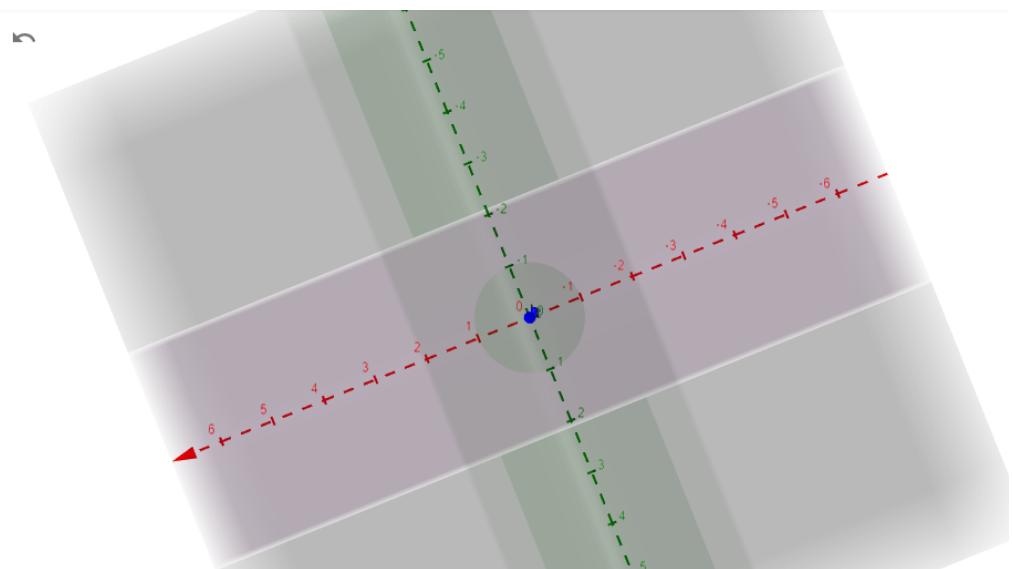
Review Problem 2.34: Find the volume of the solid S that is bounded by the parabolic cylinders $z = y^2 + 1$ and $z = 2 - x^2$.



Solution: S is a 3 dimensional solid that is defined as the region inbetween 2 surfaces. First, we find the intersection I of $z = y^2 + 1$ and $z = 2 - x^2$ to satisfy $y^2 + 1 = 2 - x^2$ or $x^2 + y^2 = 1$.

•	a : $1 + y^2 = z$ → $y^2 + 0z^2 - z = -1$	⋮
•	b : $z = 2 - x^2$ → $x^2 + 0z^2 + z = 2$	⋮
○	eq1: $x^2 + y^2 = 1$	⋮
+	Input...	





It follows that the (x, y) -coordinates of I are the circle of radius 1 centered at the origin. Note that the intersection I is not itself a circle since the z -coordinate is not constant on the intersection. Thankfully, for the purposes of calculating the volume of S , we only need to know the projection R of I onto the xy -plane (along with the interior of the projection), which is the same as knowing the the (x, y) -coordinates of I .

$$(16) \quad \text{Volume}(S) = \iint_R (z_{\text{top}} - z_{\text{bottom}}) dA$$

$$(17) \quad = \int_0^{2\pi} \int_0^1 \left((2 - (r \cos(\theta))^2) - ((r \sin(\theta))^2 + 1) \right) r dr d\theta$$

$$(18) \quad = \int_0^{2\pi} \int_0^1 (1 - r^2 \cos^2(\theta) - r^2 \sin^2(\theta)) r dr d\theta$$

$$(19) \quad = \int_0^1 \int_0^{2\pi} (r - r^3) d\theta dr = \int_0^{\sqrt{3}} (r\theta - r^3\theta) \Big|_{\theta=0}^{2\pi} dr$$

$$(20) \quad = \int_0^1 2\pi (r - r^3) dr = 2\pi \left(\frac{1}{2}r^2 - \frac{1}{4}r^4 \right) \Big|_0^1 = \boxed{\frac{\pi}{2}}.$$

Remark: We could have also calculated the volume by using a triple integral in cylindrical coordinates as follows.

$$(21) \quad \text{Volume}(S) = \iiint_S 1 dV = \int_0^{2\pi} \int_0^{\sqrt{3}} \int_{r^2 \sin^2(\theta)+1}^{2-r^2 \cos^2(\theta)} r dz dr d\theta = \boxed{\pi}.$$