
Problem 3.1.23: Consider the differential equation

(0.1) y′′ − (2α− 1)y′ + α(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (0.1) tend to
zero as t→∞. Also find all values of α (if any) for which all nonzero solutions
become unbounded as t→∞.

Solution: We see that the characteristic polynomial of equation (0.1) is

(0.2) r2 − (2α− 1)r + α(α− 1),

which has roots

(0.3) r =
2α− 1±

√
(2α− 1)2 − 4α(α− 1)

2
=

2α− 1±
√

4

2

(0.4) = α− 5

2
, α +

3

2
.

Firstly, we note that the characteristic polynomial of equation (0.1) never has
a double root, so the general solution is

(0.5) y(t) = c1e
(α−5

2)t + c2e
(α+3

2)t.

The nonzero solutions of equation (0.1) will become unbounded as t→∞ if

and only if e(α−
5
2)t and e(α+

3
2)t each become unbounded as t → ∞. Recalling

that eβt becomes unbounded as t → ∞ if and only if β > 0, we see that the
nonzero solutions of (0.1) become unbounded if and only if α − 5

2 > 0, which
occurs precisely when α > 5

2. Next, we see that the solutions of equations (0.1)
tend to zero as t→∞ if and only if α− 5

2 and α+ 3
2 are both negative, which

occurs precisely when α < −3
2.
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Problem 3.1.24: Consider the differential equation

(0.6) y′′ + (3− α)y′ − 2(α− 1)y = 0.

Find all values of α (if any) for which all solutions of equation (0.6) tend to
zero as t→∞. Also find all values of α (if any) for which all nonzero solutions
become unbounded as t→∞.

Solution: We see that the characteristic polynomial of equation (0.6) is

(0.7) r2 + (3− α)r − 2(α− 1),

which has roots

(0.8) r =
−(3− α)±

√
(3− α)2 − 4(−2(α− 1))

2

(0.9) =
α− 3±

√
α2 + 2α + 1

2
=
α− 3± (α + 1)

2
= α− 2,−2.

Since r = −2 is always a root of the characteristic polynomial, we see that
e−2t is always a solution to equation (0.6), so there are no values of α for which
all nonzero solutions become unbounded as t → ∞. Next, we note that the
general solution to equation (0.6) is

(0.10) y(t) =

{
c1e
−2t + c2e

(α−2)t if α 6= 0

c1e
−2t + c2te

−2t if α = 0
.

In order for all solutions to tend to zero as t → ∞ we need α − 2 to be
negative, which occurs precisely when α < 2.
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Problem 3.2.29: Find the Wronskian of the differential equation

(0.11) t2y′′ − t(t + 2)y′ + (t + 2)y = 0

without solving the equation.

Solution: Firstly, we will divide both sides of equation (0.11) by t2 to obtain

(0.12) y′′ −
(
t + 2

t

)
y′ +

(
t + 2

t2

)
y = 0.

Since equation (0.12) is a second order linear ordinary differential equation of
the form

(0.13) y′′ + p(t)y′ + q(t)y = g(t),

we see that a solution is gaurenteed to exist on (−∞, 0) or (0,∞). We also
see that the Wronskian is

(0.14) W (t)
∗
= e

∫
−p(t)dt = e

∫ t+2
t dt = e

∫
(1+2

t )dt
∗
= et+2 ln(|t|) = |t|2et = t2et .

We see that the Wronskian is never 0 on (−∞, 0) or (0,∞) so equation (0.12)
has a unique solution for any initial values of the form y(t0) = c1 and y′(t0) = c2
with t0 6= 0 and c1, c2 ∈ R.

Bonus Problem: Given that y1(t) = t is a solution to equation (0.11),
use the Wronskian W (t) to find another independent solution y2(t). (Compare
with problem 3.4.26)

Solution: We see that

(0.15) t2et
∗
= W (t)

∗
= y1y

′
2 − y′1y2 = ty′2 − y2

(0.16) → y′2 −
1

t
y2 = tet.
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We can solve equation (0.16) by multiplying both sides by an integrating
factor I(t), which in this case is given by

(0.17) I(t) = e
∫
−1
t dt

∗
= e− ln(|t|) =

1

|t|
.

Since integrating factors are determined up to a constant, we may simply use
I(t) = 1

t instead of I(t) = 1
|t|. Multiplying both sides of (0.16) by 1

t , we see

that

(0.18) et =
1

t
y′2 −

1

t2
y2 = (

1

t
y2)
′

(0.19) → 1

t
y2 =

∫
etdt

∗
= et

(0.20) → y2(t) = tet .
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Problem 3.3.19: Solve the initial value problem

(0.21) y′′ − 2y′ + 5y = 0, y(
π

2
) = 0, y′(

π

2
) = 2,

then sketch the graph of the solution and describe the behavior as t→∞.

Solution: We see that the characteristic polynomial of equation (0.21) is

(0.22) r2 − 2r + 5,

which has roots

(0.23) r =
2±

√
(−2)2 − 4 · 5

2
=

2±
√
−16

2
= 1± 2i.

It follows that the general solution to equation (0.21) is

(0.24) y(t) = c′1e
(1+2i)t + c′2e

(1−2i)t,

which can also be more conveniently expressed as

(0.25) y(t) = c1e
t cos(2t) + c2e

t sin(2t).

From the initial condition y(π2) = 0 we see that

(0.26) 0 = y(
π

2
) = c1e

π
2 cos(π) + c2e

π
2 sin(π) = −c1e

π
2 → c1 = 0.

From the initial condition y′(π2) = 2 we see that

(0.27) 2 = y′(
π

2
) =

d

dt
(c2e

t sin(2t))
∣∣∣
t=π

2

= (c2e
t sin(2t) + 2c2e

t cos(2t))
∣∣∣
t=π

2

(0.28) = c2e
π
2 sin(π) + 2c2e

π
2 cos(π) = −2c2e

π
2 → c2 = −e−

π
2

(0.29) → y(t) = −e−
π
2et cos(2t) = −et−

π
2 cos(2t) .
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We see from the graphs below that the solution y(t) oscillates wildly as t→
∞. Instead of converging to any particular value, the end behavior of y(t) is
unbounded and even oscillates between −∞ and ∞.

Figure 1. The graph of the solution y(t) near the origin.

Figure 2. The graph of the solution y(t) on a larger domain.
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Problem 3.3.40: Solve the differential equation

(0.30) t2y′′ − ty′ + 5y = 0, t > 0.

Solution: Since equation (0.30) is an Euler equation, we make the substi-
tution x = ln(t) and h(x) = y(ex) = y(t). Since t = ex, we may use the chain
rule to see that

(0.31)
dh

dx
=
dy

dt
· dt
dx

= ex
dy

dt
= t

dy

dt
, and

(0.32)
d2h

dx2
=

d

dx
(
dh

dx
) =

d

dx
(ex

dy

dt
)

(0.33) = ex
dy

dt
+ ex

(
d

dx

dy

dt

)
= ex

dy

dt
+ ex

(
d2y

dt2
· dt
dx

)

(0.34) = ex
dy

dt
+ ex

(
ex
d2y

dt2

)
= t2

d2y

dt2
+ t

dy

dt
.

We now see that substituting x = ln(t) into equation (0.30) yields

(0.35) 0 = t2y′′ − ty′ + 5y = (t2y′′ + ty′)− 2ty′ + 5y = h′′ − 2h′ + 5h.

Since we now have t and x as independent variables, it is important to note
that h′ = dh

dx and y′ = dy
dt . This is not the most clear notation, so some

people prefer to be more explicit and only write dh
dx and dy

dt without any use of
′. Regardless of your preferred convention, be careful to avoid the errors that
arise when you assume y′ = dy

dx and h′ = dh
dt .

We see that the characteristic polynomial of equation (0.35) is

(0.36) r2 − 2r + 5,

and has roots
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(0.37) r =
2±

√
(−2)2 − 4 · 5

2
=

2±
√
−16

2
= 1± 2i.

It follows that the general solution to equation (0.35) is

(0.38) h(x) = c1e
x cos(2x) + c2e

x sin(2x).

Finally, we see that

(0.39) y(t) = h(x) = h(ln(t)) = c1e
ln(t) cos(2 ln(t)) + c2e

ln(t) sin(2 ln(t))

(0.40) = c1t cos(2 ln(t)) + c2t sin(2 ln(t)) .
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Problem 3.4.20: Given a ∈ R, solve the differential equation

(0.41) y′′ + 2ay′ + a2y = 0.

Hint: It helps to consider the Wronskian.

Solution: We see that the characteristic polynomial of equation (0.41) is

(0.42) r2 + 2ar + a2 = (r + a)2.

Since the characteristic polynomial has r = −a as a repeated root, we see
that one solution to equation (0.41) is y1(t) = e−at, but the second solution has
yet to be found. To find the second solution, we will proceed as we did in the
Bonus to problem 3.2.29. We see that the Wronskian is given by

(0.43) W (t) = e
∫
−2adt = e−2at.

It follows that the second solution y2(t) satisfies the differential equation

(0.44) e−2at = W (t) = y1y
′
2 − y′1y2 = e−aty′2 + ae−aty2

(0.45) → y′2 + ay2 = e−at.

We can solve equation (0.45) by multiplying both sides by an integrating
factor I(t). We see that

(0.46) I(t) = e
∫
adt = eat

is a suitable choice of integrating factor. After multiplying both sides of
equation (0.45) by eat, we see that

(0.47) 1 = eaty′2 + aeaty2 = (eaty2)
′

(0.48) → eaty2 = t→ y2 = te−at.
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Since y2(t) is indeed an independent solution to y1(t), we see that the general
solution to equation (0.41) is

(0.49) y(t) = c1e
−at + c2te

−at .

It is clear that this solution is defined on all of (−∞,∞). Furthermore,
since the Wronskian W (t) is never 0, we see that for any t0, b1, b2 ∈ R, there
is a unique solution to equation (0.41) when we impose the initial conditions
y(t0) = b1 and y′(t0) = b2.
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Problem 3.4.26: Given that y1(t) = t is a solution to the differential
equation

(0.50) t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0,

use the method of reduction of order to find a second solution. (Compare
with problem 3.2.29)

Solution: Let u(t) be such that y2(t) = u(t)y1(t) = tu(t) is a second
(independent) solution to equation (0.50). We see that

(0.51) 0 = t2(tu(t))′′ − t(t + 2)(tu(t))′ + (t + 2)tu(t)

(0.52) = t2(tu′′(t) + 2u′(t))− t(t + 2)(tu′(t) + u(t)) + (t + 2)tu(t)

(0.53) = t3u′′(t)+2t2u′(t)−t3u′(t)−2t2u′(t)−t2u(t)−2tu(t)+t2u(t)+2tu(t)

(0.54) = t3u′′(t)− t3u′(t)→ 0 = u′′(t)− u′(t)

(0.55) → u′(t) = u′′(t) =
du′(t)

dt
→ dt =

du′(t)

u′(t)

(0.56) →
∫
dt =

∫
du′(t)

u′(t)

(0.57) → t
∗
= ln(u′(t))→ u′(t) = et

(0.58) → u(t) =

∫
etdt

∗
= et.

It follows that a second solution to equation (0.50) is y2(t) = tu(t) = tet.
After plugging tet back into equation (0.50) to check our work, we see that
y2(t) = tet is indeed a second solution to equation (0.50) that is independent
from y1(t) = t.
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