

Problem 2.5.49: Find the volume of the solid region S outside the cone $\varphi = \frac{\pi}{4}$ and inside the sphere $\rho = 4 \cos(\varphi)$.

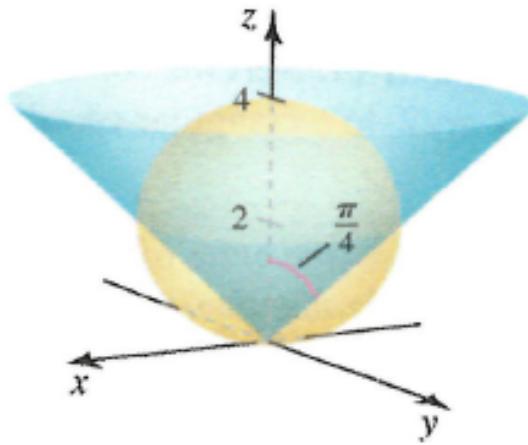


FIGURE 1. From page 167 of the textbook.

First Solution: We will proceed by using spherical coordinates. Due to the symmetry of our solid with respect to θ we begin by taking a cross section with the xz -plane. Since we are working in spherical coordinates, the cross section will be in coordinates similar to polar coordinates. Remember that the angle φ is measured from the z -axis and satisfies $0 \leq \varphi \leq \pi$, not $0 \leq \varphi \leq 2\pi$. Also remember that this cross section is showing you the portions of the solid from $\theta = 0$ and $\theta = \pi$.

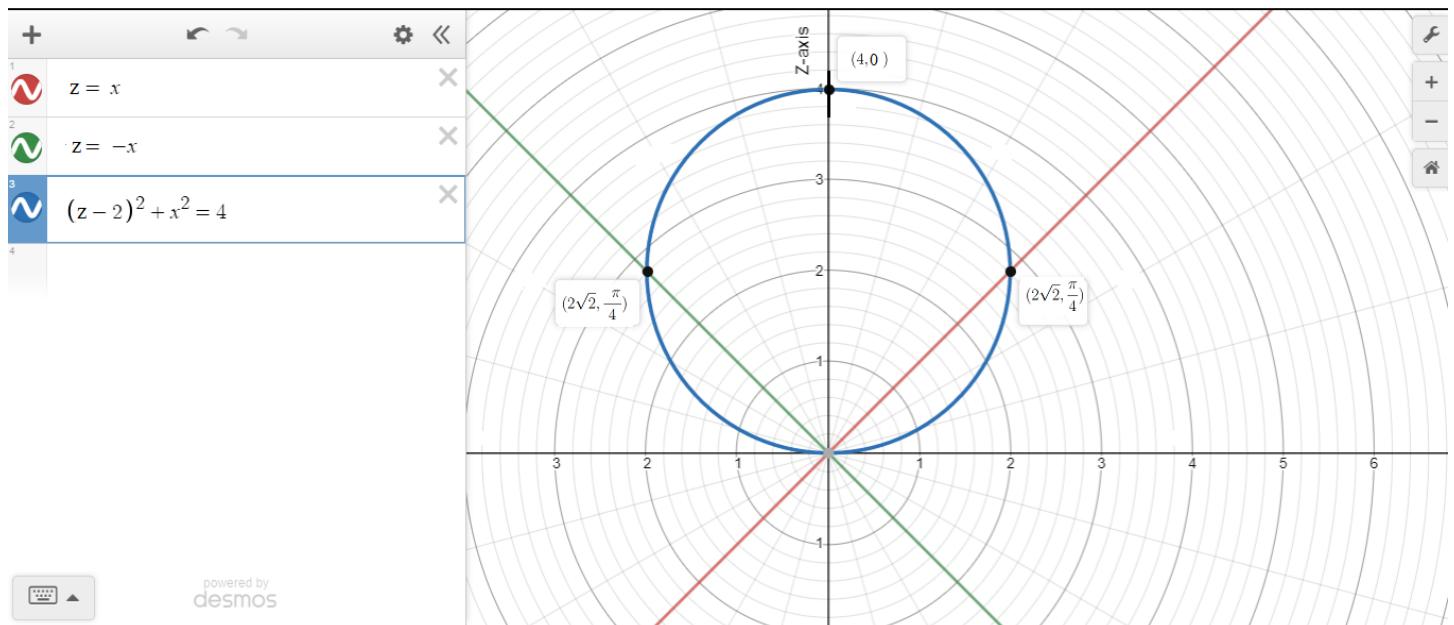


FIGURE 2. The xz -plane cross section in spherical coordinates.

We now see that for any $\theta \in [0, 2\pi)$ we have that $\frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}$. Recalling that the blue circle is defined by $\rho = 4 \cos(\varphi)$, we see that once φ is also chosen we have that $0 \leq \rho \leq 4 \cos(\varphi)$. We now see that the volume of the solid is given by

$$(1) \quad \text{Volume}(S) = \iiint_S 1 dV = \int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^{4 \cos(\varphi)} \rho^2 \sin(\varphi) d\rho d\varphi d\theta$$

$$(2) \quad = \int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{3} \rho^3 \sin(\varphi) \Big|_{\rho=0}^{4 \cos(\varphi)} d\varphi d\theta = \int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{64}{3} \underbrace{\cos^3(\varphi)}_{u^3} \underbrace{\sin(\varphi)}_{-du} d\varphi d\theta$$

$$(3) \quad = -\frac{64}{3} \int_0^{2\pi} \int_{\varphi=\frac{\pi}{4}}^{\frac{\pi}{2}} u^3 du d\theta = -\frac{64}{3} \int_0^{2\pi} \frac{1}{4} u^4 \Big|_{\varphi=\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta$$

$$(4) \quad = -\frac{64}{3} \int_0^{2\pi} \frac{1}{4} \cos^4(\varphi) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta = -\frac{64}{3} \int_0^{2\pi} -\frac{1}{16} d\theta = -\frac{64}{3} \cdot 2\pi \cdot \frac{-1}{16} = \boxed{\frac{8\pi}{3}}.$$

Second Solution: We will proceed by using cylindrical coordinates. Due to the symmetry of our solid with respect to θ we begin by taking a cross section with the xz-plane. Since we are working in spherical coordinates, the cross section will be in coordinates similar to Cartesian coordinates with (r, z) taking the place of (x, y) . Remember that this cross section is also showing you the portions of the solid from $\theta = 0$ and $\theta = \pi$.

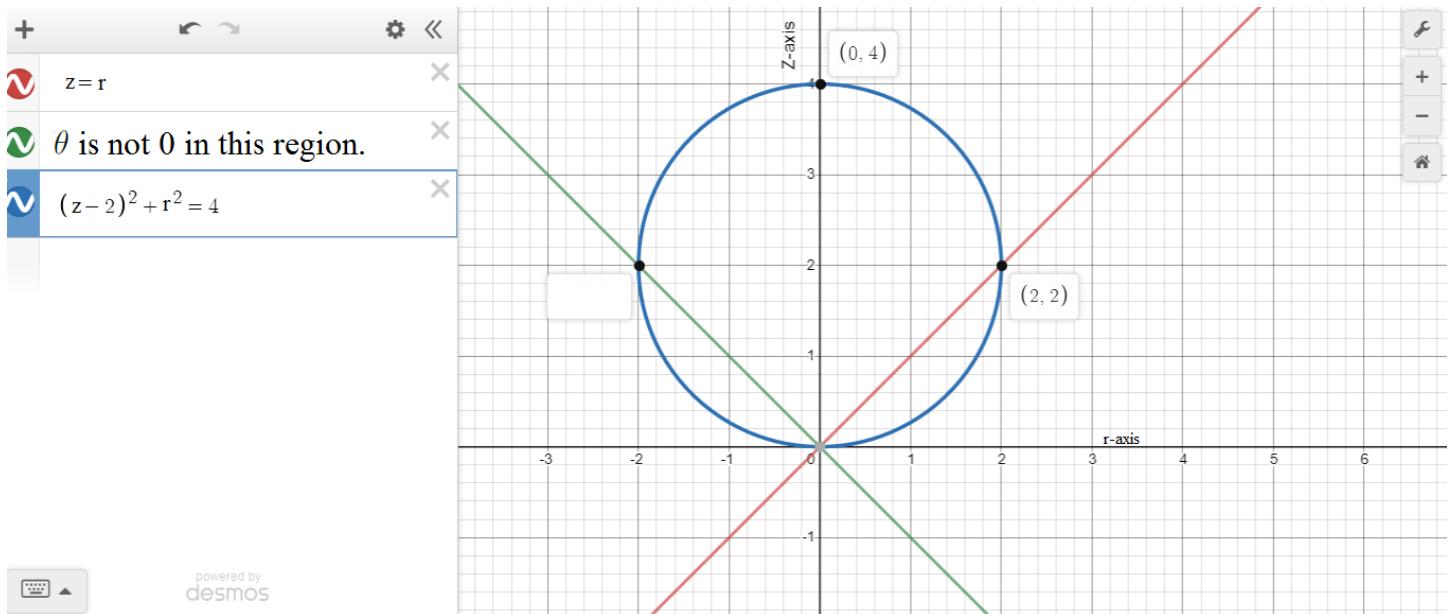


FIGURE 3. The xz-plane cross section in cylindrical coordinates.

We now see that for any $0 \leq \theta < 2\pi$ we have that $0 \leq z \leq 2$. Noting that we have $r = \sqrt{4 - (z - 2)^2} = \sqrt{4z - z^2}$ on the blue circle, we see that once z is chosen we have $z \leq r \leq \sqrt{4z - z^2}$. We now see that the volume of the solid is given by

$$(5) \quad \text{Volume}(S) = \iiint_S 1 dV = \int_0^{2\pi} \int_0^2 \int_z^{\sqrt{4z-z^2}} r dr dz d\theta$$

$$(6) \quad = \int_0^{2\pi} \int_0^2 \frac{1}{2} r^2 \Big|_z^{\sqrt{4z-z^2}} dz d\theta = \int_0^{2\pi} \int_0^2 (2z - z^2) dz d\theta$$

$$(7) \quad \int_0^{2\pi} \left(z^2 - \frac{1}{3} z^3 \right) \Big|_0^2 d\theta = \int_0^{2\pi} \frac{4}{3} d\theta = \boxed{\frac{8\pi}{3}}.$$

Problem 2.5.50: Find the volume of the solid region S that is bounded by the cylinders $r = 1$ and $r = 2$, and the cones $\varphi = \frac{\pi}{6}$ and $\varphi = \frac{\pi}{3}$.

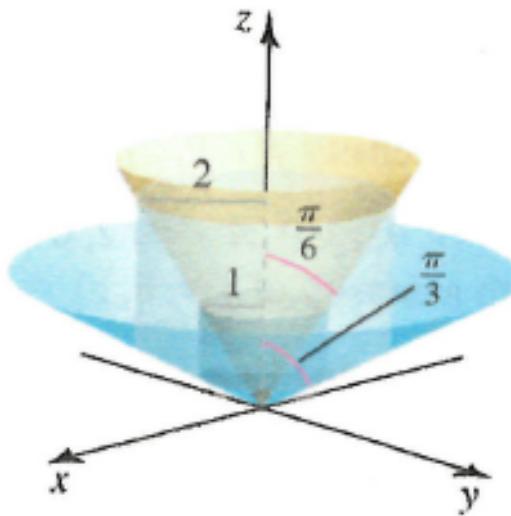


FIGURE 4. From page 167 of the textbook.

First Solution: We will proceed by using spherical coordinates. Due to the symmetry of our solid with respect to θ we begin by taking a cross section with the xz -plane. Since we are working in spherical coordinates, the cross section will be in coordinates similar to polar coordinates. This time we will focus on the right of the z -axis (y -axis) in order to only see the part of the solid corresponding to $\theta = 0$.

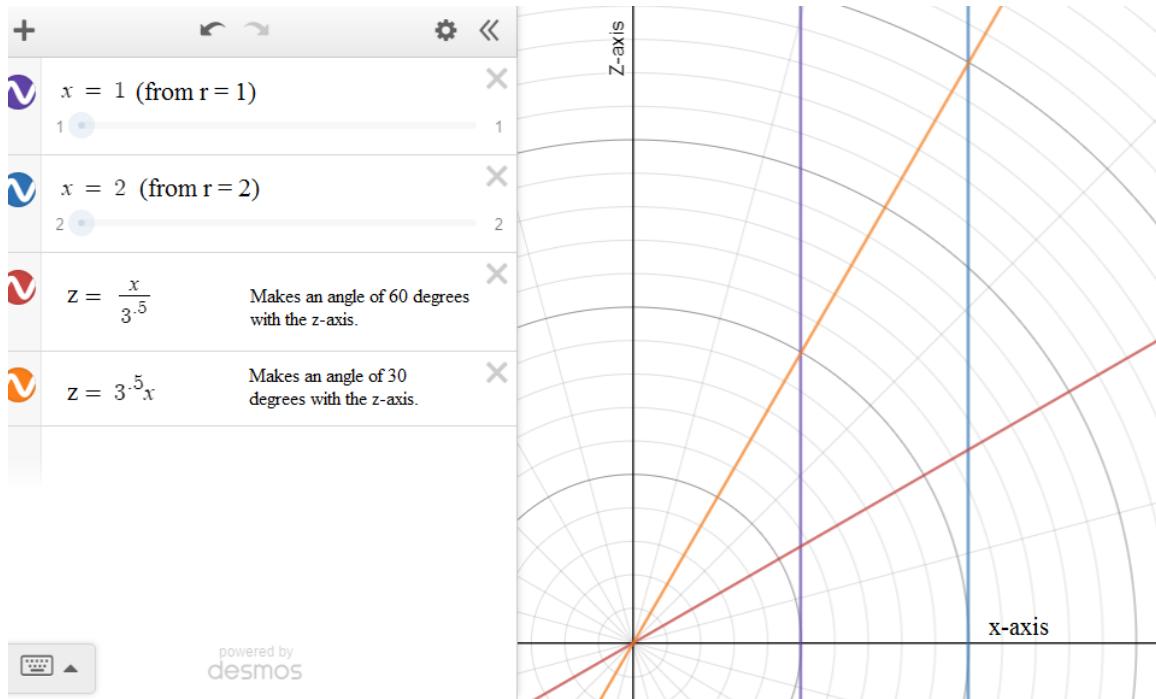


FIGURE 5. The xz -plane cross section in spherical coordinates.

We see that for any $0 \leq \theta < 2\pi$ we have $\frac{\pi}{6} \leq \varphi \leq \frac{\pi}{3}$. Noting that $r = \rho \sin(\varphi)$, we see that when $r = 1$ we have $\rho = \csc(\varphi)$ and when $r = 2$ we have $\rho = 2 \csc(\varphi)$. It follows that once φ is also chosen we have $\csc(\varphi) \leq \rho \leq 2 \csc(\varphi)$. We now see that the volume of the solid is given by

$$(8) \quad \text{Volume}(S) = \iiint_S 1 dV = \int_0^{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{\csc(\varphi)}^{2 \csc(\varphi)} \rho^2 \sin(\varphi) d\rho d\varphi d\theta$$

$$(9) \quad = \int_0^{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{3} \rho^3 \sin(\varphi) \Big|_{\rho=\csc(\varphi)}^{\csc(\varphi)} d\varphi d\theta = \int_0^{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{7}{3} \csc^2(\varphi) d\varphi d\theta$$

$$(10) \quad = \int_0^{2\pi} -\frac{7}{3} \cot(\varphi) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}} d\theta = \int_0^{2\pi} \frac{14}{3\sqrt{3}} d\theta = \boxed{\frac{28\pi}{3\sqrt{3}}}.$$

Second Solution: We will proceed by using cylindrical coordinates. Due to the symmetry of our solid with respect to θ we begin by taking a cross section with the xz-plane. Since we are working in spherical coordinates, the cross section will be in coordinates similar to Cartesian coordinates with (r, z) taking the place of (x, y) . This time we will focus on the right of the z -axis (y -axis) in order to only see the part of the solid corresponding to $\theta = 0$.

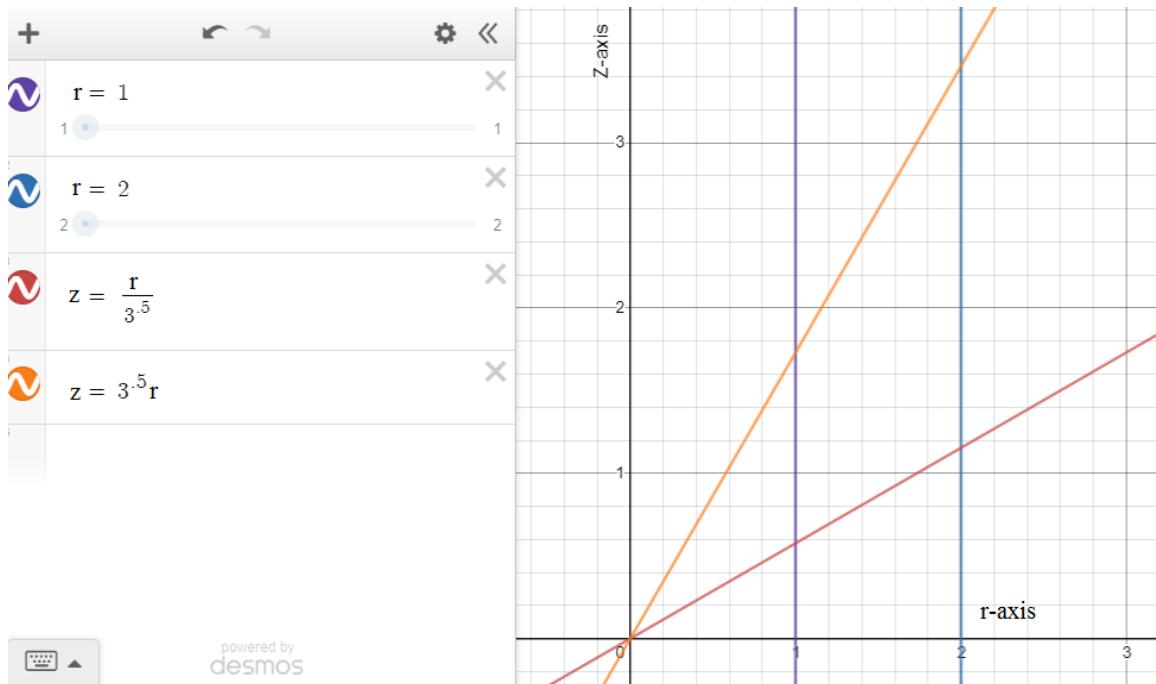


FIGURE 6. The xz-plane cross section in cylindrical coordinates.

We note that for any $0 \leq \theta < 2\pi$ we have $1 \leq r \leq 2$. Once r is also chosen, we see that $\frac{1}{\sqrt{3}}r \leq z \leq r\sqrt{3}$. We now see that the volume of the solid is given by

$$(11) \quad \text{Volume}(S) = \iiint_S 1 dV = \int_0^{2\pi} \int_1^2 \int_{\frac{1}{\sqrt{3}}r}^{r\sqrt{3}} r dz dr d\theta$$

$$(12) \quad = \int_0^{2\pi} \int_1^2 r z \Big|_{\frac{1}{\sqrt{3}}r}^{r\sqrt{3}} dr d\theta = \int_0^{2\pi} \int_1^2 \frac{2}{\sqrt{3}} r^2 dr d\theta = \int_0^{2\pi} \frac{2}{3\sqrt{3}} r^3 \Big|_1^2 d\theta$$

$$(13) \quad = \int_0^{2\pi} \frac{14}{3\sqrt{3}} d\theta = \boxed{\frac{28\pi}{3\sqrt{3}}}.$$